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This paper will extend the known propertes of the Alexander polynomials
of classical knot complements to the properties of the Alexander polynomials of
arbitrary (possibly non-orientable) compact 3-manifolds with infinite cyclic
first homology groups. In particular, the Alexander polynomial will always have
a reciprocal property. The existence of the corresponding manifolds and the
other related results will be shown.

1. Statement of results
Throughout this paper, spaces will be considered in the PL category.

DEerFiNITION 1.1. A compact 3-manifold M is called a homology orientable
handle if M has the homology of an orientable handle: Hy(M; Z)~H(S* X S?
Z). Likewise, M is a homology non-orientable handle if Hy (M ; Z)~H(S* X .S?;
Z), a homology orientable circle if Hy(M; Z)~H(S"; Z) and 0M=S5"x S*, and
a homology non-orientable circle if Hy(M; Z)y~Hy(S*; Z) and 0M=S"'x,S".

It is easily seen that if M is a homology orientable (or non-orientable,
respectively) handle or circle then M is orientable (or non-orientable, respec-
tively) as a manifold. [Note that, in case OM = ¢, H(M, 0M; Z)~H,(0M; Z).]

By C(S'xS?%), C(S'x.S%), C(S*xB?) and C((S'X.B?), we denote the
class of homology orientable handles, the class of homology non-orientable
handles, the class of homology orientable circles and the class of homology non-
orientable circles, respectively.

The following Theorem 1.2 implies that a compact connected 3-manifold M/
with H,(M; Z)=Z belongs to one of the four classes C(S*x S?), C(S*x,S?),
C(S*x B?) and C(S* X ,B®) if 9M contains no 2-spheres.

Theorem 1.2. Let M be a compact connected 3-manifold with H(M; Z)=Z.
If 0M=¢, then Hyx(M; Z) is isomorphic to either Hy(S* X S*; Z) or Hy(S*X ,S?;
Z). If oM = ¢, then under the assumption that 0M contains no 2-spheres, Hy(M;
Z)~Hy(S*; Z) and 0M is homeomorphic to either S* X S* or S*x ,.S™.

If OM contains a 2-sphere, then we will attach a 3-cell to eliminate it. This
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modification is never essential [for example, the orientability of the resulting
manifold M’ coincides with that of the original manifold M and =,(M)=n,(M’").].
So we may assume that 9/ contains no 2-spheres.

Now suppose M belongs to one of the above four classes. Since the first
cohomotopy group ='(M)=[M, S'] is naturally isomorphic to the group of ho-
momorphisms Hom[z,(M), =,(S*)]=Hom[H,(M; Z), H,(S*; Z)], we can choose
a map f: M—S"* which induces an isomorphism fy: H,(M; Z)—H,(S"; Z). The
infinite cyclic covering p: M—>M associated with epimorphism f: 7z,(M)—>x,(S*)
== is then the covering induced from the exponential map R'—S* along f: M—
S* (See [3, §1].). We denote by ¢ a generator of the covering transformation
group 7z which is an infinite cyclic multiplicative group.

Let A=Z[r] be the integral group ring of z. Since A is a Noetherian ring,
it is not difficult to see that H,(M; Z) is a finitely generated (i.e. Noetherian)
module over A. [Note that the simplicial oriented chain group Cy(M; Z) (for
some triangulation of M) forms a finitely generated free A-module.]

Let &(¢) be a relation matrix of H,(M; Z). That is, for an exact sequence
of A-modules ¥,—%,—H,(M; Z)—0 with free modules §,, §, of finite ranks, let
&(¢) be a matrix representing the homomorphism §,—%,. If r=rank §,>1,
then the first elementary ideal E(E(t)) of @(t) is the ideal over A generated by the
determinants of 7 X7 submatrices of E(¢). (In case €(#) contains no 7 X7 sub-
matrices, we have E(E(z))=0.) If r=0, then let E(€(¢))=A.

DerFiNiTION 1.3.  Any generator A(#) of the smallest principal A-ideal con-
taining E(&(2)) is called the Alexander polynomial of M. [Note that A(t) is an
invariant of z,(M) in the sense that if (M) and #,(M’) are isomorphic, then
A(t)=*A'(t*), where A(t). A’'(t) are the Alexander polynomials of M, M’,
respectively, and €=1 or —1. See Magnus-Karrass-Solitar [7, p 157].]

The Alexander polynomial A(#) of M is restricted to some extent. Actually
the following is shown.

Theorem 1.4. For M e((S* X S?) or M &((S* X B*), we have A(t)=A(t™")
and |A(1)|=1. For M&((S*X.S?), we have A(t)=A(—t"") and |A(1)|=1.
For Me((S*X,B%), we have A(t)=(t"+1/t+1)A(t), where m>1 is the odd
number determined by the group H,(M, 0M; Z)=Z,, and At) is an integral
polynomial satisfying A (t)=A(—1t"") and | A,(1)|=1.

RemARK 1.5. From Theorem 1.4, we see that if M is orientable then A(z)
is the complete invariant of M up to units *#. If M is a closed knot com-
plement (i.e. the exterior for some tame knot in S®) then M belongs to C(S* X B?)

*) = means ‘“equal up to units of 4. This notation will be also used in the following
sense: For two elements A and A’ of '=4QQ, A=A’ means that 4 equals to 4’ up to
units of I'.
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and A(t) was called the knot polynomial and Theorem 1.4 is well-known (See
for example R.H. Crowell and R.H. Fox [2].).
The converse of Theorem 1.4 is also true. That is,

Theorem 1.6. Let f(t) be an integral polynomial with | f(1)|=1. If f(t)=
f(t), then in both C(S* X S*) and C(S* X B®) there exist manifolds whose Alexander
polynomials are f(t). If f(t)=f(—t"), then in C(S* X ,S?) there exists a manifold
whose Alexander polynomial is f(t). If f(t)=(t"+1/t+1)f,(t) for some odd number
m>1 and some integral polynomial fy(t) with f(t)= f,(—¢t"), then in C(S*X .B?)
there exists a manifold M with H, (M, 0M; Z)=_Z,, whose Alexander polynomial is
f®.

