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1. Introduction

Let G be a finite group with a central involution ¢ whose centralizer in
G has the structure C(t)=<t>XF, where F is a non-abelian simple group.
Suppose further G has no subgroup of index 2. Then Janko [6] has shown
if F=A4, then G=Ja, the Janko simple group of order 175,560; and Janko and
Thompson [7] have proved if F~PSL(2, q), ¢=3, 5 (mod 8), ¢>5, then g=3"*"
(n>1) and G is simple (these are the groups of Ree type). In this paper we
prove the following result.

Theorem 1.1. Let G be a finite group with a central involution t whose
centralizer has the structure

C(t) = <t>XF

where F is isomorphic to either a simple alternating group or a classical simple group
of odd characteristic. Then G has a subgroup of index 2 mot containing t (and so
G is not simple), except when F~A; or F~PSL (2, 3**") (n>1).

Since ¢ is central, C(¢) contains an S,-subgroup S of G of form S=<t>xX M,
where M is an S,-subgroup of F. We show ¢ is not conjugate in G to any
involution in M and use the following lemma of Thompson ([8], Lemma 5.38)
to obtain the result.

Lemma 1.2. Let G be a finite group with an S,-subgroup S. Let M be
a subgroup of index 2 in S and t an involution in S-M which is not conjugate in G
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to any element of M. Then G has a (normal) subgroup of index 2 not containing t.

Throughout V will be the underlying n-dimensional vector space over
a field K of g elements (or a field E of ¢* elements) where ¢ is odd. If X isan
involution in GL(V), the invertible linear maps on V, then V=V X)®V ~(X),
where V=V*(X)={veV|vX=v}, and V"=V "(X)={veV|vX=—0v}. As
usual (see [4]) we define the type of X to be 7(X)=dim V' ~(X).

We will reserve H throughout to be any one of the classical groups
SL(n, q)(n=>2, ¢>3), Sp(n, q) (n even, n>>4), SU(n, g)(n=>3) or Q(n, q) (n=5),
and PH the corresponding projective simple group, so PH=H|Z(H). Recall
the group {X € GL(n, q)| XAXT=1,} is Sp(n,q) when = is even and

01
10
A=|"" " ;
01
—10

when A=1I, the group is O(n, g) (square discriminant); and if # is even and

=[I'(')" O:I, v K—K?, the group is 0(n, g) (non-square discriminant).
v
And U(n, 9)={X €GL(n, ¢)| XXT=1,} where—is induced by the field auto-

morphism a—a?, a€E.

If Z* is any non-trivial subgroup of Z(H), we denote the image of X H,
by xH|Z*. Further if xH|Z* is the image of an involution X € H, we
define the type of x to be r(X) if—1€2Z*, or min {r(X), r(—X)} if—1eZ*.
If x is an involution in PH, then X*=Z(H) so X?*=Xx-1 for some reK=
K—{0} (or E), and X is called a semi-involution.

For x € PH, Cpy(x)=1Image C}(X) where CH(X)={YeH|XY=X
(mod Z(H))}. If X is a semi-involution and yeC#(X) then X¥=4X so in
fact |C#(X): C(X)|=1or 2. '

We need the follow lemma on the conjugation properties of involutions and
semi-involutions in H, the proof of which is effectively contained in Dickson
([3), pp- 102, 106) and Dieudonné ([4], pp. 25, 26), while a direct proof for
the symplectic and orthogonal cases is given in the papers of Wong ((/4) in [9],
section 1 in [10]).

Lemma 1.3.

(i) Two involutions in H are conjugate (in H) iff they have the same type.

(i1) There is exactly one class of semi-involutions Y in Sp(n, q) or O(n, q) such
that Y?=—1.

(iii) Suppose X and Y are semi-involutions in SL(n, q) with X*=\-1 and
Yi=p-1 (A, p€K). If \€K? there exists yEK such that X'=vX is an
involution (in GL(n, ¢)) and if pcK® then X and Y are projectively conjugate
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(tn SL(n, q)) iff n(X)=r(+Y"). If NEK? then X and Y are projectively con-
jugate in SL(n, q) iff p=x (mod K?).

