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This paper will extend the known propertes of the Alexander polynomials
of classical knot complements to the properties of the Alexander polynomials of
arbitrary (possibly non-orientable) compact 3-manifolds with infinite cyclic
first homology groups. In particular, the Alexander polynomial will always have
a reciprocal property. The existence of the corresponding manifolds and the
other related results will be shown.

1. Statement of results

Throughout this paper, spaces will be considered in the PL category.

DEFINITION 1.1. A compact 3-manifold M is called a homology orίentable
handle if M has the homology of an orientable handle: H*(M\ Z)^H^(Sl X S2\
Z). Likewise, M is a homology non-orientable handle if H*(M\ Z)^H^(S1 X rS

2

Z), a homology orientable circle if H*(M\ Z)^H*(Sλ\ Z) and dM=SlxS\ and
a homology non-orientable circle if H*(M\ Z)^H*(Sl\ Z) and QM=S1XrS

1.
It is easily seen that if M is a homology orientable (or non-orientable,

respectively) handle or circle then M is orientable (or non-orientable, respec-
tively) as a manifold. [Note that, in case 3MΦφ, H3(M, 3M; Z)^H2(dM\ Z).]

By C(SlxS2}, C(SlxτS
2), C(SlxB2) and C^X^2), we denote the

class of homology orientable handles, the class of homology non-orientable
handles, the class of homology orientable circles and the class of homology non-
orientable circles, respectively.

The following Theorem 1.2 implies that a compact connected 3-manifold M
with Hι(M\ Z)=Z belongs to one of the four classes C(SlxS2), ί̂ S1 X T*S2),
C(S^XB2) and C(S*XτB

2) if dM contains no 2-spheres.

Theorem 1.2. Let M be a compact connected 3-manifold with H^(M\ Z)=Z.
If 9M=φ, then #*(M; Z) is isomorphic to either H*(SlxS2', Z) or H*(SlxτS

2;
Z). IfQM^Fφ, then under the assumption that dM contains no 2-spheres, H*(M\

Z)f&H*(S* Z) and dM is homeomorphic to either S1 X S1 or S1 X TS\

If 3M contains a 2-sphere, then we will attach a 3-cell to eliminate it. This
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modification is never essential [for example, the orientability of the resulting
manifold M' coincides with that of the original manifold M and 7Γ1(M)=7Γ1(M

/).].
50 we may assume that dM contains no 2-spheres.

Now suppose M belongs to one of the above four classes. Since the first
cohomotopy group πl(M)=[M, S1] is naturally isomorphic to the group of ho-

momorphisms Hom^M), τr1(*S1)]=Hom[ff1(M; Z), H^S1; Z)], we can choose
a map /: M-+S1 which induces an isomorphism/* : H^M; Z)-^H^(Sl Z). The
infinite cyclic covering p: M->M associated with epimorphism /β: ^(M)-*^(Sl)
— π is then the covering induced from the exponential map Rl-^Sl along/: M->
51 (See [3, §!].)• We denote by t a generator of the covering transformation
group 7Γ which is an infinite cyclic multiplicative group.

Let Λ— Z[τr] be the integral group ring of π. Since Λ is a Noetherian ring,
it is not difficult to see that Hλ(M\ Z) is a finitely generated (i.e. Noetherian)
module over Λ. [Note that the simplicial oriented chain group Cf(M; Z) (for
some triangulation of M) forms a finitely generated free Λ-module.]

Let 6f(£) be a relation matrix of H^(M\ Z). That is, for an exact sequence
of Λ-modules %l-^^2~^H^(M\ Z)^>0 with free modules §ι> S2 of finite ranks, let
6f(£) be a matrix representing the homomorphism Si-^f& If r=rank %2>\,
then the first elementary ideal £"((£(£)) of (£(£) is the ideal over Λ generated by the
determinants of rxr submatrices of ©(£). (In case Gf(£) contains no rXr sub-
matrices, we have E((£(f))=0.) If r=0, then let

DEFINITION 1.3. Any generator A(t) of the smallest principal Λ-ideal con-
taining E(&(t)) is called the Alexander polynomial of M. [Note that A(t) is an
invariant of τr1(Λί) in the sense that if τr1(M) and τr1(Λί/) are isomorphic, then
A(t) = *>A'(f), where A(t), A'(t) are the Alexander polynomials of M, M7,
respectively, and 8=1 or —1. See Magnus-Karrass-Solitar [7, p 157].]

The Alexander polynomial A(t) of M is restricted to some extent. Actually
the following is shown.

Theorem 1.4. For MeC^xS2) or M^C(SlχB2), wehave A(t)=A(t~l)
and \A(l)\=l. For MeC^X.S2), we have A(t)=A(-Γl) and |^(1)|=1.
For MtΞC(SlXrB

2), we have A(t) = (tm+l/t+l)A0(t), where m>\ is the odd
number determined by the group H^M, 3M; Z)=Zm and A0(t) is an integral
polynomial satisfying AJ(t)=AJ(—t~l) and \A0(l) \=l.

REMARK 1.5. From Theorem 1.4, we see that if M is orientable then A(t)
is the complete invariant of M up to units ±t\ If M is a closed knot com-
plement (i.e. the exterior for some tame knot in *S3) then M belongs to (̂S1 X B2)

*) == means "equal up to units of Λ". This notation will be also used in the following
sense: For two elements A and A' of Γ=Λξ$Q, A = A' means that A equals to A' up to
units of Γ.
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and A(f) was called the knot polynomial and Theorem 1.4 is well-known (See
for example R.H. Crowell and R.H. Fox [2].).