SupPLEMENTS 1.7. Let f(t)=a,+a,t+ ---+a,t™(a,a,+0, m>0) be an inte-
gral polynomial with | f(1)|=1. If f(£)= f(t") or f(#)= f(—t") is satisfied, then
it is not difficult to see that m is always even and that the following explicit for-
mulae are obtained:

f@&) ="t it fO)=ft")
f@) = (=)™ f(—t) if fi)=f—17).

2. Proofs

Let M be a compact connected 3-manifold with H,(M; Z)=Z and p: M—
M be the infinite cyclic covering associated with natural epimorphism «: =,(M)

—7.
Lemma 2.1. H,(M, 0M; Z,)~Z,.
Proof. It suffices to establish the duality
H(M; Z,)~H,(M, 0M; Z,) .

This duality is an analogy of the partial Poincaré duality theorem [3, Theorem
2.3], because H,(M; Z,)=Z, which implies that H,(M; Z,) is finitely generated
over Z, (See ].W. Milnor [8] or [3, Proposition 3.4].).

First, note that there is a duality H(M; Z,)~H,(M, dM; Z,)— even if M
is non-orientable.

Second, the isomorphism H(M; Z,)~HYM; Z,) is obtained from the same
argument as in [3], since H,(M; Z,) is finitely generated over Z,. This proves
Lemma 2.1.

2.2. Proof of Theorem 1.2. If dM=¢ and M is orientable, then by the
Poincaré duality we obtain that Hy(M; Z)y~H4«(S*x S*; Z). If 0M=¢ and M
is non-orientable, we know that H,(M; Z)=0 and HM; Z)=Z,. Since the
Euler characteristic X(M) is equal to 0, it follows that H,(M; Z) is a torsion
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group. Hence H,(M; Zy~H*M; Z)=Z,. This implies that Hy(M; Z)~H
(S*%,S?% Z). In case dM =+ ¢, the infinite cyclic covering p: M—M is used.
Since H,(M; Z,) is finitely generated over Z, and by Lemma 2.1 H,(M, 9M; Z,)

~Z,, it follows from the following part of the homology exact sequence of the
pair (M, 0M):

H(M, oM; Z,) — H,(dM; Z,) — H(M; Z,)

that H,(dM; Z,) is finitely generated over Z,.
For each component N of M let y*: n,(N)—= be the composite =,(N)

; ——7,(M)—n. o* is a non-trivial homomorphism. Otherwise, by [3,
inclusion

Lemma 4.1] 8M must contain infinite many copies of N as components. Because
N is not 2-sphere by assumption, H,(0M; Z,) is not finitely generated over Z,.
This is a contradiction.

Therefore v* is non-trivial and hence each component N of the preimage
p7'(NV) is an infinite cyclic covering space over N (See [3, Corollary 4.2].). Using
that H,(0M; Z,) is finitely generated, we obtain that H(N; Z,) is finitely ge-
nerated over Z,. This implies that X(/N)=0 (See J.W. Milnor [8].). Hence
X(0M)=0. By the formula X(0M)=2X(M), X(M)=0. From this we see that
H,(M; Z) is a torsion group. However, H(M; Z) is free since 0M =#=¢. Thus,
we have Hy(M; Z)~Hx(S"; Z). Furthermore, by the Poincaré duality over Z,,
H,(M,oM; Z,)~H*(M; Z,)=0. This implies that Ho(ﬁM; Z,)=0. That is,
0M is connected. By using X(0M)=0, we obtain that 9M is homeomorphic to
either S*x.S* or §*Xx,S*. This completes the proof.

From now on we will assume M belongs to one of the four classes C(S* X S?),
C(S*x B?), C(S* % ,S?%) and C(S* X .B,), unless otherwise stated.

Lemma 2.3. M is orientable.
(The author wishes to thank the referee for pointing out the following simple
proof. The original proof was more complicated cf. [3, Corollary 3.5])

Proof. First we note that M is orientable if and only if the first Stiefel-
Whitney class w,(#) vanishes (See for example E.H. Spanier [11, p 349].).

Second, from the following short exact sequence of simplicial chain A-
modules (for some triangulation of M)

N t—1 .
0 — Cyiit; ) 2= ciit; z) B oy zy) o0,

we obtain the exact sequence

- . t—1 .
H,1; 2) 2 H01; 2) 2 10 2) BT 7P R D) =0,
~ | ~

2 Z2 Z2 2
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This implies that the homomorphism py: H,(M; Z,)—>H,(M; Z,) is trivial,
Using the field Z,, the dual homomorphism p*: H(M; Z,)—H*(M; Z,) is trivial.
Therefore w,(M)=p*(w,(M))=0. This completes the proof.

