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Introduction

An example of foliation of codimension one with non trivial Godbillon-
Vey invariant ([3]) was constructed by R. Roussarie (see Bott [1]). Generaliz-
ing the Godbillon-Vey invariant, R. Bott [1] has defined exotic characteristic
classes for foliations. In this paper, we shall construct examples of foliations
with non trivial exotic characteristic classes.

Roussarie’s example was constructed on a compact quotient space of SL(2; R)
by a discrete subgroup. This example may be regarded as an Anosov foliation
arising from the geodesic flow on the unit tangent sphere bundle of a surface
with constant negative curvature. This suggests us to consider such a folia-
tion on the unit tangent sphere bundle of a closed (g-+1)-manifold (¢=1) with
constant negative curvature. In fact, our example is constructed as follows. Let
G denote the identity component of the Lie group

O(¢+1, 1) = {XeGL(g+2; R); 'XBX= B},

B_ (Iq+1 0) _
0 —1

Consider a compact subgroup

H= {(f z); Xe SO(q)}

where

of G, and a closed subgroup K consisting of X=(x;;)& Gsuch that

det (X ‘.,4.Xq+1q+z) —1

Xgi2q+1 X¥g+249+2

and

X;gr1T%;gi2=0 (i: 1, -- ’,Q) .
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By a theorem of A. Borel [2], there exists a discrete subgroup D of G such that
D\M is a closed manifold, where M=G/H. Foliate M into the fibres of the fibre
bundle M= G/H—G/Kand consider the foliation on M=D\M induced naturally
from the G-invariant foliation on M. Then it is proved that the foliation on M
has non trivial exotic characteristic classes.

In §1, we review differential geometry which will be needed. In §2, we
define exotic characteristic classes following R. Bott [I] and state our result
precisely. §3 is devoted to construct examples of foliations with non trivial
exotic characteristic classes. The proof of our result will be given in §4.

The author is grateful to Professor H. Ozeki and Mr. A. Ikeda for their
advices.

1. Preliminaries

1.1.  First, we shall fix some notations:
For a smooth manifold N, we put
X¥(N)= {smooth vector fields on N},
C~(N)={smooth real valued functions on N},
¢(IN)=the space of complex smooth forms on N,
A*(N)=thespace of (real) smooth forms on N,
A?(N)={wc A*(N);w is p-form},
A3 (N)={w=A?(N);» has compact support},
T'(¢)=the set of smooth cross-sections of a smooth vector bundle & over N.
For a C*-smooth codimension ¢ foliation 3 on N, we denote by 7 (&) (resp.
v(F)) the subbundle of 7(N) tangent (resp. normal with respect to a Riemannian
metric on N) to the foliation, where 7'N) denotes the tangent bundle of N.

12.  Connections

Let N be a smooth manifold and £ a smooth g-dimensional vector bundle
over N.

(1.2.1) (1) A connection on £ is an R-bilinear map

V: E(N)XT(§) — T'(8)

such that

(1) Vx(fs)=X(f)s+/Vx(s)

(i) V,x()=fVx(s)
for all X e ¥(N), seT(¢), fe C~(N), where Vx(s)=V(Xs).

(2 Let S={s;, *-, s} be a smooth frame of £ defined on some open set
Uin N. The connection form of V relative to the frame 5 is a ¢xXg matrix
0=(6;;)of 1-forms on U such that

Vx(s,') = Jigsl eij(X)si
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for i=1, -, q.
The curvature matrix of V associated to the frame S is a gx ¢ matrix k=(k;;)
of 2-forms on U such that

k,-j = dgij_ ?_;_,‘1(9,-;,/\0;,1.

for z, j=1, *+++, q.

Let (IV, 3) be a C=-smooth codimension ¢ foliation on N, and ( , ) be a
Riemannian metric on »(&f) not necessarily induced from a Riemannian metric
on N,

(1.22) (1) A metric connection on »(<) is a connection V° on 1 (F) such
that

d(s;, 53) (X) = (Vg{(sl)y 82)+ (81 ng(sz))

for XeX%(N), s,, s,eT(»(F)).
(2) A basic connection on »(<) is a connection V* on »(&F) such that

Vi(s) = #[X, 5]

for XeT(7(¥)), seT(@(F)), where z: 7(N)—v(Fis the natural projection, and
S ¥(N) is such that 7z(8)=s.