The converse of Theorem 1.4 is also true. That is,

Theorem 1.6. Letf(t) be an integral polynomial with \ /(I) | =1. If /(*)==
/(r1), then in both C(SlxSz) and C(SlχB2) there exist manifolds whose Alexander
polynomials aref(t). Iff(t) = f(—Γl)9 then in C(SlXτS

z) there exists a manifold
whose Alexander polynomial is f(t) . Iff(t)=(tm+ 1 \t + 1 )fQ(t) for some odd number
m>l and some integral polynomial f0(t) with f0(t) = f0(— ί"1), then in C(SlXrB

2)
there exists a manifold M with H^(My dM\ Z)=Zm whose Alexander polynomial is

SUPPLEMENTS 1.7. Let/(i)=«0+^H ----- \-amtm(aQam^F$, m>ϋ) be an inte-
gral polynomial with | /(I) | =1. l ϊ f ( t ) = f(t~l) or f(t) = f(— r1) is satisfied, then
it is not difficult to see that m is always even and that the following explicit for-
mulae are obtained :

t-*) if

2. Proofs

Let M be a compact connected 3-manifold with H^M; Z)=Z and p: M
M be the infinite cyclic covering associated with natural epimorphism γ : π^
— >7Γ.

Lemma 2.1. H2(M, 9Λf; Z2)«Z2.

Proof. It suffices to establish the duality

#°(M; Z2)~#2(M, 3M; Z2) .

This duality is an analogy of the partial Poincare duality theorem [3, Theorem
2.3], because Hλ(M\ Z2)=Z2 which implies that /Λ(M; Z2) is finitely generated
over Z2 (See J.W. Milnor [8] or [3, Proposition 3.4].).

First, note that there is a duality H\(M\ Z2)«/f2(M , 8M; Z2) — even if ΛΪ
is non-orientable.

Second, the isomorphism H°(M; Z^)^H\(M\ Z2) is obtained from the same
argument as in [3], since H^M; Z2) is finitely generated over Z2. This proves
Lemma 2.1.

2.2. Proof of Theorem 1.2. If QM=φ and M is orientable, then by the
Poincare duality we obtain that H*(M\ Z)^H*(Sl X S2; Z). If QM=φ and M
is non-orientable, we know that #3(M; Z)=0 and H\M; Z)=Z2. Since the
Euler characteristic X(M) is equal to 0, it follows that H2(M\ Z) is a torsion
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group. Hence H2(M\ Z)^H\M\ Z)=Z2. This implies that H*(M\ Z)«#*
(S^T-S2- Z). In case 9MΦφ, the infinite cyclic covering p: M-+M is used.
Since H^(M\ Z2) is finitely generated over Z2 and by Lemma 2.1 H2(M> 9M; Z2)
«Z2, it follows from the following part of the homology exact sequence of the
pair(M, 9M):

; Z2) - ^(9M; Z2) - (̂M; Za)

that HΛ(d$ί\ Z2) is finitely generated over Z2.
For each component N of 9M let γ*: πλ(N)-+π be the composite TΓ^

.̂ 7* is a non-trivial homomorphism. Otherwise, by [3,
inclusion
Lemma 4.1] QM must contain infinite many copies of N as components. Because
N is not 2-sρhere by assumption, H^(dM\ Z2) is not finitely generated over Z2.
This is a contradiction.

Therefore γ* is non-trivial and hence each component ff of the preimage
p'1(N) is an infinite cyclic covering space over N (See [3, Corollary 4.2].). Using
that H^dM; Z2) is finitely generated, we obtain that H*(Fϊ\ Z2) is finitely ge-
nerated over Z2. This implies that X(N)=0 (See J.W. Milnor [8].). Hence
%(9M)—0. By the formula %(9M)=2%(M), X(M)=0. From this we see that
H2(M\ Z) is a torsion group. However, H2(M\ Z) is free since 9MΦφ. Thus,
we have H*(M\ Z)^ίH^(Slt

J Z). Furthermore, by the Poincarά duality over Z2,
H^M, 9M; Z2)^H\M\ Za)=0. This implies that J?0(9M; Za)=0. That is,
9M is connected. By using X(9M)=0, we obtain that 9M is homeomorphic to
either Sl X S1 or S1 X ΎS\ This completes the proof.

From now on we will assume M belongs to one of the four classes C(Sl X *S2),
C(Sl X B2), C^1 X rS

2) and C(Sl X .β,), unless otherwise stated.

Lemma 2.3. M is orientable.
(The author wishes to thank the referee for pointing out the following simple

proof. The original proof was more complicated cf. [3, Corollary 3.5])

Proof. First we note that M is orientable if and only if the first Stiefel-
Whitney class w^M) vanishes (See for example E.H. Spanier [11, p 349].).

Second, from the following short exact sequence of simplicial chain Λ-
modules (for some triangulation of M)

0 - CM Z2) — Q(M; Z2) t C,(M; Z2) - 0 ,

we obtain the exact sequence

Z2) - #0(ΛΪ; Z2) — #0(M; Z2)^ H0(M; Z) -> 0 .

Z, Z, Zj9 Zi.2
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This implies that the homomorphism p*: H^M] Z2)-^Hλ(M\ Z2) is trivial.
Using the field Z2, the dual homomorphism^*: H\M\ Z2)-*H\M\ Z2) is trivial.
Therefore w1(AΪ)=p*(ι01(M))=Q. This completes the proof.

