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A NOTE ON RELATIVE T-NILPOTENCY

Manasu HARADA

(Received June 23, 1975)

This note gives some supplementary results of [6]. The first one shows an
application of the idea in the proof of [6], Lemma 7 and gives a characterization
of artinian rings. The second one gives a refinement of [6], Corollary 2 to
Theorem A.2 and the final one is a special type of the exchange property.

Throughout we shall assume that R is a ring with identity and modules
are unitary right R-modules. First, we shall recall definitions in [6].

Let {P,};and {Qg} ; be two infinite sets of R-modules. We take a countable
set {M;}s such that My, =P, 1,€ {P,};and M,;=Qp,;,E {Os};. Further
we take a set of non-isomorphisms f;: M;—M,,,. If for any element m in
M, there exists n such that f, f,_,--- fi(m)=0, we say {f;}7 is locally T-nilpotent.
If for any countable sets {M;}7 above such that a(2i—1)=+a(2/'—1) (B(2))+
B(2j)) if i1’ (j=*j') any sets {f;} of non-isomorphisms are always locally
T-nilpotent, then we say {P,}; and {Qg}; are relatively and locally sami-T-
nilpotent. 1f we omit the assumptions a(2i—1)=%a(27") (B(25)*B(25’)) in the
above, we say {P,}; and {Qg}, are relatively and locally T-nilpotent. If
{P}1=1{0s} s, we say {P,}; is locally semi-T-nilpotent or T-nilpotent, corres-
ponding to the above cases. We shall assume that the definition of
relatively semi-T-nilpotency contains a case of either I or J being finite, If
K =2GBP‘,=2I_‘,EBQ‘B and {P,};, {Qg}, are locally and relatively T-nilpotent,

then we say > PP, and X3P Qs are relatively T-nilpotent decompositions of K.
I J

Finally, let M=N@P be R-modules and « a cardinal number. If for
any decomposition M=3PL, with x-components there exist submodules
L, of L, such that M=N P PL,’, then we say N has the x-exchange property
in M. In case « is any cardinal, we say N has the exchange property in M.

1. T-nilpotent decompositions

First, we study a property of relative T-nilpotency. If the endomorphism
ring of a module M is a local ring, then we call M completely indecomposable.

Lemma 1. Let M be an R-module and f,g in End, (M). If fg is isomor-
phic, M=Im gDKer f.
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Lemma 2. Let P be an R-module. If P is itself locally T-nilpotent, P is
a completely indecomposable module.

Proof. Put S=Endg(P). If e=S and e’=e, then e=1 or 0 by the
assumption. Let x, y be elements in S with x non-unit. Then neither xy
nor yx is unit in S from the above and Lemma 1. Furthermore, consider a
sequence {x"}7 of non-unitsin S. For any element p in P, there exists n=n(p)

such that x™#(p)=0 from the assumption. Therefore, X =l+ﬁx‘ is an
element in S and ((1—#)X)(p)=(1—x)(1+x+ ---+2™2)(p)=(1—x"P)(p)=p.

Hence, 1—x is unit in S from Lemma 1. Let x, y be non-unit in S. We
assume that x4y is unit in S. Then we may assume x+y=1, which is a
contradiction to the above. Therefore, S is a local ring.

Theorem 1. Let M be an R-module and M=3 DP,=>PQs two
I J

relatively T-nilpotent decompositions of M. Then all P, and Qg are completely
indecomposable modules and hence, those decompositions are unique up to isomor-
phism and every direct summand of M has the exchange property in M.

Proof. We put I,={acI|P,~Q; for some S< J} and J,={B< ]|
Qp~P, for some a=I}. We first show I,+¢ and so J,+¢. We assume the
contrary. Let p,, gs be projections of M to P, and Qg, respectively. Let
x,#0€ P,,. Then there exists B, J such that gg, (x,)=x,%0. Again there
exists a;& I such that p,, (x,)=x,40. Repeating those arguments, we obtain
a contradiction to the T-nilpotency, since I,=],=¢ (cf. [6], Lemma 7). Hence,
I,#+=¢ and so J,¢. Furthermore, {P,};, {Op},, are sets of completely in-
decomposable modules and locally 7-nilpotent by Lemma 2 and the assump-

tion. We put M= ZEBP,,EBZEBP,,/_E @QB@Z@QN where I/=I1—1,
and J/'=J—],. Let {P 41 be any finite subset of {Pm} 7o Since E@P has
the exchange property by [2], Lemma 3.11 and [9], Proposition 1,

M= Z:}EBPN,@;EBQ!@JZ;@QA" (%),

where Qp=0,"PQp”. Then ZEBQ,;” is isomorphic to a direct summand of
E”ZEBPQ‘.. If Qp'"'+(0), Op"” contams a direct summand 1somorph1c to some
1

P, i by Krull-Remak-Schmidt’s theorem, say Qp"'=X@Y; X ~P¢ s Since
B'e ], Y+(0). Let p be a projection of Qp”’ to X and ¢ the inclusion of X
to Qg then p and 7 are not isomorphic. However, ppip~'=1P,  and neither
@ p nor ip~' is isomorphic. Which contradicts the relative T-nilpotency.