(3) Let »(&F)X R denote the vector bundle over N X Rwith the same fibre
dimension as »(¥). Given a metric (resp. basic) connection V° (resp. V') on
v(F), a unique connection V* on »(F)X R is defined by requiring

(1) On sections s which are constant in R-direction, let Vg/o,(s)=0;

(i) I XeT, n(INX {t})define

VR(s) = (1—)VHs)-+2Vk(s)
for seT(v(F) X R).

Clearly, for a smooth frame S= fo, -+, s;} of 1 (¥) defined on some open
set Uin N, a smooth frame S’= {s{, ---, s;} of »(F)X R on UXR is defined by

S;(x, t) = (S,-(DC), t)) =1, «, q,
then connection form 6% of V* relative to the frame S’ is represented as follows:
0" = (1—1)6°+-16;

where @°(resp. 6') is the connection form of V°(resp. V*) relative to the frame 5.
Let N be a Riemannian manifold, ( , ) be the Riemannian metric on N.

The following is well known.
(1.23)  There exists a unique connection NV on 7(N) statisfying the following

conditions:

(1) Vx(¥)=Vy(X) = [XY]
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for X, Ye%(N);

i) d(Y,Y)(X) = (Vx(Y)), YVo)+(V,, V()
for X, Y, Y,e%(N).

This connection is called the Riemannian connection on N. Clearly,
let V be the Riemannian connection on N, and / be an isometry on N, then

fu(Vx(Y)) = Vox(f+Y)
for X, Y € %(N).

1.3. Integration along the fibre
(1.3.1) (Bott [1]) Let N be an oriented smooth manifold and =: NX [0, 1]—

N be the natural projection, then there exists a unique homomorphismof C=(N)-
modules

st AP(NX[0,1]) = A*"}(N),  forp=1,

satisfying the equation

-

AT =\ 7ad A
JN

JN x[0,11

SJor all p= A?(N X[0, 1]), yre Ay (N),where r=dim N—p-+1.

This homomorphism 7y is called integration along the fibre. Then it is
easy to see the following.

(1.32) Let N, N be oriented smooth manifolds of dimension n, and =: NX
[0, 1]->N, z: Nx [0, 1]1=N be the natural projections, then for any immersionf:
N— N, the following diagram is commutative:

AW X0, 1]) 5 42-Y(N)
lrxiays— 1px

7T %

AP(NX[0,1]) —> A>Y(N)  for p=1.

2. Exotic characteristic classes and Theorem

In R. Bott [1], exotic characteristic classes for foliations have been defined
as follows.

Let g=1 be an integer.
First, a cochain complex (WO,, d) is defined. Let R[c,, -, ¢4] denote the

graded polynomial aglebra over R generated by the elements ¢; with degree 2i.
Set

R,[c, -+, ¢] = Rc,, *++, 4]/ {¢; deg(d)>2g} .

Let E(hy,h,, ---,h,) denote the exterior algebra over R generated by the elements
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h;with degree 2i—1, where r is the largest odd integer <¢. Then as a graded
algebra over R

WO,= Rc,, -, ci]QE(h s, -+, h,),
and a unique antiderivation of degree 1
d: WO,—~ WO,
is defined by requiring
d(c;) =0, i=1,,q
dh,) = c;, i=13, 7.
Let £ be a smooth g-dimensional vector bundle over a manifold N and V

a connection on £ For a curvature matrix k£ of V, local 2i-forms c,(k) on N are
defined by the following formula

det (I,4tk) = 14 3] ric,(k)

Since ¢,;(k) do not depend on the choice of the local frame of &, ¢, (k) define global
2i-forms on N. Then a homomorphism of graded R-algebras

MV): R[cyy +++, ¢q] = AEWN)
is defined by requiring
MVY) (¢;) = (V —1)27)ic(k), for 1=1, --+, ¢q.