REMARK 2.4. Since M is orientable and Hλ(M\ Q) is finitely generated over
£>, there is a duality H\M\ Z)**H2(M, 3M; Z)«Zby the partial Poincarέ duality
theorem [3, Theorem 2.3]. Then t induces the automorphism of H2(M, 3M; Z)
=Z of degree 1 or —1 according as the original manifold M is orientable or

non-orientable. In fact, the short exact sequence 0-»Q(M, 3M; Z) * Cβ

(M, 3M; Z)^C#(M, 3M; Z)-^0 induces the exact sequence H2(M, 3M; Z) >

H2(M, 3M; Z)^H2(M, 3M; Z)-^0. [In case M is orientable, this sequence is
easily obtained. In case M is non-orientable, use the facts that H2(M, 3M; Z)
=Z2 and H^M, 3M; Z) is torsion-free. Note that the torsion product Tor
[H^ΛΪ, 3M; Z), G] vanishes for all finitely generated groups G, since H2(M, 3M;
G)«G by the partial Poincarά duality theorem [3, Theorem 2.3, Case(4)].]. In

t— 1 p*
case M is orientable, the sequence is replaced by the exact sequence Z ^Z-»
Z—>0. Hence ί— 1: Z—>Z is the trivial homomorphism. This implies that t
induces the identity homomorphism. In case M is non-orientable, the above

t— 1 p#
sequence implies the exact sequence 0->Z >Z->Z2-^0. This asserts that t is
the automorphism of degree — 1.

Lemma 2.5. There exists a PL mapf: M-+S1 such that
(1) /^/^(M Z^tf^ Z),
(2) For some point p e S', F=f~1(p) is a proper connected two-sided surface in M
with connected complement M—F,
(3) F and M—F are orientable,
(4) [F](=H2(M, 3M; Z) is a generator. (Note H2(M, 3M; Z)—Z or Z2 according
as M is orientable or non-orientable.)

Proof. By [3, Corollary 1.3], there is a PL map /: M-+S1 satisfying (1)
and (2). By Lemma 2.3, Mis orientable. Hence F and M—F are orientable,
since M—F is canonically embedded in M. (3) is then satisfied. (4) follows
from the fact that F intersects a circle representing a generator of H^M Z)=Z
transversally at a single point (See [3, Corollary 1.3].). This shows Lemma 2.5.

Note that if A(t) is the Alexander polynomial of M then A(t~l) can be also
considered as the Alexander polynomial of M by replacing one generator of the
infinite cyclic covering transformation group with the other generator.

Lemma 2.6. (Calculating the Alexander polynoimal of M.)
(I) Since H^M; Q) is a finitely generated torsion T-module and Γ is a principal



570 A. KAWAUCHI

ideal domain, H^M; Q) decomposes into cyclic T-modules: H^M; £?)»

Γ/(/2W)Qθ-ΘΓ/(Λ(0)Q. Then for 6=1 or -1 A ( f ) = fί(t)fΛ(t)^fJ(t) as ele-
ments of Γ.

(II) Since H^M; Q) is finitely generated over Q, the isomorphism t: H^(M\ Q)-*
H^(M\ Q) represents a rational square matrix B. Then for 8=1 or —I A(f)=det
(tE—B) as elements of Γ, where E is the unit matrix.
(III) Let F be a surface in M described in Lemma 2.5 and M* be the manifold
obtained from M by splitting along F. Since M can be constructed from the coun-
table copies {M< }7lβ_00 of M * by pasting next to next, (called Neuwirth construction
[3, §1], L.P. Neuwirth [9]), it follows from the Mayer-Vietoris sequence that the

sequence H^F; Q)®Y-^Hl(M^\ Q)®T-^Hl(fΛ\ Q)-+0 is exact as T-modules,
where r(x)=t(ίl)^i(x)—(i2)^(x) and il9 i2: F->M* are the suitable identifications onto
two copies of F. Since M* is orientable, we have Hλ(F\ Q^H^M* Q) by Poίncare
duality. Thus, (ίj*, (i2)# : H^F', Q^H^M* Q) represent rational square matrices
A19 A2y respectively, and r represents a matrix tA1~A2. Then for £=1 or —1
A(f)=det(tA1—A2) as elements ofT.

(IV) Let (#!, x29 9xn: rn r2, •••, rm)φ be a presentation of π^M) and 7: Z[^(M)]

-*Z[π]=A be the ring homomorphism naturally extending the group epimorphίsm
7: πl(M)-+π. Now we consider the Alexander (Jacobian) matrix (79^(9rt-/9^y))
(See R.H. Crowell and R.H. Fox [2].). By E(π^(M)) we denote the λ-ideal
generated by the determinants of (n—l) X (n— 1) submatrίces of(fγφ(dri/dxj)). Then
for 8=1 or —I A ( f ) is a generator of the smallest principal ideal containing
E(πι(M)).

Proof. If /ί1(M;ρ)«Γ/(/1(ί))oθ ΘΓ/(/Xί))o then the matrix
0

is a relation matrix of Hλ(M\ Q) over Γ. Hence from the uniqueness of the
elementary ideal over Γ and Definition 1.3 we obtain (A(f))Q=E(1S(f))®Q=

(ΛW ΛWk for ε=ι or -i. So ̂ (ί )=/ιW/.(0-ΛW. This Proves (i)
Moreover, by S. Lang [5, p 401), we have (det(tE—B))Q=(f1(t)' f3(t))Q. This
proves (II). For (III) since tA1—A2 is a relation matrix, we also obtain (A(t))Q