Accordingly, Qg’=(0) and (Xn]EBPm',) NP Qp)=(0). Therefore, (IEGBP,) N
1 ]1’ 1



RELATIVE T-NILPOTENCY 433

(E@Qp) (0). Let M= M/(E@Qﬂz) and +r the natural epimorphism of M
to M. Then M= zea«,zr@s):z@wa) (note {(Qp)~Qs and V(Po)~P.).
On the other hand, 2@\1/‘(})‘") is locally direct summand of M from (*) and
{¥(Pu)}1, is locally T- mlpotent Hence, Zeaxp(P,,) is a direct summand of M

by [3], Theorem 9 and [7], Corollary 2 to Lemma 2 and Lemma 3, since
{¥(0p)}s, is a set of completely indecomposable modules. Furthermore,
E@\Ir(Pm) has the exchange property in M by [4], Theorem 4 and so M=

EEB\,!»(P,,)@ZEB\,&(Q,B) where J,”C J,. Therefore, M—Z@Pu@Z@Qa’EB
EEBQ,;/_ EBP EBZGBP,,/ Hence, EEBQ,‘;/EBEEBQB/%EGBP,,/ However,

{P,,,/} % and {0s} sy lu 71 are locally and relatlvely T- mlpotent and so some P,
is isomorphic to some Qg by the first part, provided P,s=(0). Therefore,
I'=]/'=],"=¢. The remaining parts are clear from [1] and [4], Theorem 4.

ReMARK. Theorem 1 does not remain valid if we replace the T-nilpotency
by the semi-T-nilpotency in the assumption.

Corollary 1. Let P be R-projective. Then P has two relatively T-nilpotent
decompositions if and only if P is a perfect module.

Proof. It is clear from Theorem 1 and [4], Theorem 6.

Corollary 2. R is right artinian if and only if every projective modules and
every injective modules have relatively T-nilpotent decompositions.

Proof. It is clear from Corollary 1, [3], Corollary 1 to Proposition 1 and

(8]-

2. Exchange property
Let {M,}; be a set completely indecomposable modules and M=>PM,,.
I

We consider a relation between the concept of the exchange property in M and
that of the 2-exchange property in M for a direct summand N of M. If Nis
also a direct sum of indecomposable modules, those concepts are equivalent by
[6], Theorem A.2. We do not know whether this fact is true without any
assumptions.

Lemma 3. Let A=BPCHD be R-modules. If BPC has the 2-ex-
change property in A, then C has the same property in CPD.

Proof. We assume C@HD=K@PL. Then A=BHCHD=BDKDL.
Hence, A=BPHCPK’'PL’ for some K’CK and L'CL from [6], Lemma A.4.
Since CD2CHK'@L, CAD=CPK'PL".
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Let M be as above and M=S,S,. Let {M,}; be the isomorphic
representative classes of {M,}; and we shall denote it by [M]. We put
J'={a€ J|M, is isomorphic to a direct summand of both S, and S,} and
J"={ae J’| directsums of any finite copies of M, are isomorphic to direct
summands of both S, and S,}.

Theorem 2. Let M, S;, etc. be as above. Then S, has the exchange pro-
perty in M if and only if S, has the 2-echange property in M, {M,} ;» is locally
semi-T-nilpotent and {M,} ;i is locally T-nilpotent.

Proof. Let N; be a dense submodule of S; and N;=37 31 @D N,js,

j€, BEI;
where 7=1,2 and N;;s’s are isomorphic to some M, in {Mm}{, and N;jp~
N;jor~N;1jp~Ny;pr and N;jpaeN;jp if 317 (see [4]). We put

Ji={je J|1,; and I,; are infinite}

J: ——{]EJIIU:i:annd ; is finite}
Js={j€ J11,; is finite and I,; is infinite}

Jo=A{jeJIL;= ¢} and

Jsi=1{jeJIL; = ¢}.
Then J,=J” and J,U J,U J,=J’. Furthermore, we put N;(k)= Z‘, EEBN,,,;
Then N,= EEBN (k) and N,= EEBN (k). We shall show “if” part] N|(1),