Let N be an oriented smooth manifold without boundary and (N, &) a C*-
smooth codimension g foliation on N. Let V° (resp. V') be a metric (resp. basic)
connection on »(¥) and V* be as in (1.2.2) (3). Then the followings hold.

Q.1 (1) MV () dEN)is a closed form for any = Rc,, -+, ¢4, and if
deg(p)>2q then N (V") (¢)=0.

2 MV°) (¢)=0 forp= RJc,, **+, ¢4 such that deg(@)/2 is an odd integer.

(3) Let m: NX [0, 1]—=N be the natural projection and i: N X [0, 1] -NX R
the inclusion mapping, then

d(mx*MV™) (8)) = MV') (8)— (V") (8)
for = R[c,, ***, ¢,), especially
d(m ¥ N (V") (€2;-1)) = MV (€:-)

where 7y is the integration along the fibre.
In view of (2.1), given a C*-smooth codimension ¢ foliation (N, <) on an
oriented smooth manifold N without boundary, a homomorphism of cohain
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complexes
AN, F): WO, — AEN)

is defined by requiring

AN, (¢;) = MV (c)
AN, ) (hy)= mad* M) (c)) -
We used the notation A(N,30 in place of Ag of Bott [1]. Here the homomor-

phism (N, 30 depends only on the choics of two connections V° and V' on
(). In cohomology, A(N,@> induces a homomorphism of graded R-algebras

AN, @): H¥(WO,)— H*(N; C)

which depends only on the foliation (N, F).

The elements of XZ’:N,SF)(H *(WO,)) are called the exotic characteristic
classes for the foliation (N, &F).
It is easy to see the foillowing lemma.

Lemma 2.2. Each canonical generator of H***'(WQ,) is represented by
some ¢ h;cWO,, where & R[c,, -+, cq] is a monomial with degree 2(q—j-1).

Then we have

Theorem. For any integer q=1, there exists a C=-smooth codimension q
Joliation (M, F) on a closed (2q+1)-manifolduch that all the exotic characteristic
classes for the foliation which correspond to the canonical generators [¢ h;] of

H**Y(WO,)are non zero in H*¥'(M; C).

REMARK. When ¢= 1, the generator fo-AJ of H*(WO,)= Rs the Godbillon-
Vey invariant, and our foliation of codimension one is diffeomorphic to the
foliation constructed by R. Roussarie (cf. [1]).

3. Construction of the foliation (M, &)

Throughout this paper, integer ¢=1 is to be fixed, and all foliations are to
be C~-smooth codimension ¢ foliations. Let

O(q+ly 1) = {XEGL(q+2R); tXBX — B},Where B 2( ff+1 )

We can define subgroups HC K G of O(g—+1, 1) as follows:
X0
(3.1) Let G be the identity component of O(q+1, 1). Then H={(0 1);
1 2
Xe&:SO(g)t is a compact subgroup of G, and G|His an open (2q+1)-maiifold.
)

3.2 Let K be a subspace of G consisting of X=/x,;)& Guch that
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(X i n. X
det( ga+1 q+2> — 1

Xgi+2q+1  Xa+z a+2

and
xi4+1+xiq+2:0 (i: 1’ .-.’q)
then K is a subgroup of G, and G|Kis a g-maniford.

Proof. The proofof (3.1) is trivial. = We shall prove (3.2). Let X=(x;,)&
GL(g+2; R) such that
X; g1t %q:.=0, for i=1, * -, q.

If XeGcO(g+1, 1), then the followings hold.

1) det (xq+1 gn e+ q+z> — 41,

\Xg+2 tr+1 ¥a+z g+2

and dCt l/v 1 tf—H‘x‘I—H q+z}

\Xg+2g+1  Xgt2 g+2/

— 1, if and only if

Xgi1 a1 T Xg41 a12 = Xgiz g1 Xas2 a425

2) Xgiy,—Xgi, =0, for 1=1, -+, ¢q.
If the above equality holds, (3.2) folows from 1) and 2) (q.e.d.)