=(det(ί^41— A2))Q, which proves (III). For (IV) it suffices to prove for some
particular presentation of TΓ^M), since Efo^M)) does not depend upon a choice
of presentations of π^M) (cf.[2]). So we may choose a presentation (Λ?X, x2, •••,
Xn rl9 r2, •••, rm)φ so that Γfφ(x^)=t, jφ(χf)=l for i>2 (In fact, choose a pre-
abelian presentation (Magnus-Karrass-Solitar [7, p 140]).). It is not hard to

d% d^
see that the sequence Λ[rf, r^, •••, r^]->A[^f, x$, •••, JC*]->Λ is semi-exact (i.e.
dld2=G) as Λ-modules, where Λ[rf, •••, rj] and Λ[jcf, ••-, x%] are the free Λ-
modules with bases rf, •••, r$ and xf , •••', jc*, respectively, and d2 is defined by

and dl is defined by dl(x:f)=tγφ(xj)—l. [Remember
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the fundamental formula rf— l=Σ5=ι(frv/9#y)(#y — 1)-] Since d1(xf)=fγφ(x1)—
l=t—l and d1(xj)=fγφ(xj)— 1 = 1 — 1=0, j > 2, it follows that <79?(8rί/9Λ?1)=0,
i=l, 2, ••-, w and Ker rf^Λftff, •••, x$]. Then J2 defines a map rf/: Λ^f, •••,
r*]->Λ[>f , ..-, a*]. By a result of R.H. Crowell [1, p 39], H,(M\ Z) is Λ-

7 /

isomorphic to Ker djlτn dz\ so, in this case, the sequence Λ[rf , •••, r%\-^>
Λ[#jf, •••, #£]->#! (M; Z)-»0 is an exact sequence of Λ-modules. Hence ©(Z)—

(y<p(driβXj))/*2,feι ίs a relation matrix of Hλ(M\ Z). So, ^4(ίβ) (£=1 or —1) is
a generator of the smallest principal ideal containing the first elementary ideal
£(<£(*))• On the other hand, clearly, E(®(t))=Efa(M)), since ί?9>(9rί/8Λ?1)=0,
/=!, 2, •••, m. This completes the proof.

Lemma 2.7. |^(1)|=1.

Proof. Let 5: Λ-^Z be the augmentation sending t to 1. From the short
t— 1 _ ί)

exact sequence 0->Q(M; Z) - >Ct(M; Z)^Q(M; Z)->0 of Λ-modules, we

obtain the isomorphism t— 1 : ̂ (M; Z)H^(M\ Z). Hence
If G?(£) is a relation matrix of /^(M; Z) then G?(l) is a relation matrix of ϋ=
(M; Z)®,Z. This implies £((£(!)) =Z. Hence Z=

Thus ^4(1)= ± 1. This completes the proof.

2.8. Proof of Theorem 1.4. Let μ<=H2(M, 3M; Z) be a generator. By
[3, Theorem 2.3], there is a duality

Π μ : H\M\ Q^H^M, 9M; Q) ,

where Π denotes the cap product operation. In case M is orientable, then by
Remark 2.4 we obtain the equality t[(tu)Π μ]=uΠ(tμ)=uΓ( μ. Hence the
following diagram is commutative:

; Q) - (̂M, 9M; ρ) .— r^- ̂ (M; Q)
l on

, 9M;

[In case 9Mφφ, by Poincare duality H^M, 9M; Z)=f/2(M; Z)=0. Hence
the inclusion homomorphism H^QM] Z)-^H^(M\ Z) is onto. This implies that
9M is connected (See [3, Lemma 4.1].). Thus the inclusion homomorphism
Hλ(M\ Q}->Hι(M, 9M; ρ) is an isomorphism.)

If H\M\ Q) is Γ-isomorphic to Γ/C/Ί^βθ — ΘΓ/(/r(ί))Q then the above
diagram implies that H^(M\ Q) is Γ-isomorphic to Γ/ί/^r^θ — ΘΓ/ί/^r1^.
On the other hand, since H\M\ Q) = Hom^M; ρ), ρ], ^(M; ρ) and
H\M] Q) are Γ-isomorphic. Thus,
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Using Lemma 2.6 and Gauss lemma, we showed that A(t)=A(t~λ) as elements
of Λ.

In case M is non-orientable and QM=φ then the isomorphism Hl(M\ Q)
- 0r/(/#))e implies the isomorphism ̂ (M; ζ>)«rΓ/(/;(-r *))Q

r1))^ because the duality Γ\μ:H\M; Q^H^M; Q) has the
equality » Π μ=— r1^ Π μ] by Remark 2.4. Since ίf^M; ρ) and H\M\ Q)
are Γ-isomorphic, we obtain (fι(t) fs(t))Q=(f1(—t~1) fs(—t~1))Q. Using
Lemma 2.6 and Gauss lemma, we showed that A(t)=A(— t~l) as elements of Λ.

In case M is non-orientable and 9MΦφ, then we have H^M, 9M; Z)=Zm

for some odd number m>l. [Note that H^M, 9M; Z)®Z2=H1(MJ 9M; Z2)
=HZ(M\ Z2)=0.] Now we consider the following exact sequence:

0 -> #2(M, 9M; g) - //.(9M; ρ) -* ̂ (M; ρ) //^M, 9M; ρ) .

Since M and 9M are non-orientable and 9M contains m copies of Rl X S1 as
components [3, Corollary 4.2], we have H2(M, 9M; ρ)=Γ/(ί+l)Q and Hλ(QM\ Q)
=Γl(tm+l)Q. Accordingly, the above sequence induces the following exact
sequence of Γ-modules: O^Γ/tr+l/ί+lV^/f^M; Q)^Imj*->0. Let g0(t)
be the characteristic polynomial of the ρ-linear isomorphism t: Imj*-+Imj*.
By Lemma 2.6, we may regard A(t) as the characteristic polynomial of the Q-
linear isomorphism t: ^(M; Q)-^H^(M\ Q). So, the equality A(t) = (tm+\lt
+ l)go(t) holds (See for example S. Lang [5, p 402].). Next since the following
square

, 3M; Q)

is commutative, we obtain the isomorphism Πμ: Imj*f&Imj*. The isomor-
phism Imy*;=κΓΓ/(£1(ί))Q® ©Γ7(£s(ί))0 implies the isomorphism Imy*ί=5ίΓΓ/
(^(-^'WoΦ ΦΓ/^ί-r1^, since (ίM)n/ί=(-r1)[Mn^] However, Im
y*=Hom[Im-/#, 0] asserts that Imj* and Imy* are isomorphic as Γ-modules.
Therefore

If we denote ^4(ί)= (ίw+l/ί+l)^40(ί), where A0(t)=c g0(t) for some non-zero
rational number ceρ, then we have ^40(ί)eΛ and A0(t)=A0(— r1) as elements
of Λ. Combined with Lemma 2.7, the proof is completed.