REMARK 2.4. Since M is orientable and H,(I; Q) is finitely generated over
Q, there is a duality H(M; Z)~ H,(M, M ; Z)~Z by the partial Poincaré duality
theorem [3, Theorem 2.3]. Then ¢ induces the automorphism of H,(M, 0M; Z)
=Z of degree 1 or —1 according as the original manifold M is orientable or

o~ t—1
non-orientable. In fact, the short exact sequence 0—CyM, dM; Z)— C,
o o t—1
(M, oM Z)£>C,(M, 0M; Z)—0 induces the exact sequence H,(M, 0M; Z)—>

H,(M, 31T, Z)&‘Hz(M, 0M; Z)—0. [In case M is orientable, this sequence is
easily obtained. In case M is non-orientable, use the facts that H,(M, 0M; Z)
—=Z, and H,(M, 0M; Z) is torsion-free. Note that the torsion product Tor
[H (M, 0M; Z), G] vanishes for all finitely generated groups G, since H,(M, 9M;
G)~G by the partial Poincar¢ duality theorem [3, Theorem 2.3, Case(4)].]. In

t—1_px

case M is orientable, the sequence is replaced by the exact sequence Z——Z—
Z—0. Hence t—1: Z—Z is the trivial homomorphism. This implies that ¢
induces the identity homomorphism. In case M is non-orientable, the above

. t—1 . .
sequence implies the exact sequence 0—>Z——>Zli>>kZz—>0. This asserts that ¢ is

the automorphism of degree —1.

Lemma 2.5. There exists a PL map f: M—S* such that
(1) fu: H(M; Zy~H(S"; Z),
(2) For some point p= S*, F=f~(p) is a proper connected two-sided surface in M
with connected complement M—F,
(3) F and M—F are orientable,
4) [FleH, M, dM; Z) is a generator. (Note H,(M, OM; Z)=Z or Z, according
as M is orientable or non-orientable.)

Proof. By [3, Corollary 1.3], there is a PL map f: M—S* satisfying (1)
and (2). By Lemma 2.3, M is orientable. Hence F and M—F are orientable,
since M—F is canonically embedded in M. (3) is then satisfied. (4) follows
from the fact that F intersects a circle representing a generator of H,(M; Z)=Z2
transversally at a single point (See [3, Corollary 1.3].). This shows Lemma 2.5.

Note that if A(#) is the Alexander polynomial of M then A(¢7*) can be also
considered as the Alexander polynomial of M by replacing one generator of the
infinite cyclic covering transformation group with the other generator.

Lemma 2.6. (Calculating the Alexander polynoimal of M.)
(1) Since H,(M; Q) is a finitely generated torsion T-module and T is a principal
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ideal domain, H,(M; Q) decomposes into cyclic T-modules: H(M; Q)~T/(f.(£))e®
T/(fAt)e® - BTI(/it)a. Then for £=1 or —1 A(t)= Fi(B)f(2)-f(1) as ele-
ments of T'.

(II)  Since H,(M; Q) is finitely generated over Q, the isomorphism t: H,(M; Q)—
H (M; Q) represents a rational square matrix B. Then for =1 or —1 A(t*)=det
(tE—B) as elements of T', where E is the unit matrix.

(III) Let F be a surface in M described in Lemma 2.5 and M* be the manifold
obtained from M by splitting along F. Since M can be constructed from the coun-
table copies {M;}5._. of M* by pasting next to next, (called Neuwirth construction
[3, §1], L.P. Neuwirth [9)), it follows from the Mayer-Vietoris sequence that the

sequence H (F; Q)®I‘1>H (M*; Q)QT—H,(M; Q)—0 is exact as T-modules,
where r(x)=1(i,)x(%)—(i,)x(x) and i, i,: F—M* are the suitable identifications onto
two copies of F. Since M* is orientable, we have H,(F; Q)~H,(M*; Q) by Poincaré
duality. Thus, (2,)x,(%)x: H,(F; Q)—H,(M*; Q) represent rational square matrices
A,, A,, respectively, and r represents a matrix tA,—A,. Then for E=1 or —1
A(t*)=det(tA,— A,) as elements of T.

(IV)  Let (%), %, =+, %42 71,75, *=+, 7n)e be a presentation of =,(M) and ¥: Z[r(M)]
—Z[rx]=A be the ring homomorphism naturally extending the group epimorphism
v: m(M)—n. Now we consider the Alexander ( Jacobian) matrix (Yp(0r;[0x;))
(See R.H. Crowell and R.H. Fox [2].). By E(n,(M)) we denote the A-ideal
generated by the determinants of (n—1)x (n—1) submatrices of (Yp(0r;[0x)). Then
for =1 or —1 A(t*) is a generator of the smallest principal ideal comtaining
E(z,(M).

() 0
Proof. If H,(M;Q)~T/(f,(#))eD - ®T/(ft))e then the matrix (f(() )f( ))

\ (2
is a relation matrix of H,(M; Q) over T. Hence from the uniqueness of the
elementary ideal over T" and Definition 1.3 we obtain (4A(#*))e=E(&(#*))Q0=
(fu(2)-f(2)e for €=1 or —1. So A(t*)= f,(¢)f.(f)--- f,(¢). This proves (I).
Moreover, by S. Lang [5, p 401), we have (det(tE— B))o=(f(?):*- f(¢))e. This
proves (II). For (III) since t4,— A4, is a relation matrix, we also obtain (A(%))e
=(det(t4,—A4,))q, which proves (III). For (IV) it suffices to prove for some
particular presentation of z,(M), since E(z,(M)) does not depend upon a choice
of presentations of =,(M) (cf.[2]). So we may choose a presentation (x,, x,, -,
Xl 71y Ty =+ T)p SO that yp(x,)=t, vp(x;)=1 for i>2 (In fact, choose a pre-
abelian presentation (Magnus-Karrass-Solitar [7, p 140]).). It is not hard to

see that the sequence A[r¥, 7§, ---, r,’!‘.]iifA[x’l", xF, o, x,’l‘]ilA is semi-exact (i.e.
d,d,=0) as A-modules, where A[r¥, ---, rX] and A[x¥, ---, x¥] are the free A-
modules with bases 7¥, .-+, rk and «¥, .-+, x¥, respectively, and d, is defined by
dy(r¥)=23_179(0r;[0x ;)xF and d, is defined by d,(xF)=vp(x;)—1. [Remember
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the fundamental formula r;,—1=37}_,(0r;/0x ;) (x;—1).] Since d,(x¥)=vp(x,)—