Set M=G/H,then M is an open (2g+1)-manifold and M is foliated into the
fibres of the fibre bundle M=G/H—G|K. We denote this foliation by (M, F).
Clearly, the foliation (M, ?Z") is a G-invariant foliation of codimension g on M.

By A. Borel [2], the connected semi-simple Lie subgroup G of GL(g+2; C)
has the discrete subgroup I' of G which contains a normal torsion free subgroup
D of finite index. Since H is compact subgroup of G, the subgroup D acts freely
on M=G/H and D\M is compact. Therefore we have.

(3.3)  There exists a discrete subgroup DofG such that D\M is a closed (2q+ 1)-
manifold.

Set M=D\M. Since the foliation (M, &) is G-invariant, the closed (2g+1)-
manifold M has a codimension ¢ foliation (M, &) induced naturally from M, ).
This foliation (M, &) is the example of foliation with non trivial exotic charac-
teristic classes.

4. Proof of Theorem

4.1. Naturality of the homomorphism A(V, F)

Let N be an oriented manifold without boundary and ( , ) be a Rie-
mannian metric on N. Let V be the Riemannian connection on N. Given a
foliation (N, &) a metric connection V° and a basic connection V* on »(&) are
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defined as follows:
VIY) = alXe(@), Y1+, (Y)

for any XeX(N), YeT'(»(¥)),where n: 7(N)—v(F)is the natural projection,
and X)) eT("(F)XvF)eT(v(F))are such that X=Xr(F)+Xv(F) Here,
of course, we consider the Riemannian metric on »(&) induced naturally from
the Riemannian metric ( , ) on 7(N).

Then the homomorphism of cochin complexes

AN, F): WO, — AEN)

is uniquely determined from the above connections V° and V', hence from the
foliation (N, &) and the Riemannian metric ( , ). Thus we denote
this A (W, 30 (@) by o((N, F), ( , )) for 0= WO,.

Now, let O(g-+1, 1), G, H, K, (M, ) and (M, ff) be as in Section 3. Let
o(g+1, 1) (resp. gl,.,) denote the Lie algebra of O(¢+1, 1) (resp. GL(¢+2;R)),
then clearly

o(g+1,1) = {Xegly,; ‘XB+BX= 0},

and a basis of o(g-+1, 1) is given by the following elements:

0 ' 0
Tl 02
-2 0
0..... 1°°9 <1
Hij: :. ) 1Si<]§q7
—1 ... 0 <j
P
0 1 -1 <l, 1:1, »y q
Xi=l—7T00
. —Al 00
/)
0 1 1 <i» l—_“l) » q
L= —157v
1 0 0
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It is known that {H;;},s;<;sq is a basis of the Lie algebra of H. Then T,(M)is
identified naturally with the subspace of T,(G)spanned by {X,, ***, X, Y,, -+,
Y,, Z}, where o=HeG|H=M.

In this time, we have

(A4d) (X) -, Ad) (X2, Ad(e) (V). ., Ad(e) (Yo, Ad(e) (2)
/ 0
= (Xn ey Xq, Yl, ey Yq’ Z). 0 4 0
0 0 I,

S q

0 .
o) SH (ASS0@). Therefore, <, 5, ~5XFQ X +3V1E

Y#+Z*®Z* is an Ad(H)-invariant innerproduct on T,(M)where {X¥, *+-,
X¥, Y¥, -, Y¥ Z*} denote the dual basis of {X,,-, Xq Y, +, Yy, Z}.

4
for g=
(-

Hence, for any u=g o&M(gcG),an innerproduct { , », on T,,(YVI) is
defined by < , D,=(g7))*C , >, Therefore we have

@41.) < , > isa G-invariant Riemannian metric on M and M is orien-
table.

Then we have the followings.

Lemma 4.1.2. For any o & WO, o(M, EZ"_)_, <, D) is a G-invariant
differentiglorm on M.