Lemma 2.9. Letf(t) be an integral polynomial with |/(1)|— 1. If f(t) =
/(r1), then there exists M^C(S1xB2) whose Alexander polynomial is f(t). If
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= /(— r1), then there exists M^C(SlxJB2) with H^M, QM\ Z)=0 whose
Alexander polynomial ίsf(t).

Proof. I f f ( t ) ± f ( Γ l ) then it is easy to obtain M<=C(SlxB2) whose Alex-
ander polynomial is /(£), because it is well-known in the classical knot theory
(See H. Seifert [10].) that there exists a tame knot Kl<Σ.S3 whose Alexander
polynomial is f ( t ) . In fact, we may take M to be the exterior (i.e. the closed
knot complement) of KlczS3.

So it suffices to prove for the non-orientable case. The method of the proof

is somewhat analogous to the method of J. Levine [6], by which he gave an altern-

ative proof of a characterization of the knot polynomials due to H. Seifert [10].

Now we may assume /(f)=Σί =-****' (*>0) 2^=1 and ai=(~ 1 )''*-*•
[If s=0, then we can take ^x^eC^X^JS2).]

Take an oriented disk D in an oriented 3-sphere S3 and let K=dD. Also,

let KoyKly ••-,.£, be s+1 trivial knots, disjoint each other and from Dy and with

linking numbers as follows:

L(K0, K^ = af for / = 1, 2, •••, s

L(Ki9K.)=Q for ίJφO, i

We construct a new knot K' by connecting up the {Ki} in the following

manner (cf. [6]): Choose two points p{ and qf on each K£ and mutually disjoint

oriented arcs {Aj} in S3—Ky beginning at qi^l and ending at/>, so that each -4,

is disjoint from the {K{} except for the points q^ly p{. Next, thicken A{ to be

a band B£ which we identify with IχAiy meeting Kί_1 along Iχqί_1 and K{

along Ixpiy but otherwise disjoint from the {.SΓ,-} furthermore, the {.B,-} should

be mutually disjoint. Then define the knot K' by K'= ( U i=o^ί U Uί=A)—
U *=ι(Int I ) x A f . K' is a knot disjoint from K and we may orient K' coherently

with the {Ki} . The oriented knot K' is called a complete fusion along the arcs

{A{} and is denoted by K/=KUΦK1Φ — ΦKS.

We pose one additional restriction on the construction of K' '. That is, each

Ai passes once around K in the sense that A{ should intersect D transversally at

a single point with positive orientation. We illustrated K' for the case/(£)— 2t~2

+2t~1-3~2t+2t2 in Fig. 1.

Choose a tubular neighborhood T(K) of K in S3 so that D0=cl(S3-T(K))
f } D is a proper disk of JΓ=£/(S3— Γ(ϋΓ)). Note that X is PL homeomorphic
to S1 X B2. Now split X along Z)0 and re-attach the resulting manifold by an

orientation-preserving homeomorphism between the resulting two copies of D0.

Thus, we obtain a manifold Xr which is PL homeomorphic to S1 X ^B2. By a

suitable move of the homeomorphism, we can assume that Kr c X is deformed

into a knot Kτ'c.XΊ.
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/(0=2rz+2r1-3-2/+2ί2

Fig. 1

Xr — DO lifts to an infinite sequence {Xj} , — oo <ί < oo , of copies of Xτ — Z)0;

we may assume they are numbered so that X{ is separated from Xi+1 by a lifting

D0 i of Z)0 and dX==D0 { — D0 i_1. For every pair of integers /, m, where 0</<$
and — oo<#χ<oo, let Kim be the lifting of Kf lying in Xm. The {Kim} are

mutually disjoint. Since the universal covering space Xr is orientable, we let Xr

be oriented so that L(K0}Qy Kf 0)=ai for ί=l, 2, •••, s. Then we have

l)m

flί if m = n, j=Q

i |β .f ^ = ̂  . = Q ^

Since each A{ intersects D0 transversally at a single point, A{ lifts to a
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sequence {Aifn}9 — oo<w<oo of arcs, where Aίm joints K£-lftn.1 to Kim.
Thus Kτ' lifts to a sequence Km of knots, where Km is a complete fusion Km=
K0>m#K1>m+1#. #KStm+s along the arcs {A,^}^*. (See Fig. 2.).

The linking numbers of the {Km} and K° are given as follows:

0 if |»|>ί,

because L(K\ X«)=Σ^(^, ,, , *,-..,) and a.m=(-\)mam.
Let φ,: Slx B2^Xτ be a tubular neighborhood of .K" with L(K°, φ^S1 X q))

=β0 for some point q^QB2=S1. For each m, — <χ> <»z< oo( define an embedd-
Wί

ing φm: SlxB2->Xτ to be the composite SlxB2-*XT-*XT, where ΐ is a genera-

tor of the covering transformation group π. Then φm determines a tubular

neighborhood of Km such that L(Km, φm(SlXq))=(-l)ma0. Let f be the

submanifold of Xr obtained by removing the interiors of φm(SlxB2), — oo <#*
<oo.