(iv) Suppose X and Y are semi-involutions in SU(n, q) with X*=x-1, A=7?,
and Y'=p-1, p=p* with \, v, p, peE. If y5=1 then X' =v"'X is an
tnvolution in U(n, q) and if pp=1 then X and Y are projectively conjugate in
SU(n, q) iff (X )=r(+Y"). If y9y=—1 then X and Y are projectively conjugate
in SU(n, q9) iff pp=—1.

2. Involutions which are squares

If L is any subgroup of G denote by {L*> the subgroup generated by
the squares of elements in L. Then the following lemma is useful.

Lemma 2.1. ¢ is not conjugate in G to any involution x=<{Cr(x)*>. In
particular t cannot be conjugate to an involution which is the square of an element
of order 4 in F.

Proof. Suppose on the contrary that ¢ is conjugate to such an x. Then

x*=t for some a= G, where x=f[l x%, x;€ Cp(x), and m a positive integer.
Thust = I'L'[l (x9)* .

But x;€ Cr(x) = C(x) so xt< C(x)*=C(¢).

Therefore t={C(t)’>CF, a contradiction. Hence ¢ cannot be conjugate
to such an «.

Theorem 1.1 has been proved by Yamaki [11] when F~A4, (n>6). But
it is also immediate from (1.2) and (2.1), since every involution in A4, (n>6)
is a product of squares of elements from its centralizer. Similarly, when
F~PSL(2, q), g=-+1 (mod 8), F has only one class of involutions and every
involution in this class is the square of an element of order 4 in F. For the
class of involutions in PSL(2, ¢) has

l: 0 1] as a representative in SL(2, ¢) and

—10
[—(1) (1)] - [—Z Z " where o = % So theorem 1.1 also

holds in this case and we assume n>3 for the remainder.

We now determine which involutions are of the above form in the various
classical groups. Throughout put H(n, €)=H (€)=SL(n, g) when =1, and
H(n, §)=H(6)=SU(n, q) when &é=—1. If d=(n, ¢—¢&) then |Z(H(E))|=d.
The result for the special linear and special unitary cases is as follows.

Lamma 2.2. Every involution in F~ PH(E) is square in F except, in the
following cases :
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(a) 2|ln and g=4—¢& (mod 8).
(b) 2°*'||n and 2°||g—& (s=>2).
(c) 2°'|n and 2°||qg—& (s>2).
Then there is at least one class in F with representative x such that x & Cp<{(x)*>.

Proof. We prove the lemma for F~PSL(n, q). The case é&=—1 is
similar. Let y be an involution in PSL(n,q). If y has a pre-image which is
an involution then y is a square in F since every involution in SL(n, ¢) is a square
in SL(n, q). So we may assume dim V is even and Y?=x-1 where A¢=1 but
NPE],

We distinguish three cases:

(a) Let 2°||n and 27||g—1 with 0<r<s. These conditions imply AEK?

and in a suitable basis

01
A0
Y=|" " |with (—a)"2=1.(¥)
01

%

Note by (1.3) if x is any other involution in F which has no involution as a
preimage then X is projectively conjugate to Y. Further [we can make V
into an #/2-dimensional vector space over E=K(v) (where v’=X\) by defining
(a+By)w=av+B(vY), any v V. Then a K-linear transformation X com-
mutes with Y iff X is E-linear.

Thus Cgr(Y)~GL(n/2, ¢°) with Yervl,,. So C(Y)=Cg.(Y) is isomor-
phic to a subgroup of index ¢—1 in GL(n/2, ¢*) and C(Y)' ~SL(n/2, ¢*) with
C(Y)/C(YY cyclic of order g-+1.

Now select o, B€K such that —a?+B82=1. Then

a B
—BN —«a

" €SL(n, qg) and Y" = —Y,
a
‘—ﬁx —a

so |C*(Y): C(Y)|=2. Further W is semi-linear in V over E and inverts the
elements of C(Y)/C(Y). When r=s=1 (i.e. g=3(mod 4) and #/2 is odd),
{C*(Y)* is of index 2 in C(Y) and by (*) A*/’=—1.
So YeC*(Y)> iff det (vL,,) " =1
iff g=7 (mod 8).

Thus ye{Cx(»)*> (and in fact y is a square), except when g=3 (mod 8).
(b) Now consider the case when 2°||n (s>2) and 27||[g—1 with 0<r<s.
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In fact 0<r<s for by (*) A**=1 and if r=s, A is a d/2 root of unity contra-
dicting an earlier assumption. Here C*(Y)/C(Y) is dihedral so {C*(Y)?> is
again of index 2 in C(Y).