=t—1 and d,(x¥)=vp(x;)—1=1—1=0, j> 2, it follows that Jp(dr;/dx,)=0,
i=1, 2, -+, m and Ker d,=A[x¥, ---, x¥]. Then d, defines a map d,’: A[r¥, -,
rE]—>A[x¥, -+, x¥]. By a result of R.H. Crowell [, p 39], H,(M; Z) is A-

isomorphic to Ker d,/Im d,; so, in this case, the sequence A[r¥, ---, 7] >
A[x¥, -, x¥]—H,(M; Z)—0 is an exact sequence of A-modules. Hence C()=
(79(07:/0x ;)) ;55,i>: 1s a relation matrix of H (M Z). So, A(t%) (€=1or —1) is
a generator of the smallest principal ideal containing the first elementary ideal
E(&(¢)). On the other hand, clearly, E(&(¢))=E(x,(M)), since yop(0r;/0x,)=0,
i=1, 2, .-, m. 'This completes the proof.

Lemma 2.7. |A4(1)|=1.
Proof. Let &: A—Z be the augmentation sending ¢ to 1. From the short
- t—1
exact sequence 0—CyM; Z)—>Cy(M; Z)£>C,(M ; Z)—>0 of A-modules, we

obtain the isomorphism ¢—1: H,(M; Z):Hl(M; Z). Hence H(M; Z)R:Z=0.
If G(¢) is a relation matrix of H,(M; Z) then (1) is a relation matrix of 0=H,
(M; Z)®:Z. This implies E(G(1))=Z. Hence Z=E(G(1))=&(E(C(t))CE(A(2))
=(A4(1)). Thus A(1)==1. This completes the proof.

2.8. Proof of Theorem 1.4. Let p<H,(M, 0M; Z) be a generator. By
[3, Theorem 2.3], there is a duality

Np: HY(M; Q)~H,(M, 0M; Q)

where N denotes the cap product operation. In case M is orientable, then by
Remark 2.4 we obtain the equality #[(fu)N p]=uN(fp)=uNp. Hence the
following diagram is commutative:

~

H'(M; Q)——»H(M oM ; Q) < 1 H,(M; Q)
Nu _ inclusion »
~lt 1t ~ |t
HY(M; Q)——~+H(M oM; Q) < s H,(M; Q)

[In case 0M =¢, by Poincaré duality H,(M, 0M; Z)=H?*(M; Z)=0. Hence
the inclusion homomorphism H,(8M; Z)—H,(M; Z) is onto. This implies that
0M is connected (See [3, Lemma 4.1].). Thus the inclusion homomorphism
H,(M; Q)—H (M, 3M; Q) is an isomorphism.)

If H(M; Q) is T-isomorphic to T'/(fi(£))e® - DT/(f.(f))e then the above
diagram implies that H,(M; Q) is T'-isomorphic to T'/(f,(27*))eD - DT/(f(t™))e-
On the other hand, since H'(M; Q)= Hom[H,(M; Q), O], H,(M; Q) and
H'(M; Q) are T-isomorphic. Thus,

~
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(fi(®)+f(B)e = () £t -

Using Lemma 2.6 and Gauss lemma, we showed that A(t)=A(¢"") as elements
of A.

In case M is non-orientable and M=¢ then the isomorphism H*(M; Q)
~pl[(fi(2)e D+ BT/(f(t))e implies the isomorphism~H1(M; 0) zII‘/(f,(—-t"))Q
@D DT/(f(—1t7"))e, because the duality Nu: H'(M; Q)~H,(M; Q) has the
equality (f#) N p=—2""[uN ] by Remark 2.4. Since H,(M; Q) and H*(M; Q)
are T'-isomorphic, we obtain (f,(£): fi(2))e=(fi(—2t")-f(—2"))e. Using
Lemma 2.6 and Gauss lemma, we showed that A(t)=A(—¢"") as elements of A.

In case M is non-orientable and M = ¢, then we have H,(M, 0M; Z)=Z,
for some odd number m>1. [Note that H,(M, 0M; Z)QZ,=H,(M, 0M; Z,)
=H*M; Z,)=0.] Now we consider the following exact sequence:

0 — HL(V, 8liT; Q) — H,(3lT; Q) — H(i; 0) % H (8, oT; 0) .

Since M and 8M are non-orientable and M contains m copies of R'x S* as
components [3, Corollary 4.2], we have H,(M, 0M; Q)=T/(t+1)q and H,(0M; Q)
=T/(t"+1)g. Accordingly, the above sequence induces the following exact
sequence of T-modules: 0—T/(#"+1/t+1)o—H,(M; Q)—Imj.—0. Let g,(?)
be the characteristic polynomial of the Q-linear isomorphism #: Im js—Im j.
By Lemma 2.6, we may regard A(#) as the characteristic polynomial of the O-
linear isomorphism ¢: H,(M; Q)—H(M; Q). So, the equality A(t)=(t"+1/t
+1)gy(¢) holds (See for example S. Lang [5, p 402].). Next since the following
square

H(; Q) —*> H,(, o81; Q)

%T Nw " ~|Np

H'\(1, 08T; 0)-— H'(IT; Q)
is commutative, we obtain the isomorphism N y: Im j*~Im j4. The isomor-
phism Im j*~T'/(g,(2))eD - PT/(g,(f))e implies the isomorphism Im jy~ T/
(g(—t )P - PT/(g(—1t""))g, since (tu)Nu=(—t"")[uNp]. However, Im
j*=Hom[Im j«, O] asserts that Im j* and Im jy are isomorphic as I'-modules.
Therefore

&) =g:(t) - g(O)=g(—17") g =17 ) =go(—17").