Define a manifold Mto be obtained from T by attaching to each component

of QT a copy of B2 X Sl by means of the maps φm \ S1 X S1. Since ΐ \ T has a

canonical extension to a homeomorphism from Mto M, we can regard the group

π= {tm} as the properly discontinuous action on M. Then define a manifold M

to be the orbit space M/π. Note that the projection M-»M forms an infinite

cyclic covering with its transformation group π.

We shall show that Hλ(M\ Z)—Z and the Alexander polynomial of M is

Note that H^T; Z) is a free Λ-module generated by [φϋ(p X S1)]

This follows from the exact sequence of Λ-modules :

H2(XT; Z) -> H2(XT, T; Z) -> H,(T Z) - H,(XT; Z)
II II
0 0

and the fact that , by excision, H2(XT, T; Z) is the free Λ-module generated by

Now consider the exact sequence

H2(My T; Z) ̂  H^T Z) - (̂M; Z) - (̂M, f; Z) .

By excision, H^M, T; Z)=0 and H2(M, T; Z) is the free Λ-module generated

by [B2 X q], where the boundary of B2 X q is φ0(S1 X q). It follows that the image

of Δ is the submodule of H^T; Z) generated by [^oO^X?)]-

We shall show that [φ0(Sl X q)] =f(t) [φϋ(p xS1)].

Let [φQ(S1Xq)]=g(ΐ)[φ0(pxS1)] in ̂ (T; Z) for some element
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g(t) = ΣAfeΛ. If ™ΦO, (-iyχ = Σ^(*'ΐ<Po(ί X S1)],

if \m\<s

if | m | > j .

If « = 0, e. = c^φ^pxS1), K°)

Thus, we showed that (̂M; Z ) = * .
From the short exact sequence of simplicial chain Λ-modules 0->C$(M; Z)

*— 1 _ ^>
- »C$(M; Z)-^CS(M; Z)->0, we obtain the homology exact sequence of Λ-
modules

-> H,(M\ Z)P-ί> /^(M; Z) -> #0(M; Z) -> 0 .

P*
[Note that HQ(M; Z)-*H0(M; Z).] This sequence induces the exact sequence

of abelian groups:

0 ,

where 6: Λ-^Z is the augmentation. Note that /^(M;

Z/(l)=0, because /(!)=!. Therefore flΓ

1(Λf;Z)=/ί1(M;Z)(g)iZ«ff0(Λar;Z)®1Z
=Z. Since 9M is connected, the inclusion homomorphism H^(dM\ Z)->
^(M; Z) is onto (See [3, Corollary 4.2].). So, H,(M, ΘM; Z)=0. This com-
pletes the proof.

Lemma 2.10. Given an odd integer m>l, then there exists M^C(S1 X .β2)
with H^M, 3M; Z)=Zm whose Alexander polynomial is tm+l/t+l.

Proof. Consider an oriented 2-sphere D with m holes and let C1? C2, •••, Cm

be the components of 3D with the induced orientations. Choose an orientation-
reversing auto-homeomorphism h: D-^D sending Cl to C2, C2 to C3, •••, Cm_x

to CM and Cm to Clβ Let M=DxR1 and define an auto-homeomorphism £:
M-»M by /(ΛJ, j)=(A(Λ:), jy+1). If M is oriented, then t is an orientation-
reversing auto-homeomorphism. Since the group π= {£'} is a properly discon-
tinuous action on M, the quotient projection M-+M/π=M is an infinite cyclic
covering with its transformation group π. Note that M is non-orientable.
Form a direct computation, it is not difficult to see that H^M, 3M; Z)=
Al(tm—ί/t—l). Let μ(ΞH2(M, 3M; Z)— Z be a generator. Then the duality

: H\M', Z)^H,(M, 3M; Z) determines the module H1 (M; Z)=A/((-r1)lli
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— 1/(— Γ1)-!). Since m is odd, we obtain that /^(M; Z)=

Using that H^(M\ Z)(g)?Z=0, where £: Λ-*Z is the augmentation, the exact

sequence H^M; Z)-^H^(M\ Z)-*HQ(M\ Z)->0 induces the isomorphism

H£M\ Z)=H1(M; Z)®iZ«ί/0(M; Z)®-,Z=Z. Hence we showed that M<=C

(SlXrB
2) whose Alexander polynomial is tm-}-l/t+l. Since 9M consists of m

components, it follows from [3, Corollary 4.2] that H^(M\ Z)llm[H^(QM\ Z)-+

H^M', Z)]t&Zm. Using the homology sequence of the pair (M, 9M), we obtain

that H^M, 9M Z)^Zm. This proves Lemma 2.10.

2.11. Proof of Theorem 1.6. Let f ( t ) be an integral polynomial with

I /(I) 1-1 and f ( t ) = f(Γl). By Lemma 2.9 there exists M<=C(SlxB2) whose

Alexander polynomial is/(£). Let M be a closed manifold obtained from M by

attaching SlxB2 to dM so that Hjβ\ Z)=Z. Then M<=C(SlxS2) and we

shall show that/(£) is the Alexander polynomial of M.

By excision, Hλ(M; Z)^JH[^(M,RlχB2\ Z)

«Λ#I(#, 3M; Z)

^ (̂M; Z) .

Hence by Lemma 2.6, f ( t ) is the Alexander polynomial of M.

Next, let /(*) be an integral polynomial with |/(1)|=1 and f ( t ) = f(— r1).