Thus Ye{C¥Y)> iff det (vL,,) 9" =1
iﬂ (X’l/l)(q+1)/2=1.
Now A"*=1 except if r=s—1 when A**=—1. And __q—z}—l is odd except

when r=1. Thus Ye{C*(Y)*> except when r>1 and r=s5s—1. So ye
{Cr(y)*> (and is in fact a square in F) except when 2°*!||n and 2°||g—1 (s>2).

(c) Finally suppose 2°!|lz and 2°+/||g—1 with s>2 and j>0. This
implies A€ K?, say A=7* where y"=—1. Thus v~'Y is an involution of de-
terminant —1 in GL(n, g¢) and by (1.3) Y is conjugate to

0% [_é’ (}”_r], some oddr, 0<r<n.

Therefore Cg (Y)=~GL(r, ) X GL(n—r, q) with C(Y)=Cjs,(Y) a subgroup of
index ¢—1. So C(Y) =~ SL(r, )X SL(n—r, q) and C(Y)/C(Y) is cyclic of
order g—1. Further C*(Y)=C(Y) except when 2||z and rz-g—. Then

W=[?r —OI’]ESL(n, g) is such that Y"—=—Y so |C*Y): C(Y)| =2, and
W inverts the elements of C(Y)/C(Y). In either case {C*(Y)*> is of index 2
in C(Y) and
Y e{C¥*(Y)? iff (det(—yI,)) 4 P* =1
iff j>1.
Thus ye{Cx(»)*> (and is a square in F) except when j=0, and this completes

the lemma.
In the symplectic case we have:

Lamma 2.3. Every involution in F ~PSp(n, q) is a square in F except when
(d) n=2(mod4) and q=4-+1 (mod 8).
Then there is a class with representative x such that x&<{Cr(x)>>.

The proof of (2.3) is similar to the orthogonal case.

Lemma 2.4. Every involution x F ~PQ(n, q) is such that x={Cg(x)*>
except in the following even dimensional cases :

(e) n=2(mod 4) and g=8+1 (mod 16).

(f) n=4 (mod 8) and g=44-1 (mod 8).

Proof. First suppose the non-trivial involution y & F has a preimage
Y €Q(n, ¢) which is an involution. By (1.3) we may take
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and write V=V*(Y)@V(Y). Then Cy,p(Y)=0V*+)x0(V "), and C(Y)=
Co(Y)={(Y, V,)ECow(Y)|det Y,=det V,; §(Y,)=6(Y,)}, where 0 is the
spinor norm on O(V) (see Artin [1]). Further C(Y)Y=~Q(V )xQ(V*), and
since V'~ has even dimension and square discriminant —1,-€Q(V ). Hence
YeC(YY<<{C*Y)*». This proves the lemma when 7 is even and the
discriminant is a non-square, or when # is odd, for then PQ(n, 9)=Q(n, g).

Now consider when 7 is even and the discriminant is a square. Let

01

—10

X=| . il a semi-involution in SO(n, g). Then 6(X)=2"°. But by

—10

(1.3) any non-trivial semi-involution in 0(n, ¢) is conjugate to X. Thus there

are semi-involutions in Q(n, ¢) iff (i) n=0(mod 4) or (ii) n=2(mod 4) and
g=4-1(mod 8). Now let g=56(mod 4) (=41).

(a) When §=1, —1=9* some ')/EK.T, and X’=v"'X is an involution in

GL(n, g). If we write V=V*+(X")®V ~(X’), then V* and V- are both totally

isotropic with respect to the form so dim V*=dim V‘=%. Thus with

respect to a basis of V=(basis of V' *+)U(basis of V) the form has matrix

[%T Ba], some Be GL(n/2, q). Therefore

Y

Can(X) = {[F YEGL(f2, )} ~GCL(n2, 9

I.%(YT)‘I(BT)“‘]

with Xeoyl,,.

(b) When 8§=—1, —1€éK? and as in (2.2) (a) we can make V into an
n/2-dimensional vector space over E=K(v), where v’=—1. Further V' becomes
a unitary space by defining a new form <, >:

Lo, w> = {v, wt+v<{vX, w any v, weV,

where <, > is the non-degenerate symmetric bilinear form on V. Then
&, > is a non-degenerate hermitian form with respect to the automorphism
a+PBy—a—By of E. And an E-linear transformation lies in O(n, g) iff it is
unitary with respect to this form. So C,w(X)=~U(n/2, q) with X vL,,.