Lemma 4.1.3. Let < , > denots the Riemannian metric on M induced

naturally from the Riemannian metric < , > on M, then
P*m((M’ g)’ < ) >) = w((M, g)) < ) >)
for o WO,,where p: M—>M is the natural projection.

Proof of (4.1.2). Let V be the Riemannian connection on the Riemannian

manifold (M, { , ). Since the Riemannian metric < , > on M is G-
invariant,

8(Vx(Y)) = Veux(8:Y)

forany geGand X, Y € %(M).

Since the foliation (M, ff) is G-invariant, g+« maps T(7(F)) (resp. I‘(v(?f"')))
into T(7(ZF)) (resp. T(»(F))) and gyr=ng, for g&G, where =: T(M)—>v(F)is
the natural projection.

Therefore we have

&x(VX(Y)) = Va.x(g,Y),

€
*) G(VMY) = Vix(gnY), for geC.
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Let k'(resp. £°) be the curvature matrix of V'(resp. V°) associated to some
local frame S= {s,, -+, sg} of »(F). Then by (¥), (g7)*k" (resp. (g *)*k%)is the
curvature matrix of V'(resp. V°) associated to the local frame g,S= {gys;,***,

g45at.  But ¢ (k') A%(M)s independent of the choices of local frames, hence
c(k")is G-invariant. Therefore

(M, F), <, D) =MV (&) = (V—12m)c (k)
is also G-invariant.

Similarly, (V%) (¢;)€ A% (M x R)is G-invariant. Hence it follows from
(1.3.2) that k,((M, F), < , >)is G-invariant. (q.e.d)

Proof of (4.1.3). Let V be the Riemannian connection on (M, < , D).

Since the natural projection p: (M, < , >)—(M,< , >) is a local iso-
metry, locally we have

P+(Vx(Y)) = Vox(psY) .
Therefore, the proof is similar to that of (4.1.2). (q.e.d.)

4.2. Local frame of (%)

Let o=HeM=G|H. To calculate the connection forms, we define local
vector fields around o= M as follows:

Define a prametrization ¢ around o= Mby

Zﬁ(.yl’ "'nyy X1y "y Xgy 2)
= exp(i}in,-)exp(ixiX)exp(z-Z)He]l—l = G/H .

In the sequel, we use the vector notations such as x=(x,, **-, %), y=(y,,

Y yq)
Set local vector fields Z, X,, -++,X,, Y3, ***, Y, around o€ M, Z=¢,(8/02),

X, = ¢4(e *0[0x;), (=1, -, q,
Y= $*(e2z(8/8yj+k2=‘xi8/8xj—ijkzl]xka/axk—{—xja/az)), j=1,-q,
at u=¢(y, x, 3)EM.

Then we have

Lemmad4.2.

) X, -, X,, Z are tangent to the foliation (M, F).

Q2 X, X4 Z, Y, <+, Y.} is a local orthonormalframe of (M) with
respect to the Riemannian metric { , ).

(3)  (bracket relations)
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X, Zl= 2X,  [X,X;] =0,
[Yf’ Z] = _ZY] )

[Yi’ Yj]u = zezz(xi( Yj)u_xj( Yx)n)

_ [ _ ) )
B (Z)u“zezzg;a e Xp)w 1=]
[Xi) Y]]u — (k:—;v’,)
zezzxi(}?j)u ’ i+ ]' >

where uz?ﬁ(—'y’ X 2’)EM, and ivjzl, g

Proof. The bracket relations of (3) are calculated directly by the defini-
tions of Z, X;, Y.

We shall prove (1) and (2).

First, we define a local parametrization ¢ around e=G and a local section

o around oM as follows:
Set
¢(y’ X, Z, (hij)1§x<j§q)
= exp('_ZI]y,-Y,-)exp('z:;x,-X,.)exp(z-Z)exp (lsgsqh,.jH,-j)EG .

The local section ¢ is defined by requiring

Ga(y,x, Z) = ¢(.y’ X, %, (0)) .