If we denote A(t)=(t"+1/t+1)A,(t), where A (t)=c g,(t) for some non-zero
rational number c€ Q, then we have Ay () A and A,(t)=A4,(—t"") as elements
of A. Combined with Lemma 2.7, the proof is completed.

Lemma 2.9. Let f(t) be an integral polynomial with | f(1)|=1. If f(t)=
f(t7"), then there exists M (S X B*) whose Alexander polynomial is f(t). If
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f@)=f(—17"), then there exists M <C(S*x ,B?) with H(M, 0M; Z)=0 whose
Alexander polynomial is f(t).

Proof. If f(t)=f(¢™*) then it is easy to obtain M &((S* X B®) whose Alex-
ander polynomial is f(¢), because it is well-known in the classical knot theory
(See H. Seifert [10].) that there exists a tame knot K'C.S® whose Alexander
polynomial is f(¢). In fact, we may take M to be the exterior (i.e. the closed
knot complement) of K'C .S®.

So it suffices to prove for the non-orientable case. The method of the proof
is somewhat analogous to the method of J. Levine [6], by which he gave an altern-
ative proof of a characterization of the knot polynomials due to H. Seifert [10].

Now we may assume f(#)=>"__.a;# (s>0) >\a;,=1 and a,=(—1)a_;.
[If s=0, then we can take S* X B’ ((S* X .B?).]

Take an oriented disk D in an oriented 3-sphere S°® and let K=0D. Also,
let K,, K, -+, K, be s+1 trivial knots, disjoint each other and from D, and with
linking numbers as follows:

LKy, K)=a; for i=1,2, s
L(K;, K;)=0 for 4.j40,7i%7.

We construct a new knot K’ by connecting up the {K;} in the following
manner (cf. [6]): Choose two points p; and ¢; on each K; and mutually disjoint
oriented arcs {4} in S*—K, beginning at ¢;_, and ending at p; so that each 4,
is disjoint from the {K;} except for the points g¢;_,, p;. Next, thicken A4; to be
a band B; which we identify with Ix A;, meeting K;_, along IXg;_, and K;
along I'X p;, but otherwise disjoint from the {K;}; furthermore, the {B;} should
be mutually disjoint. Then define the knot K’ by K'=(Ui_K;U Ui_,B;)—
Ui-,(Int I)x 4;. K’ is a knot disjoint from K and we may orient K’ coherently
with the {K;}. The oriented knot K’ is called a complete fusion along the arcs
{4;} and is denoted by K’'=K # K, #--- 4% K.

We pose one additional restriction on the construction of K’. That is, each
A; passes once around K in the sense that 4; should intersect D transversally at
a single point with positive orientation. We illustrated K’ for the case f(¢)=2¢"*
+2¢t7'—3—2¢+2¢ in Fig. 1.

Choose a tubular neighborhood 7(K) of K in S? so that D,=c/(S*— T(K))
N D is a proper disk of X=cl(S*—T(K)). Note that X is PL homeomorphic
to S'X B?. Now split X along D, and re-attach the resulting manifold by an
orientation-preserving homeomorphism between the resulting two copies of D,.
Thus, we obtain a manifold X, which is PL homeomorphic to S*X.B*>. By a
suitable move of the homeomorphism, we can assume that K’c X is deformed
into a knot K, C X,.
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Fig. 1

Fig. 2

X,—D, lifts to an infinite sequence {X;}, — oo <7< oo, of copies of X,—D,;
we may assume they are numbered so that X; is separated from X;,, by a lifting
D, ; of D, and 0X=D, ;—D, ;_,. For every pair of integers 7, m, where 0<i<(s
and —oo <m< oo, let K; ,, be the lifting of K; lying in X,,. The {K,} are
mutually disjoint. Since the universal covering space X, is orientable, we let X,
be oriented so that L(K, ,, K; ,)=a; for i=1, 2, ---, s. Then we have

(—1)"a; if m=mn, j=0

LK:‘m)K’n= . .
(&, 3 {(—l)’”ai if m=mn i=0.

Since each A4; intersects D, transversally at a single point, A4; lifts to a
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sequence {4;,,}, —oco<m<oco of arcs, where 4, ,, joints K;_, ,,_, to K, ,,.
Thus K./ lifts to a sequence K™ of knots, where K™ is a complete fusion K™=
K, w# K, ¥ # K, i, along the arcs {4; 4.} 1<i<, (See Fig. 2.).

The linking numbers of the {K™} and K° are given as follows:

(—D"a,, if 0<|m|<s

L(K° K™) =
( ) { 0 if |m|>s,

because L(K°, K™)=>%L(K; ;, K;_m;) and a_,=(—1)"a,,.
Let @,: S*x B>—X, be a tubular neighborhood of K° with L(K°, ¢,(S* X g))
=a, for some point g€0B*’=.S". For each m, —oco <m < oo, define an embedd-

ing @,,: S* X B*— X to be the composite S* X BZﬁX,LX,, where # is a genera-
tor of the covering transformation group z. Then ¢, determines a tubular
neighborhood of K™ such that L(K™, @,(S*x¢))=(—1)"a,. Let T be the
submanifold of X, obtained by removing the interiors of @,,(S*X B?), —co <m
< oo,

Define a manifold M to be obtained from 7 by attaching to each component
of 8T a copy of B*X.S* by means of the maps @,,|S'x.S'. Since ¢|7 has a
canonical extension to a homeomorphism from M to M, we can regard the group
7= {t"} as the properly discontinuous action on M. Then define a manifold M
to be the orbit space M/z. Note that the projection M—>M forms an infinite
cyclic covering with its transformation group 7.