N,(3) and N ,(2) are direct summands of M from the assumption and [4],
Proposition 2. Since N,(1)BN,(3)SS, and N,(2)CS,, M=N,(1)DN,(3)D
S/®N,(2)BS,’, where S;/C.S;. Furthermore, a dense submodule of S,
(resp. S,’) is isomorphic to N;(2)DN,(5) (resp. N,(1)DN,(3)DN,(4)). Since
S,=N,(1)®N,(3)BS/, S,=N,(2)®S,’ and S, has the 2-exchange property
in M, S/ has the same property in S/@N,(2)®S,” (=C) from Lemma 3.
We assume S,'PS,/=APB. Then C=APBEDN,(2). Hence, C=S,/DA'D
B'®N,(2) from [6], Lemma A.4, where A’CA, etc. Therefore, S,’®A'D

'=8,/®S,’, which means S,/ has the 2-exchange property in S,/®S,".
Accordingly, S,” has the exchange property in S,’®S,” by [6], Corollary 2 to
Theorem A.2, since N,(1)@N,(3)@BN,(2) has the exchange property in M by
[5], Theorem 2 and so S,’®S,’ is a directsum of completely indecomposable
modules. Therefore, S;” is also a directsum of completely indecomposable
modules and hence, S, has the exchange property in M by [6], Theorem A.2.
The converse is clear from [6], Theorem A.2.

Finally, we shall study some special properties concerning with the ex-
change property in M of a direct summand of M. We are interested in a re-
lation between the exchange property in M and the relative semi-T-nilpotency.
We assume M=N,PN, and N,-=$€BN,~(k) as in the proof of Theorem 2.
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We know from the proof above that N, has the exchange property in M if and
only if N,(2)DN,(5) has the same property in Ny(2)BN,(5)DN,(3)DN,(4) and
{Nuj}, {Nz;} are locally and relatively semi-T-nilpotent (cf. [6], the proof of
Corollary 1 to Theorem). Hence, we may restrict ourselves to a case of
[NIN[N,]=4.

In the following we shall use the category A induced from a set of com-
pletely indecomposable modules and its factor category A=A/J’ studied in [3].
We refer to [3] for the notations and results on A.

Lemma 4. Let M be in A and A, B two locally direct summands of M.
If [A]N[B]l=¢, ANB=(0) and ADB is a locally direct summand of M.

Proof. Let i, iz be the inclusions of 4 and B into M, respectively. Since
[4]N[B]=¢, Imi,N Imiz=(0) from [3], Theorem 7 and [7], Lemma 3. Let
ADB be the external direct sum and i=(i,, i5): AD@B—M. Then it is clear
from the above that { is monomorphic in A. Hence, Im i=A-B is a locally
direct summand of M and AN B=(0).

Lemma35. Let M=S®T and Min A. For any element x in S there exists
a finite set of indecomposable modules S; such that S =Z‘] D S:PS’, xez'}GBS,-

and S;’s are isomorphic to some in [M].

Proof. See [4], the proof of Proposition 3.

Let M=N,®N,=>'®Sy and N;4 with [N,JN[N,]=¢. We put
Sy(f)=3S,, where S, runs through all indecomposable direct summands of
Sy which are isomorphic to some in [V;]. By [S,(7)] we denote the represen-
tative classes of such S,’s. Then S,(7) is also the union of all locally direct
summands 4 of Sy with [A]<[N,]. Itis clear, from Lemma 5, Sy=Sy(1)+4S4(2).
If N,(or N,) has the exchange property in M, Sy==S,,®Sy, where Sy, SS5,(z)
and every indecomposable direct summand of Sy, is isomorphic to some in [N;].
In the following, we shall study a case of S;,=S,(1).

The following lemma is a slight generalization of [6], Lemma 7.

Lemma 6. Let M=N,PN,=>DSy and N,-=GEI@N,-,,; N;s's are com-
K €I,
pletely indecomposable modules. We assume {N,u}, and {N,,}, are locally and
relatively semi-T-nilpotent and [N, ]N[N,]J=¢. Then M= ; @ Sy(1)+N, =
Nl+; DSy(2).

Proof. We shall give asketch of the proof (cf. [6], Lemma 7). We assume
I,and I, areinfinite. Put M*= 3 @S,(1)+N, We assume M3=M*. Then
K

there exists N,, not contained in M*. Let #,EN,,—M* and x,,=2> %y ; Xy, ESy,.
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We may assume x, & M*. Then from Lemma 5 we have xyl=§p] Yigs

yieE A<D Sy, and Ap’s are indesompoosable. Since xy EM*, there exists
¥,sEAp—M* and so [4g]€[N,]. Now, we can find Sy which contains a direct
summand Sy, isomorphic to N,,. Since Sy’ss has the exchange property by
[9], Proposition 1,

M = Sy ®N,’®N,; N/CN,,

since [N,]JN[N,]=¢. Let y,;—a+b+c; aESy/a, bEN,’ and cEN,. Then
beN,/—M#*. Hence, we can find an indecomposable direct summand N,; of
N/, such that b=x,5+--, ¥, N,s;—M*. On the other hand, since [4g][N,].
there exists V,, isomorphic to 4g and