Then the next (4.2.1) and (4.2.2) follows from tedious calculations, which
will be left to the reader.

@2.1) (1) Forg1=eXP(j/quy2Yi),

Le(d(y, %, z, (h;})) = d(y+2°% x, 2, (hi}))
(2) For g,=exp (i‘,x‘t’X,-) ,

Rgz(¢(y1 X, R, (h”)) = ¢(y’ X, R, (hu)) .

where ¥=x+e % x° *(exp (2 h;;H,;)).
3) =exp(3°Z+ 2] h?JHij)

1< =q

R83(¢(y’ X, 2, (hii)) = ¢(y! X, 2,_}_20’ (h:‘j+h‘t).1)) .

Here, of course, Ly(resp. R,) denote the left (resp. right) translation byge G.
(422) Let g=¢(y, x, 2, (h;;))EG, andg,,g,, g, be as in (4.2.1), and let
X|=0,(0[0x;), Yi=0,(0/0y,),Z’'=¢,(8/0). Then,
(1) (Ley)#((X1)e)=(X1)ee
(Le)x((Y5)e)=(Y?)e.e
(Le)x(Z2)=2%.s
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for i=1, ' q;
) (Rg2>*(<X')g) (XD)ee,
(Re*(Y)e)=(Y {)ee,
for i=1, -, g;
(Re)u(Z}) = Ziuy—267 2’ Y X ey

where a;; is the (i, j) compaonent of exp (2°h;;H;;);
(3) (Re)#((X5)e)=(X1)es,
(Rep)+((Y)e)=(Y ),
(Re,)x(Z2)=2 24,
for i=1, --+,q.
Then we have the following key lemma for the proof of Lemma 4.2.
(4.2.3) Thefollowing (a), (b), (c) hold atg=¢(y, x, 2, (0))=G.
(@) Z;=(Ly)+Z .
(b) (X )g—e"(Lg)*X”]z_l » 4-

(c) (Y;)g=(Lg)*(e“”Y].+Ze”xj;kak—ezzgxﬁXj—x 2+ 2 20Hyy),

kx5
for j=1, -+, q
Here, of course, the elements X,, -+, X4, Y,, -+, Yy, Z,H;; of 0(qg+1, 1) are
regarded as the elements of T,(G), and H;;=— H i Joi>].

Proof. First, notice that
* (X)).=X, for i=l, -, g,
(Y:)ez Y,‘, for 1=1’ <eey G,
Z'=7Z.
g q
For g=(y, % 2 (0)), set &i=exp (3}, Y)), gr=exp (13 X)), gu=exp(a-2).

Then g=g,- £ &
We shall prove (a). By (4.2.2),

Z = (Le)x(Zhse)
= (Le)(Rep)sZk,
= (Le)(Re(Reu(Z422m(X1),)
Then, by (*),

= (Lg,)#(Re;)%(Rg,)+(Z -2 2 XX k)
= (Lo)s(Lesssy- x)*<Rg2g3>*(z+zzka,,)
= (Le)sAd((2:2) ") (Z+zzkak)

— (Lo Ad(gr")Ad(g") (Z+232}0:X,) .
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Bu, Ad(grY) (Z)=Z—23%,X,,
Py

Ad(g;") (X)=X,, for k=1, -+, g,
and Ad(g;") (Z)=Z.
Therfore, Z;=(L,)+Z.
(b) and (c) are proved similarly. (q.e.d.)
Now, let P: G—M=G/Hbe the natural projection, then clearly we have

P*(Xi):(Xi)o i= 1) g,
P*(Yj):(Yj)o j:l, g,
Py(Z) = (Z),
P*(H,.j)zO, 1=i<j=g,
where o=HcM=G/H.
Hence, by the definition of the G-invariant Riemannian metric <-~,-—§ on
M, the following lemma shows Lemma 4.2 (2).
4.2.4) Let o be the local section defined as before, then
@  (Z)=c2),
(b) (Xf)u=0(u)*<7;)wi =1, g

© (Y)u=c@)u(Y)pi=1, ¢
Jor any point u of some neighborhood of 0 in M.