Note in both (a) and (b), Co(X)=Cs,w(X). Hewever, there are ele-
ments of non-trivial spinor norm centralizing X. So C(X)=Cy(X) is a sub-
group of index 2 in Cyy,(X), with C(X) ~H(n/2, ) (where é=1 in (a), E=—1
in (b)).
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ol

I, 10

/’] (E=1) or W=| . | (€=—1).
01
10

Then W is a coset representative of Cyy,(X) in C§y»(X), which inverts
the elements of C(X)/C(X). However, W e C*(X) iff n=0(mod 4). There-
fore C*(X)/C(X) is dihedral when #=0(mod 4) and C*(X)=C(X) when
n=2(mod 4). In either case {C*(X)*> is of index 2 and if p=(det vI,,)* */,
then X € {C*X)*> iff p=1. So in (i) when n=0(mod 4), p=1iff n=0
(mod 8) or n=4(mod 8) and g=&(mod 8). And in (ii) when n=2(mod 4) and
¢=38(mod 8), p=1 iff g=35(mod 16). This completes the lemma.

We have now show theroem 1.1 holds, but for the exceptional cases
(a), -*+, (f). We turn our attention to these cases.

0
Let W= [
In/z 0

3. The exceptional cases

To prove theorem 1.1 in the exceptional cases we need the structure of the
subgroup generated by involutions in the centre of an .S,-subgroup of F. To
determine this we first find Q,(Z(M)), for an S,-subgroup M of H.

Let the dyadic expansion of the dimension of ¥ be

n=2"F2"t e 42 1 <<ty

In fact m;=1 and k>1 in (a), (b) and (e); m,=2 and k>1 in (f); while if
k=1, m;>3 in (b); and m,>2 in (c).

Lemma 3.1. Let M be an S,-subgroup of SL(n, q), Sp(n, q), SU(n, q) or
Q(n, q) (square discriminant). Then there are subspaces V,, -+, V, of V of dimen-
sions 2™, «--, 2™k respectively, such that V=V ,PD:-- PV, and

QUZM)) = {—Ty>X - X{—1y> .

Proof. We consider only when F~PH(n, €) and M is an S,-subgroup of
H(n, €).

The proof of the other cases is similar.

(i) First let g=&(mod 4), and suppose as in (b) and (c) 2°||g—& (s>2).
Then an S,-subgroup W of GL(2, q) or U(2, q) has order 2**'. In fact W is

generated by the matrices
7 0 10 [O 1
01]” [07) |10

where 7 is a primitive 2° root of unity in the field. Thus WaZ,s~Z, where
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Z, denotes the cyclic group of order n. Hence Q,(Z(W))~Z,.

Now let T;=Z,~-.-~Z, be the wreath product of Z,7 times, and put
W,=W, W,=W~T,,_,(m>1). Then from Carter and Fong [2] if S is an
S,-subgroup of GL(n, g) or U(n, q) there are subspaces V,, -, V, of V with
corresponding dimensions 2™, ..+, 2" such that V=V,p.--@V, and S=
Wy X =+ X W,y,,, where W, is an S;-subgroup of GL(V;) or U(V;) respectively.

Therefore Q,(Z(S))=C—1y,pX -+ X{—=1y >.

Now let Q be an S,-subgroup of H(2, §). Then Q is (generalized) qua-
ternian of order 2°+* and is generated by

n 0 01
07 |—10]
so Z(Q)~Z,. Put Q,=0 and Q,=0~T,,_,(m>1) and let T=0Q,, X+ X Q,,,
where Q,, €W, . Then T is a 2-subgroup of H(n, €). Now let M be an
S,-subgroup of H(n, €) such that TCMCS.
Then Q,(Z(S))=2Z(T)=M so Q,(Z(S))=,(Z(S))N M <Q,(Z(M)). - Con-
versely if ¥ eZ(M),

YeC,T) = ﬁ Cw,(Qm)= 11 <nly,> by induction,
e, if YEQZ(M)), Y €{—1,>x -+ x{—1y> s0
Q,(Z(M)) S ,(Z(S)) -

(il When ¢= —&(mod 4) as in case (a), an S,-subgroup W of GL(2, q)
or U(2, q) has order 2°**, where 2°||g+& (s>2). Further W is semi-dihedral
(see [2]) so Z(W)~Z,. If Qis an S,-subgroup of H(2, €) then Q is a (gener-
alized) quaternion group of order 2°*!, so Z(Q)~Z,. The argument now
follows as in (i) above.