We shall show that H,(M; Z)=Z and the Alexander polynomial of M is
£0). )

Note that H,(T; Z) is a free A-module generated by [p,(p X S")] (pS?).
This follows from the exact sequence of A-modules:

Hy(X; Z)—» H(X,, T; Z) > H(T; Z) > H(X.; Z)
I I
0 0

and the fact that , by excision, H,(X,, T} Z) is the free A-module generated by
[@o(p X B)].

Now consider the exact sequence

_ A ~ _ N
HWMT;Zy-H(T;Zy-HM; Z)—-HM, T; Z).

By excision, H,(M, T; Z)=0 and HZ(M, T; Z) is the free A-module generated
by [B? X q], where the boundary of B?X g is ¢,(S* X g). It follows that the image
of A is the submodule of H,(T'; Z) generated by [p,(S* X ¢)].

We shall show that [,(S* X ¢)]=/(t) [pd(p X S*)].
Let [@,(S* X @)]=g(®)[@.(p X SY)] in H,(T; Z) for some element
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g(t) = SeticA. If m+0, (—1)",, = SyeLE[plpx S)], K™)
= L([p«(S" X q)], K™)

= L(K°, K™)
_{(—l)ma,,, if |m|<s
“l o if |m|>s.

If m=0,c,=c,L(py(p xS, K°
= 2L L(E[p(p X SY)], K°)
= L([p,(S* X q)], K°) = a, .

Thus, we showed that H,(M; Z)=A/(f(?)).
From the short exact sequence of simplicial chain A-modules 0—Cy(/; Z)

t—1
— Cy(M; Z)£>C,(M ; Z)—0, we obtain the homology exact sequence of A-
modules

— H(iT; 2)%% H(M; Z) > H(; 2) > 0.
[Note that Hy(M; Z)&HO(M ; Z).] This sequence induces the exact sequence

of abelian groups:
H,(M; Z)®—.,Zp—’l>‘ H(M; Z2)®:Z — H(M; Z)®:Z — 0,

where &: A—Z is the augmentation. Note that H,(M; Z)®:Z=A/(f(t))Q+Z=
Z|(1)=0, because f(1)=1. Therefore H,(M; Z)=H,(M; Z)Q:Z~H(M; Z)R:Z
=Z. Since 0M is connected, the inclusion homomorphism H(dM; Z)—
H/,(M; Z) is onto (See [3, Corollary 4.2].). So, H(M, dM; Z)=0. This com-
pletes the proof.

Lemma 2.10. Given an odd integer m>1, then there exists M & C(S* X .B?)
with H (M, 0M; Z)=7Z,, whose Alexander polynomial is t™+1[t+41.

Proof. Consider an oriented 2-sphere D with m holes and let C,,C,,-++,C,,
be the components of 8D with the induced orientations. Choose an orientation-
reversing auto-homeomorphism #%: D—D sending C, to C,, C, to C;, -, C,,_,
to C,, and C,, to C,. Let M=DXR" and define an auto-homeomorphism ¢:
M—M by t(x, y)=(h(x), y+1). If M is oriented, then ¢ is an orientation-
reversing auto-homeomorphism. Since the group z= {#’} is a properly discon-
tinuous action on M, the quotient projection M—>M/z=M is an infinite cyclic
covering with its transformation group . Note that M is non-orientable.
Form a direct computation, it is not difficult to see that HI(M, oM, Z)=
AJ(t*—1/t—1). Let uH,(M, 0M; Z)=Z be a generator. Then the duality
Nw: H(M; Z)y~H (M, dM; Z) determines the module H* (M; Z)=A/((—t™)™
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—1/(—t*)—1). Since m is odd, we obtain that H,(M; Z)=A/({t"+1[t-+1).
Using that H,(M; Z)®:Z=0, where &: A—Z is the augmentation, the exact
sequence H,(M; Z)— H,(M; Z)— H,(M; Z)—0 induces the isomorphism
H(M; Z)y=H,(M; Z)RZ~H,(M; Z)QZ=Z. Hence we showed that Me(C
(S*x .B?) whose Alexander polynomial is #”+1/2+1. Since 9M consists of m
components, it follows from [3, Corollary 4.2] that H,(M; Z)/Im[H,(0M; Z)—
H(M; Z)|~Z,,. Using the homology sequence of the pair (M, 9M), we obtain
that H, (M, 0M; Z)~Z,,. 'This proves Lemma 2.10.

2.11. Proof of Theorem 1.6. Let f(¢) be an integral polynomial with
| f(1)|=1 and f(¢)= f(t"'). By Lemma 2.9 there exists M (S’ X B?) whose
Alexander polynomial is f(#). Let M be a closed manifold obtained from M by
attaching S'X B? to 0M so that H(M; Z)=Z. Then Me((S*X S?) and we
shall show that f(¢) is the Alexander polynomial of M.

By excision, H,(M; Z)~ H,(M,R'x B*; Z)
~H,(M, 0M; Z)
~,H(M; Z).

Hence by Lemma 2.6, f{(2) is the Alexander polynomial of M.

Next, let f(t) be an integral polynomial with | f(1)|=1 and f(z)= f(—¢™").
By Lemma 2.9 there exists Me((S'X.B*) with H,(M, 0M; Z)=0 whose
Alexander polynomial is f(¢). Then let M be a closed manifold obtained from M
by attaching S* x .B? to 0M so that H,(M;Z)=Z. Using Hl(]l?;Z)zAHI(M;Z),
we see that f(¢) is the Alexander polynomial of M, by Lemma 2.6.