Proof. Clearly, Pi(Lsu)x=0(u)xPx, and (¢x)sa>=0%°($s)u. Then, in
view of the definitions of X;, Y,Z, we have (4.2.4) easily from (4.2.3).

(q.e.d.)

By the definition of Lie algebras of Lie groups, we have the following easily.
(4.2.5)  Thefollowing elements o(q+1, 1) form a basis of the Lie algebra of K,

Z, X, -, Xg, Hijy 1=i<j=gq,

where the subgroup K of O(q+1, 1) is as in (3.2).
Since the foliation (M, <) is G-invariant and each leaf of this foliation is

a fibre of the fibre bundle M=G/H—G|/Kwe have Lemma 4.2 (1) from (4.2.4)
and (4.2.5).

This completes the proof of Lemma 4.2.

REMARK. Consider Z, X,, Y. of o(¢+1,1) as left-invariant vector fields on
G. It hold that Z=Py(Z)and Z is G-invariant, then we may define Z by Px(Z).
However it is impossible to define X; (resp. Yj) by PyX,(resp. P+Y ), for X,,Y;
are not Ad(H)-invariant.

4.3. Calculation of ci((M, fH, < , >) and hj((M, 577), <, D).
Let Z* (resp. X¥, Y¥)denote the dual one form of Z (resp. X;, ¥;) with



414 K. YAMATO

respect to the G-invariant Riemannian metric < , » on M.
Then we have

Lemma 4.3. At o=HeM=G/H,

(1) (M, D), <, D)=a(v/ =12z} (dZ*), a;>0,

for i=1, . g,
() h((MF), <, D)=B,( =122y Z* N(dZ*Yy ™, B,;<0,

for j=13, == 7.
We shall prove Lemma 4.3. As usual, dx; and rfy, are regarded as local

1-forms on M by the parametrization ¢. It is easy to see the following.

4.3.1) Let Z*, X¥,Y*be as above, then
(1) Y¥=eZdyfor j=1, =<, q, atu=¢(y,, -, Yo, %, ***, %q, 2)EM;
(2) dZ=3dy, Adx, = VEAXF.

Since the Riemannian metric { , > on M is given, connections V° and
V' on »(&F) are uniquely defined as in Section 4.1. Then {Y,, -+, Y.} is a local
orthonormal frame of »(F) by Lemma 4.2. Let 6°=(8?,) (resp. 8'=(6},)) be

the connection form of V°(resp. V') relative to the frame {Y,, :--, Y.}, then we
have
@32) At u=¢(yy, =, Y0 %y -, %g, 3)EM
[0 i=j
1) &= _ _
() #i= (e (x; YF—x,YF), e
27%, i=j
@ =1, .
15 l=f=]~

Proof. Let V be the Riemannian connection on the Riemannian manifold

M, <, D) and 0=(0;;) be the connection form of V relative to the frame
{YI’ ttty Y(h Xl) Tt XQ) Z} of T(M)
Y,

Set 5,= vse=Y,, Sqn=Xu,""", $0=Xg, S3¢..=2Z. Then by the defini-
tion of V,

diE,.X}(X) = <VxSi, $;04<8; VxS,

for X %(M). Hence

(i) 6,,=—0;;fori,j=1, .-, 2¢+1.
Moreover V,,(s;)—V,,(s;)=[s,» s;], then we have the followings (ii) (iii) from
Lemma 4.2 (3).
Forz, j=1, * ¢ and 2.

(ii) 0;;(s;)=—2¢"x;, 0;;(s;)=2¢"x;.