Lemma 3.2.
I.  The classes of involutions in F ~PH have the following representatives in H:
(i) In (a), (b), (d) and (e) they are:

01

—I 0 A0 0
Y':[o I ] X=X=" "5
n—i 01

0 Ko

for =24, .., 2[%]; and in (a) and (b) N\ is a primitive d-th root of unity in

the field with (—\)"*=1, while in (d) and (¢) »=—1.
(ii) In (f) they are as above with the further representative
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0—1
10
01
X2= —10
01
—10

(i) In (c) they are:

—1, 0 —I; 0
Yi :[ ’ J’ Xj B !y[ ’ J
0 I, 0 I,

_
where i=2, 4, -, 2[%], and j=1,3, -, 2 "%Z}r 1; and'y is a primitive 2 d-th

root of unmity in the field so y"=—1.
II. The involutions x; (any j) and for k>1 the involution y,, (when n=0
(mod 4)) are not central in F.

Proof. 1. (i) and (iii) follow from (1.3).

(if) if X and Y are two non-trivial semi-involutions in Q(#, ¢) then by (1.3)
X7"=Y, some We&0(n,q). When n=2(mod 4) we may select W' C¥,(Y)
of the same determinant and spinor norm as ¥, since in this case the elements
of C¥,,(Y)—Cyy>(Y) have determinant —1. Then WW’' € Q(n, q) and
X"W —=1Y, so x~y in PQ(n, g). However when #=0(mod 4), C¥*,,(Y)<
SO(n, g), so X, and X, which are conjugate in O(z, g) by an element of
determinant —1 are not projectively conjugate in Q(n, ¢). But any non-trivial
semi-involution in Q(n, ¢) is conjugate to either X, or X,.

II. When n/2 is even, the 2-order of |H: C}(Y,z)| is 2¢7*. So if k>1,
Va2 18 DOt central in F.

In (a) and (b) we have

| H(n, €): CE(X)| = %9"2"(4""—8)(4"‘3—5)"'(9—5) ,

which is even so x is not central in F.
In (c) when j=—'21 (and so k>1), |H(n, €): C*(X,,)| has 2-order 2%~
which is even. Otherwise
| SL(n, 9): C*(X;)| = |GL(n, q): Cer(y'X;)|.

But the structure of Q,(Z(S)) where S is an S,-subgroup of GL(n, q)
shows v7'X is not central in GL(n, gq) and so x; is not central in F, any j.
Similar calculations prove the result in the other cases.

Let us denote the image of a subgroup L of H by L in PH. We now give
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the structure of Q,(Z(M)), where as above M is an S,-subgroup of H.

Lemma 3.3

(i) |Q(Z(M)| =2 when k=1 and Q,(Z(M))=Q,(Z(M)) when k> 1.
(ii) No involution z€ Q,(Z(M)) is conjugate to t in G.

(iii) If 2, ¥ €Q,(Z(M)) with z+2' then type z=+type .

Proof. (i) Clearly Q,(Z(M))SQ,(Z(M)). Conversely if z&Q,(Z(M)) then
z~y; some i, for by (3.2) the other classes are not central in F. Thus 2 has

a preimage Z which is an involution and this also proves (ii) since y;¢t.

When k>1, Z e Z(M) for if not Z”=—Z some me M and so Z is of type
nf2. 'This is impossible when m,=1, and implies for m,>1 that Z~Y,;,, a
contradiction since by (3.2) y,,, is not central.

Let W be an S,-sungroup of GL(n/2, q) or U(n/2, g) when k=1 (so n=2")
then M is of form

C|0 0|1

M= {[W]’ [I—lo]l C, D W; det C—(det D)"}

and Q,(Z(M)=<z)> where Z:[:%I%]
(iii) From (3.1) Q,(Z(M))=<{—1y X x<{=1p>. If 2, & EQ,(Z(M))
have the same type then

2"t 2% = type Z = type Z' = 2M|---- 2"

where {n,--,n,} and {n{, ---, n)} are subsets of {m,, -+, m;}. By uniqueness
Z=+2' and z=2'

We conclude the proof of the theorem by showing in the exceptional cases
¢t cannot be fused with any involution in F. Of course ¢ cannot be conjugate
to any of the classes with representative y;. 'The only possiblity is for ¢ to be
fused with an x;, some j. We show this is not the case.