By Lemma 2.9 there exists M<=C(SlXrB
2) with /^(M, 8M; Z)=0 whose

Alexander polynomial is/(ί). Then let M be a closed manifold obtained from M

by attaching Sl X TB
2 to dM so that H1(M]Z)=Z. Using H^M^Z^^^M; Z),

we see that/(ί) is the Alexander polynomial of M, by Lemma 2.6.

Now let /(/)—(ίw+ 1/^+1 )/0(0 be an integral polynomial for some odd

number m>l and an integral polynomial f0(t) with f0(t)±f0(—t~l) and |/0(1)|

= 1. By Lemma 2.9, there exists M0eC(SlxJB2) with H^M,, 9M0; Z)= 0

whose Alexander polynomial is /0(*) By Lemma 2.10, there exists Mm^C

(S1 X rB2) with Hλ(Mm, QMm\ Z)=Zm whose Alexander polynomial is tm+ l/t+ 1.

Choose a solid Klein bottle S1 X ΎB2 in Mm which represents a generator of

H^(Mm\ Z)=Z and let M be the manifold obtained from cl(Mm—S1X^B2) by

attaching MQ to 9(5* X TB
2) by a homeomorphism dM0-*d(Sl X TB

2). Then it is

not so difficult to see that M is in C(S1XTB
2) and H,(My 9M; Z)-ZW and the

Alexander polynomial is/(ί)=(*m+l/*+l)/0(*). [The sequence O-^H^dM^ Q)

->//1(c7(Mm-51xτΰ
2); Q)®H,(M^ -̂̂ (M; β)->0 is exact and #,(9 ;̂ 0)

= Γ/(ί+l)β and /^/(M^-^x^2); ρ)=Γ/(ί+l)Q0Γ/(r+l/ί+l)β. If -4(ί)
is the characteristic polynomial of the isomorphism t: H^M; Q)-^>H^(M\ Q)

then we obtain that (t+l)A(t) = (t+l) (tm+llt+l)f0(t). Hence A(t) = (tm+ll

t+ l)fo(t)=f(t).] This completes the proof.



578 A. KAWAUCHI

3. Further discussions

3.1. A construction of a homology handle or circle having a fiber bundle

structure over S1.

DEFINITION 3.1.1. Let M be a homology handle or circle. M is called a

fibered manifold (over S1) if M is a fiber bundle over S1.

DEFINITION 3.1.2. A skew-orthogonal matrix is an integral (2g) x (2^)-matrix
S satisfying S.S=εE, where 6=1 or —1 and E is the unit matrix and S is

defined as follows:

If S =

Note that any integral 2χ2-matrix whose determinant is ±1 is a skew-
orthogonal matrix.

Let F be an oriented surface of genus £>1 with non-empty connected
boundary. Choose a standard basis (a^ bl9 •••, ag, bgy for H^(F\ Z) with inter-

section numbers ai bί=lj βf δy=0 (i^j) and ai aj=bi bj=0 (all i,y). It is
not so difficult to show that, given a skew-orthogonal matrix S, then there is an
auto-homeomorphism h: F-*F such that the automorphism h*\Hλ(F\Z)-+

Hλ(F\ Z) represents S with respect to the basis <#„ bly ••-, β ,̂ ft^> and con-
versely*}. A is orientation-preserving or orientation-reversing according as 8= 1

or-1.
Let M=FxRl and define the transformation t: M-+M by t(x, y)=

(A(Λ?),jy+l). Since π= {tm} is a properly discontinuous action on M, the orbits

space M=M/π is a compact manifold such that the natural projection M-+M
is an infinite cyclic covering projection whose covering transformation group is
7Γ. Clearly, M is orientable or non-orientable according as 6=1 or —1. Since

t: H,(M\ Z)-*Hλ(M\ Z) represents S, it follows that H,(M\ Z)^Z®H^(M\ Z)/

(E-S)H,(M\ Z). Hence H,(M Z)«Z if and only if det(E-S)= ± 1. Note
that, from construction, M is a fibered manifold with fiber F and such that

H^M, 9M; Z)=0 (See [3, Lemma 4.1].) and whose Alexander polynomial is

deψ£— S) by Lemma 2.6.
Conversely, if M is a fibered homology circle with H^(M, 9M; Z)=0 then

it is easy to obtain a skew-orthogonal matrix S such that det(tE—S) is the
Alexander polynomial of M.

*) The author thanks to Professor H. Terasaka for pointing out Definition 3.1.2 and this
assertion (which proof can be also obtained from [7, PI78]).
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Thus we obtain the following.

Lemma 3.1.3. Given a skew-orthogonal matrix S with det(E— S)= ±1,
then there exists a fibered homology circle M with H^M, 3M; Z)=0 whose
Alexander polynomial is det(tE—S). Such a manifold may be orientable or non-
orίentable according as 6= 1 or —I.

Conversely, given a fibered homology circle M with Hλ(My 9M; Z)=0, then
there exists a skew-orthogonal matrix S with det(£"— S)= ±1 and such that det
(tE—S) is the Alexander polynomial of M. 8 becomes I or —1 according as M is
orientable or non-orίentable.

It is clear that Lemma 3.1.3 taken homology handles instead of homology
circles also holds.

Theorem 3.1.4.*) Let f(t)=aύ+a1t-\ \-ant
n(n>0) be an integral poly-

nomial with |/(0) I = |/(1) | = 1. If f ( t ) = f(rl), then in both C(SλxS2) and
C(S1xB2) there exist fibered manifolds whose Alexander polynomials are f ( t ) . If
/(ί)zb/(—ί"1), then in C(S1XΎS2) there exists a fibered manifold whose Alexander
polynomial is f(f). If f(t)=(tm!-f- 1/Z-f I)f0(t) for some odd number m> 1 and some

integral polynomial fQ(t) with f0(t) = f0(—r1), then in C^X^E2) there exists a
fibered manifold M with H^M, 3M; Z)—Zm whse Alexander polynomial is f ( t ) .