Now let f(t)=(t"+1/t+1)f,(t) be an integral polynomial for some odd
number m>1 and an integral polynomial fy(¢) with f(z)= fy(—¢*) and | f(1)|
=1. By Lemma 2.9, there exists M,eC(S"X.B*) with H,(M,, 0M,; Z)=0
whose Alexander polynomial is fi(f). By Lemma 2.10, there exists M, eC
(S*x .B?) with H\(M,,, 0M,,; Z)=Z,, whose Alexander polynomial is ”-1/¢4-1.

Choose a solid Klein bottle S*x,.B? in M,, which represents a generator of
H(M,,; Z)=Z and let M be the manifold obtained from c/(M,,—S*x .B*) by
attaching M, to 9(S* X ,B?) by a homeomorphism 0M,—9(S* X ,B?). Then it is
not so difficult to see that M is in C(S* X ,B?) and H,(M, dM; Z)=Z,, and the
Alexander polynomial is f(t)=(t"+1/t+1)f,(). [The sequence 0—H,(3M,; Q)
—H,(c(M,,—S"x .B%); Q) H (M,; Q)—H,(M; Q)—0 is exact and H,(8M,; Q)
=T/(t+1)q and H,(cl(M,,—S*x ,B?); Q)=T/(t+1)o®T /(" +1/t+1)o. If A(2)
is the characteristic polynomial of the isomorphism t: H,(M; Q)—H,(M; Q)
then we obtain that (¢+41)A4(¢)=(¢+1) (#”+1/t+1)fy(t). Hence A(t)=(t"+1/
t+1)f(t)=f(t).] This completes the proof.
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3. Further discussions

3.1. A construction of a homology handle or circle having a fiber bundle
structure over S’.

DerINITION 3.1.1. Let M be a homology handle or circle. M is called a
fibered manifold (over S*) if M is a fiber bundle over S*.

DEFINITION 3.1.2. A skew-orthogonal matrix is an integral (2g) X (2g)-matrix
S satisfying S.S=¢E, where €=1 or —1 and E is the unit matrix and S is
defined as follows:

S1 "’Sl . d:.
If S=(§l‘~. Eg), S,-j=(a" b’l) then
S-S Cij Yij

g1’ " Pgg

- Sn"°sg1 ~ di' —b‘..
S = <~ KN ), Si,- = (_’c'. a’]‘) .
Sig**See A

Note that any integral 2X 2-matrix whose determinant is =+1 is a skew-
orthogonal matrix.

Let F be an oriented surface of genus g>1 with non-empty connected
boundary. Choose a standard basis <a,, b,, *, a,, b,> for H,(F; Z) with inter-
section numbers a;-b,=1, a;:b,=0 (i#j) and a;-a;=b;-b;=0 (all 7,j). It is
not so difficult to show that, given a skew-orthogonal matrix .S, then there is an
auto-homeomorphism A: F—F such that the automorphism ky: H(F; Z)—
H\(F; Z) represents S with respect to the basis <a,, b,, -, a,, b,> and con-
versely™®. h is orientation-preserving or orientation-reversing according as £=1
or —1.

Let M=FXxR' and define the transformation t: M—M by t(x, y)=
(A(x), y+1). Since 7= {¢"} is a properly discontinuous action on M, the orbits
space M=M)|= is a compact manifold such that the natural projection M—M
is an infinite cyclic covering projection whose covering transformation group is
n. Clearly, M is orientable or non-orientable according as é&=1 or —1. Since
t: H,(M; Z)—>H,(1\7I; Z) represents S, it follows that H,(M; Z)~Z€BH1(M; Z)|
(E—S)H(M; Z). Hence H(M; Z)~Z if and only if det(E—S)==1. Note
that, from construction, M is a fibered manifold with fiber F and such that
H,(M, 0M; Z)=0 (See [3, Lemma 4.1].) and whose Alexander polynomial is
det(2E—S) by Lemma 2.6.

Conversely, if M is a fibered homology circle with H,(M, 0M; Z)=0 then
it is easy to obtain a skew-orthogonal matrix S such that det(tE—.S) is the
Alexander polynomial of M.

*) The author thanks to Professor H. Terasaka for pointing out Definition 3.1.2 and this
assertion (which proof can be also obtained from [7, P178]).
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Thus we obtain the following.

Lemma 3.1.3. Given a skew-orthogonal matrix S with det(E—S)==*1,
then there exists a fibered homology circle M with H,(M, dM; Z)=0 whose
Alexander polynomial is det(tE—S). Such a manifold may be orientable or non-
orientable according as E=1 or —1.

Conversely, given a fibered homology circle M with H,(M, 0M; Z)=0, then
there exists a skew-orthogonal matrix S with det(E—S)==x1 and such that det
(tE—S) is the Alexander polynomial of M. & becomes 1 or —1 according as M is
orientable or non-orientable.

It is clear that Lemma 3.1.3 taken homology handles instead of homology
circles also holds.

Theorem 3.1.4.% Let f(t)=a,+at+ -+a,t"(n>0) be an integral poly-
nomial with | f(0)|=|f(1)|=1. If f(t)=f(t""), then in both C(S*XS?) and
C(S* X B®) there exist fibered manifolds whose Alexander polynomials are f(t). If
f)=f(—17"), then in C(S* X ,S?) there exists a fibered manifold whose Alexander
polynomial is f(t). If f(t)=(t"+1/t+1)f() for some odd number m> 1 and some
integral polynomial fi(t) with f(t)=f(—t""), then in C(S*X .B’) there exists a
fibered manifold M with H,(M, 0M ; Z)=Z,, whse Alexander polynomial is f(t).