Lemma 3.4. In (a), (b), (d), (e) and (f) t is not conjugate (in G) to x, and
in (f) t is not conjugate to x, either.

Proof. Suppose on the contrary x*=t¢ for some a=G. (In (f) either
x=x,~1 or x,~t and we may assume the former without loss of generality).
Now choose Y=Y,m if k>1 or Y=Y,m-1 if k=1. From (3.1) and (3.3)
there is an S,-subgroup M of F such that ye Q,(Z(M)). Then S=<{>XM is
an S,-subgroup of G. Clearly Y €C(X) so (XY)’=x-1 and by (1.3) xy~x in
F. Conjugating this relation by a and assuming y®=y for the moment we
obtain zy~t in G.

Now ¢, tye Z(S) so by the Burnside argument there is a b= Ng(S) such
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that #*=¢y. Further b normalizes Q,(Z(S))=<t> X Q,(Z(M)) so under conjuga-

tion permutes the elements of Q,(Z(S))—1. This implies (2y)?=¢ when k=1,

since by (3.3) [Q,(Z(M))|=2 and tvy. When k>1 we must have (#y')’=t,

some y’ € Q,(Z(M)) since again by (3.3) no element of Q,(Z(M)) is fused with ¢.
Thus C(z, y')2=C(2, ty')*=C(ty, t)=C(2, y),

ie. OXCHY)={E>XCH(y).

So |C*(Y)|=|C*(Y’)| and in particular their p-orders are equal where
g=p’, p prime. In (a) and (b) the p-order of |C*(Y’)| is 1/2I(j(j—1)+
(n—j)(n—j—1)) where Y’ is an involution of type j. So if Y is of type 7, then
i=j or i+j=mn and in either case type y=type 3. A similar calculation for (d),
(e) and (f) yields the same result, so by (3.3) y=3y'. Therefore t—#y— ¢ under
conjugation by b.

Thus be N(S)—C(t) and b’ C(t). This implies | N(S): S| is even which
clearly contradicts .S being an S,-subgroup of G. Hence «x is not conjugate to
t (in G) provided we show the assumption y*=y is valid.

We are assuming x”=t¢ with t& C(x), so t* C(f). Thus except in (f) #* is
conjugate to one of the following {y;, ty;, %, tx, t|1=2, 4, -+, 2[n/4]} (a maximal
set of representatives of classes in C(#)). In fact we may assume x*=¢ and
t*=ty; (some ), tx or x. However if *=ty; some 7, then (tx)*=y; and C(¢, x)*
=C(t, y;). Therefore Cp(x)*=Cg(y;). But y;€Cr(y;), and Cr(x) S F con-
tradicting (¢x)*=y;. Hence t*=x or tx and in either case C(¢, x)*=C(¢, x).

Now in (a) and (b), from the proof of (2.2)

C(t, x) = C*X)*>|Z(H(n, &)~L|Z
where Z(H(n, €))—Z in GL(n/2, q°)
and (C¥X)> oL = {A=GL(n/2, ¢°)|(det A)+7 =1} .

Let Z*=ZNZ(SL(n/2, ¢*)) then C(t, x)®~SL(n/2,q")/Z*. And ye C(t, x)*®
corresponds to an involution of a certain type in SL(n/2, ¢*)/Z*. Now a
normalizes C(¢, x)® so induces an automorphism on SL(n/2, ¢°)/Z*. But every
automorphism on SL(n/2, ¢*)/Z* comes from one on SL(n/2, ¢°) since n>6
(Dieudonné [5]) and any automorphism on SL(n/2, ¢°) preserves the type of an
involution. Hence y“ is of the same type as y conjugate in C(¢, x)® to y,
i.e. y*=y/, some feF. Replacing a by af~' we have x* '=t, y* =y and
we may assume without loss of generality that a centralizes y.