(lil) gjk(si)zeik(sj)’fork—__l) °c ,2€H‘land k#:l, ]
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9q+i k(si)=(9;k(3q+,~),for k=1, -, q.
624-(»1 k(si)zeik(szq+l)for k:l, e 2q_|_1’
and k=1, 2qg+1.
Let 7, j=1, +-,q. Now, let k=1, -, ¢, and k=1, j, then by (i) and (iii),
6:‘;‘(&) = —9ji(sk)~—— MO = MO = ejk(s‘.)z __gkj(si) _ "“9;,'(3/;)

Hence 6;;(s,)=0. It is shown similarly by making use of (i) and (iii) that
0, (sg))=0for k=g-+1, ---, 2g+1. Therefore we have

—26*x; , k=j
0,;(sk) = {2, k=1
0, k=*1dj

for7,j=1, , qgandi®j.
But by the definition of V°,

0, =20,, for i,j=1, -, q.

ij
Hence we have (4.3.2) (1).

(4.3.2) (2) is shown easily by the following.
By the definition of V' and Lemma 4.2 (3),

0, if X=X, ,Xq
vx(Y) = {2Y,, if X=2
Vg((Yi)’ if X= Y’ Yq

for i=1, +--,q. (q.e.d.)

Now, let k'=(k},) be the curvature matrix of V' associated to the frame
{Y,,-+, Y,}. Let V" be the connection on »(&F)X R defined by V° and V' as
in (1.2.2) (3), and 6”"=(6";,) be the connection form of V", that is,

o — (1—1)6°+10"

and k”=(k",;;)be the curvature matrix of V”. Then we have
433) (1) Ato=HeM=G/H,

. [2dZ i=j
Y2, Ady,—dx; Ady), i
(2) At (o, )eoXx RCMXR,

0 {Zdt/\Z*—i—thZ*, i =J
Y 2n(dx; Ndyi—dx Ndy)), 0%
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where m: MX R~>Min the natnralprojection.

Proof. By (4.3.2) (1), proof of (1) is trivial. By the definition of 6%,

N {22*, i=j
Y 20w, TF 2, ), i,

then by (4.3.1), we have (2). (q.e.d.)

By the definition of the determinant of matrices, we have the following.
(434) Let K=(K;;) be a gxq matrix of 2-forms. Assume that

{w, i=j
Kij = . .
'Vj/\"?i—")'i/\’?j) 17,

where %y, oy Yy My ***y Mg are 1-forms. Then

q
C,-(K): Z a‘.”.wt'"/\(znk/\,yk)n ,
0snsi k=1
n are even

Jor i=1, -, q and each a,, is a positive number.
Now, ¢((M,F), < , >)and h((M, ff), < , >)are calculated as follows.

In view of (4.3.1), we have Lemma 4.3 (1) from (4.3.3) (1) and (4.3.4).
Similarly, by (4.3.3) (2),

¢B") = 3 @y 2°(—n)t """t NT* N (AT
n areeven
+ (terms which do not contain dt),

for j=1, .-, ¢, at (o,t)eMX R.

Let i: Mx [0, 1]<~MX R be the inclusion mapping, and m M x [0, 1]—M be
the natural projection, then then by the definition of Integration along the fibre
Ty

h((M, F), D) = (V—1[2r)msi*c; (k)
= Bj(\/:T/Zn-)"-Z*/\(dZ*)f“, B;>0.
This completes the proof of Lemma 4.3.

44. Proof of Theorem

Let o be an element of WO, with degree 2¢g+1 such that o=¢ 4 ; for some
monomial @& Ry[c,, ***, ¢4] as in Lemma 2.2. By Lemma 4.2 (1), {X,, -,
X, Y, ,Y, is a local frame of 7(M). Then by (4.3.1) 2), (2¢+1)-form
Z¥N@AZ*)1=ql- Z¥* N(YEANXF)N A (YEAX¥) is non zero around oc M.
Hence w((M, 9_'), <, D)isnon zero at o&Mby Lemma 4.3. On the other

hand, o((M, F),< , D) is a G-invariant form on M by Lemma 4.1.2.
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Therefore w((M, &F), < , ) is nowhere zero on M. In view of Lemma
413, o((M, &F),< , D) is a nowhere zero (2¢+1)-form on the closed
orientable (2¢+-1)-manifold M. Therefore w((M, &), < , ) represents a non
zero cohomology class of H*?**Y(M C).
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