M= NzeEBZ@S‘Y,; S-y/gS-y .
K

Let x,;=d+>\fy; dEN,,, {yESy. Again there exists fy,€S;,’—M*. Simi-
larly to the above, we can find a direct summand A4, of S, such that
[4.]€[N,], f1,=2]y:v and y,,€ A,—M*. Furthermore, since N,; is a direct
summand of IV,/, there exists Sy, which contains a direct summand Sy, iso-
morphic to N,; such that

M = Sy 11y® Sy 1y ®N,”®N,; N,C N,

and Sy,7~Sysy. Repeating those arguments we obtain a sequence {X,, ¥,8,
%5, Yon-+'}, which contradicts the assumption of relative semi-T-nilpotency.

Theorem 3. Let M be a direct sum of completely indecomposable modules
and M=N,®N,=>PS,. We assume N; is a direct sum of indecomposable
K

modules {N,4}1, such that N,,AN,, for any acl,, BE1, and {Niu}r,, {N,s}1,
are locally and relatively semi-T-nilpotent. Then the following conditions are
equivalent.

) M=3@s()eN,

2) Homg([Sy(1)], [S«(2)])=(0) for every «v

3) Sy(1) is a direct summand of Sy and [A]<[N,] for every indecomposable
direct summands A of S,(1), where Homg([Sy(1)], [Sy(2)])=(0) means Homg (B,
C)=(0) for all BE[Sy(1)] and all C &[Sy4(2)].

Proof. 1)—2) and 3). 1) implies Sy=S4(1)® Sy and > DyS(1)=~N,,
K
>2PSy~N,. Hence, we obtain 3). Furthermore, every C in [Sy(2)] is isomor-
K

phic to a direct summand C” of S,/. Let B be in [S,(1)] and /' Homg (B, C)Z:
Homg (B, C’). Then f=g¢(f’) is not isomorphic from the assumption. Put
B’={x+f(x)|x€B}. Then B’~B and B’ is a direct summand of Sy from [7],
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Lemma 3. Hence, B'CS,(1). Therefore, Imf< (B+B)NSy < S, (1)N Sy
=(0).

2)—>1). Letxbe in Sy(1) and x=>;; x;,€ 4,{B S, with [4;]€[N,]. On
the other hand, there exists, from Lemma 5, a direct summand B=2€9BJ- of

Sy such that x& B and [B;][M]. Let p; be the projection of S, onto B;. If

0=p,(x)=2]p;(%:),[B;]J=[N,] from 2). Hence, x>} ® B;, with [B;]€[N,].

Now, let y be in (23DSy(1))N N, and y=31y:; y:E€S,,(1). Then there exists

a direct summand >} >PB;, containing y as above. Hence, ye (31 >IPB;,)N
Y,

N,=(0) by Lemma 4. Therefore, M=3®S,(1)®N, from Lemma 6.
3)—1). Let S;=Sy(1)®S, and C an indecomposable direct summand of
Sy. Then C&[N,] otherwise C =S,(1). Hence, for dense submodules B,,,
By, in S,(1) and Sy, respectively, we have [By]<[N;]. Since X PB,, and
K
;EBB,.2 are dense submodules of > ®S,(1) and DIPBS)/, respectively by [4],
K K

Theorem 1, M= PS,(1)®N, by [6], Lemma 7.

Corollary 1. Let M be as above and M=N,®N,. If either Homg(N,, N,)
=0) or Homg(N,, N,)=(0), then N, and N, have the exchange property in M,
(cf. [6], Corollary 5 to Theorem).

Proof. N; is in A by [6], Corollary 5 to Theorem. The condition 2) in
the theorem is satisfied for any decompositions M=>1®S,. Hence, N, and
K

N, have the exchange property in M from Theorem 3 and [6], Theorem A.2.

Corollary 2. Let M, N; and Sy be as in Theorem 3. Then the following
conditions are equivalent.

1) M=(DS(1)BN,=N.D(XDS,(2))

2) Homg ([Sy(1)], [Sy(2)])=(0)=Homg([S2)], [S«(1)])
3) S.,:S.,(I)EBS.,(Z).

Proof. 1)—3). 1) implies Sy,=S,(1)®S,'=S,(2)BS,”. Hence, S,(2)=
Sy DSy(1) N Sy(2), since Sy'SSy(2). If Sy(1)NSy(2)=T=#(0), T contains an
indecomposable direct summand 4 of S, from Lemma 5. Then [4A]€[N,]N
[N,] from the first decompositions and 1). Therefore, Sy(1)N S,(2)=(0) and
Sy=5,(1)BS,(2). Other implications are clear from Theorem 3.
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