Sketch of Proof. It suffices to show that if f(£)= f(&t™"), é&=1 or —1 then
there is a fibered M in C(S* X B?) or C(S*x .B?) with H,(M, 0M; Z)=0 whose
Alexander polynomial is f(#). Then the desired result will be obtained by a
suitable attachment of S*x B? or M,,, constructed in Lemma 2.10, to M, as in
2.11. (Note that M,, is fibered.) By J. Levine [6] (for £&=1) or Lemma 2.9 (for
&=—1), we obtain Me((S*XB?) (for é&=1) or M((S* X .B?) (for E=—1)
such that H,(M; Z)=A/(f(2)). |f(0)|=1 implies that H,(M; Z) is finitely
generated free over Z. Hence by [3, Theorem 2.3] there is a duality Ng:
HY(M; Z)~H,(M, 0M; Z), which says that the cup product U : H(M, 0M; Z)
x H'(M, oM; Z)—H*(M, 0M; Z)=Z gives a symplectic inner product over Z.
That is, there is a basis <{e,, e, -, e,, e,”> for H(M, M0; Z) such that e; Ue,/=1,
e;Ue;/=0 (%), e;Ue;=e;/ Ue,;/=0 (all 7, j). Then the automorphism ¢: H*
(M, 0M; Z)—H*(M, 0M; Z) represents a skew-orthogonal matrix S: S.S=¢E
with respect to the basis <e,, e, -+, e,,¢,>. Using det(E—.S)= f(¢) and Lemma
3.1.3, we complete the proof.

3.2. The Genus of a homology handle or circle

Now we will assume that M belongs to one of the four classes: C(S* X S?),
C(S*x B%), C(S'x,S*), C(S*x,B?). Given M, there is a PL map f: M—S"
such that for some point p=S*, F=f"'(p) is a proper connected 2-sided
orientable surface in M and with fi: H,(M; Z)~H,(S"; Z) (See Lemma 2.5.).

*) In the classical knot theory, a corresponding result has been obtained by G. Brude,
Alexanderpolynome Neuwirthschen Knoten, Topology 5(1966), 321-330.
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The pair (f, p) is called a Seifert pair.

DerINITION 3.2.1. The genus of M is the minimal number of the genus of
F=f"*(p), where the pair (f, p) ranges over all Seifert pairs.
The genus of M is so related to the degree of the Alexander polynomial
A(t) of M. In fact, by Lemma 2.6 (III), we obtain:
(3.2.2) genus(M)>degree(A(t))|2 if M &((S* X S?) or C(S* X B?) or C(S* X ,S?),
genus(M)> {degree(A(t))—(m—1)} |2 if M =((S* X ,B?) and
H(M, dM; Z)=Z,(m>0).
If M is fibered, then the inequality is replaced by the equality.

3.3. Finding a standard type

S'x 8%, S'xB? §'x,S* and S'X.B? are called the standard types of
C(S*x 8?), C(S*x B?), C(S*% ,S%) and C(S* X .B?), respectively. Let C be any
one of the four classes and M, be the standard type of C.

Theorem 3.3.1. (1) In case OM~S*x S, then assume H,(M,dM; Z)=0.
Then genus(M)=0 implies that M is PL homeomorphic to M,% S°, where S®is a
homology sphere.

(2) If n(M)=mn, then M is PL homeomorphic to M,# S°, where S* is a homotopy
sphere.

The proof of (1) is not difficult. For (2), see [4].

3.4. The Alexander polynomials of groups

For a finitely presented group G with H (G; Z)=Z, we can define the
Alexander polynomial A(z) of G' (See Magnus-Karras-Solitar [7, p 157].)*. A(%)
is the invariant of G in the sense that if 4,(¢) and A,(#) are arbitrary Alexander
polynomials of G then A,(t)=A,(¢°) for é=1 or —1. H,(G; Z)=Z implies
|A(1)]=1. However, in general, any reciprocal property does not hold.
Actually it is not difficult to obtain that any integral polynomial f(#) with | f(1)]
=1 can be realized as the Alexander polynomial of a finitely presented group.
More strongly, f(¢) can be realized as the Alexander polynomial of a 4-dimen-
sional homology orientable handle group i.e. =,(M) for a compact 4-manifold M
having the homology of S*X S*: Hy(M; Z)~H(S* x S*; Z)*¥.

*) A(t) is in fact defined as the 1st invariant factor in [7]. This can be also defined from a
relation matrix of a A-module Hy(K; Z ) for any finite complex K with 7;(K)=G, as just
in Definition 1.3, since Hl(f< ; Z) is identified with the abelianized group of the commu-
tator subgroup of G. (1?: is the infinite cyclic covering space of K.) In this case, (I), (II)
and (IV) of Lemma 2.6 taken K instead of M also hold. In particular, A(¢) can derive
from Fox free calculus [2] of G.

**) D.W. Sumners [12] showed the existence of a locally flat 2-knot with knot group presen-
tation (@, 8| a%fa’s---fa’mB™™) whose Alexander polynomial is f(2)=ao+ayt -+ +ant™.
Hence to see this assertion, it suffices to attach S* X B3 to the exterior of this 2-knot so as to
obtain a homology handle.



THREE D1MeNs1oNAL HoMoLoGy HANDLES 581

Let for example f(t)=t*—2t*4-3t—3. Since f(1)=—1, there is a 4-di-

mensional homology orientable handle group with Alexander polynomial f(z).
On the other hand, Theorem 1.4 says that this polynomial is no Alexander
polynomial of a compact 3-manifold group with H,=Z.
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