Sketch of Proof. It suffices to show that if f ( t ) = f(et~l), 8=1 or —1 then
there is a fibered M in C(SlxB2) or C(SlXτB

2) with H^M, 8M; Z)=0 whose
Alexander polynomial is f ( t ) . Then the desired result will be obtained by a
suitable attachment of SlχB2 or Mm, constructed in Lemma 2.10, to M, as in
2.11. (Note that Mm is fibered.) By J. Levine [6] (for £=l) or Lemma 2.9 (for
£=-1), we obtain M^C(SlχB2) (for ε=l) or MeC^X^2) (for 6=-l)
such that H,(M\Z)=KI(f(t)). |/(0)|=1 implies that Hλ(M\ Z) is finitely
generated free over Z. Hence by [3, Theorem 2.3] there is a duality Πμ:

H\M\ Z)^Hλ(M, 9M; Z), which says that the cup product U : H\My 8M; Z)
χH\M, ΘM; Z)-*H2(M, 8M; Z)=Z gives a symplectic inner product over Z.
That is, there is a basis < ,̂ */, ••-, esy es'y for Hl(M, M9; Z) such that et (Je/=l,
ef\Je/=0 (ί^FJ), eί\JeJ=e/\Je/=Q (all i,j). Then the automorphism t: H1

(M, ΘM; Z)^H\M, 9M; Z) represents a skew-orthogonal matrix S: S.S=£E
with respect to the basis O1? £/, •••,£,, β/>. Using det(tE— S) = f ( t ) and Lemma
3.1.3, we complete the proof.

3.2. The Genus of a homology handle or circle
Now we will assume that M belongs to one of the four classes: C(Sl X *S2),

C(SlχB2), C^X.S2), C(SlxrB
2). Given M, there is a PL map /: M-+S1

such that for some point p^S1, F=f~l(p) is a proper connected 2-sided
orientable surface in M and with /*: H^(M\ Z^H^S1; Z) (See Lemma 2.5.).

*) In the classical knot theory, a corresponding result has been obtained by G. Brude,
Alexanderpolynome Neuwirthschen Knoten, Topology 5(1966), 321-330.
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The pair (/, p) is called a Seίfert pair.

DEFINITION 3.2.1. The genus of M is the minimal number of the genus of

F=f~1(p), where the pair (/, p) ranges over all Seifert pairs.

The genus of M is so related to the degree of the Alexander polynomial
A(t) of M. In fact, by Lemma 2.6 (III), we obtain:
(3.2.2) genus(M)>degree(A(t))!2 if M<=C(SlxS2) or C^xB2) or C^x^2),

genus(M)>{degree(A(t))-(m-l)}/2 if M^C(SlxrB
2} and

H1(M9QM;Z)=Zm(m>Q).
If M is fibered, then the inequality is replaced by the equality.

3.3. Finding a standard type

S^XS2, S^B2, S^rS2 and S'x^2 are called the standard types of

COS^XS2), C(SlxB2\ C(SlxrS
2) and C^xJB2), respectively. Let C be any

one of the four classes and M0 be the standard type of C.

Theorem 3.3.1. (1) In case dM^S1 X TS\ then assume H^M, 9M; Z)=0.
Then genus(M)=0 implies that M is PL homeomorphic to M0ΦS3, where S3 is a
homology sphere.

(2) If π1(M)=πy then M is PL homeomorphic to M0ΦS3, where S3 is a homotopy
sphere.

The proof of (1) is not difficult. For (2), see [4].

3.4. The Alexander polynomials of groups

For a finitely presented group G with /^(G; Z)=Z, we can define the

Alexander polynomial A(t) of G (See Magnus-Karras-Solitar [7, p 157].)#). A(t)
is the invariant of G in the sense that if A^i) and A2(t) are arbitrary Alexander

polynomials of G then A^t^A^f) for £=1 or —1. H^(G\ Z)=Z implies
1 ,4(1) |=1. However, in general, any reciprocal property does not hold.

Actually it is not difficult to obtain that any integral polynomial f ( t ) with | /(I) |

= 1 can be realized as the Alexander polynomial of a finitely presented group.
More strongly, f ( t ) can be realized as the Alexander polynomial of a 4-dimen-
sional homology orientable handle group i.e. π^M) for a compact 4-manifold M

having the homology of S1 X S3: H*(M\ Z)**H*(Sl x S3; Z)**>.

*) A(t) is in fact defined as the 1st invariant factor in [7], This can be also defined from a

relation matrix of a Λ-module H\(JK.\ Z) for any finite complex K with π1(K) = G, as just

in Definition 1.3, since Hι(K\Z) is identified with the abelianized group of the commu-

tator subgroup of G. (K is the infinite cyclic covering space of K.) In this case, (I), (II)

and (IV) of Lemma 2.6 taken K instead of M also hold. In particular, A(t) can derive
from Fox free calculus [2] of G.

**) D.W. Sumners [12] showed the existence of a locally flat 2-knot with knot group presen-
tation (a,β\aaoβaaι> βaafnβ-m) whose Alexander polynomial is /(ί)=*o+ΛιH ----- \-amtm.
Hence to see this assertion, it suffices to attach S1 X B3 to the exterior of this 2— knot so as to
obtain a homology handle.
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Let for example f(t)=t*-2t2+3t-3. Since/(!)= —1, there is a 4-di-
mensional homology orientable handle group with Alexander polynomial f ( t ) .
On the other hand, Theorem 1.4 says that this polynomial is no Alexander
polynomial of a compact 3-manifold group with H1=Z.
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