In (f) as above, we may assume t*=x" or tx’ where ¥’'=x; (i=1 or 2).
Thus C(¢, x)*=C(¢, x’). From the proof of (2.4) if g=¢&(mod 4) then

LC(t, &Y ~LC(t, x> ~H(n/|2, &)|Z
where Z={—1,,,>. But ye{C(¢, x)*)’ and y{C(t, ')*)" both correspond to
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involutions of type 2 in H(n/2, €)/Z. Again a induces an isomorphism from
H(n/2, €)|Z onto H(n/2, £)/Z. However by [5] such an isomorphism comes
from one on H(n/2, €) (n>6, n=8), which preserves the type of an involution.
And the argument above applies. The proof of (d) and (e) is similar.

Lemma 3.5. In (c) t is not conjugate (in G) to x;, any i.

Proof. Letr=2°"%if k=1, and r=2°"%if k> 1.
(i) First we show no x; is conjugate to ¢ for :>r. Suppose on the
contrary x°=t¢, some a€G, for x=x; (i>7).

(Ii—r

I
0
In—i——r

Let Y =

J then y~y,, in F,

and so by (3.1) and (3.3) y=Z(M) for some S,-subgroup M of F. Let S=
{t>X M, an S,-subgroup of G.

[ -1,

o |
which by (1.3)

I

is projectively conjugate to X; z.e. xy~x in F. So provided y*=y we have ty~t
in G, where t, tyeZ(S). And the argument of (3.4) leads to a contradiction.

(i) If r=1 we are done. Otherwise we procede by induction to show
%,_; is not conjugate to t for j=1, 3, ---,r—1. Suppose j=1 and x=x,_, is
conjugate to ¢.

Now XY =¢

I, 0 I,
Let Y= —1, and Y’ = —1,
0 0
"‘In—r In—r—-l

0

Then xy~x in F and xy'~w,,, in F. (¥)

But x~¢. So suppose we may select conjugating elements @ and @’ such
that x°=t¢, y*=y and x*'=t, y“=y". Then conjugating the relations (*) by
a and @’ respectively we obtain ¢~ty in G, and #y'~x,,, in G. But y~3’in F
and so #y~ty’. Hence t~x,,, in G, a contradiction. So our claim is true
for j=1 and similarly for j=3, :--,7—1. To complete the proof we show the
assumptions made on the choice of conjugating elements are valid.

We are supposing x{=¢ and must show a centralizes y. As in (3.4) since
¥:€ Cx(y;) each j, we may assume ¢*=ux, or tx;, some . Thus C(¢, x;)*=C(2, x,)
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which implies 7=/ as in (3.4). Therefore C(¢, x)*=C(t, x) where x=x;. Now
except in the case when 2||z and ¢ =—nz—, C*(X)=C(X). Therefore C(t, x)=

CHXY = (C(X)|Z(H(n, €))) and from (2.2) C(X) ~ H(i, &)X H(n—i, €), with
Z(H(n, &))" C(XY ~Z*={(\L;, A,_;)| Mi=r4=1}.

Hence C(t, x) ~(H(i, )X H(n—1, €))/Z* = L, say.

Now a induces an automorphism @ on L,. The Krull-Schmidt theorem and
the fact that every automorphism on PH(n, €)) comes from one on H(n, &)
for n>3, and n+4 when €é=—1 (Dieudonné [5]), show ¢ is induced from a
direct product ¢, X @, of automorphisms on H(3, §) and H(n—i, €) respectively.
Since @; (i=1, 2) preserves the type of an involution, y*(»’*) is an involution

in L, of the same type as y(y’), and thus conjugate to y(»’) in F. The
result follows.

When 2||n and i -———g— we have from (2.2) C(z, x) = Cr(x) =<C*(x))/

Z(H(n, €)), and C(2, x)® ~ (H(n/2, )X H(n/2, €))|Z* =L, say, where Z*=
{(7\'[”/2» ANy, | )\,421} .
In this case ye C(¢, x)® corresponds to an involution of type (%— 1, %— 1)

in L,. Again a induces an automorphism on L, which comes from one on
H(n|2, €)X H(2, €). This automorphism either preserves the factors or inter-
changes them. In either case y* is of the same type as y. So as above we may
assume without loss of generality that a centralizes y. This completes the
proof of theorem 1.1.

The material in this paper forms part of my doctoral thesis and I wish to
thank my advisor Professor Warren Wong of the University of Notre Dame,
for suggesting the problem.
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