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Introduction

Let N and M be m-dimensional closed manifolds on each of which an
involution T is given, and let f:N—M be a continuous map. In the preceding
paper [7], on the assumption that the involutions T of M and N are both free
the author introduced a mod 2 integer 92( f) called the equivariant Lefschetz
number of f, and proved that if )2( f)=0 then f has an equivariant point. In
this paper the result will be generalized to the case when the involution T of
N is not necessarily free.

The former result was proved through the use of the equivariant point
index I(f), which is constructed from the class A.e& H™(S> >1§M2) requiring that

the involution T of N is free (see [7]). Taking in place of S=XM?* the pair of
T

the symmetric product of M and its diagonal, we define a new equivariant point
index I(f) provided that the involution of M is free and the involution of N is
non-trivial. 'The new result will be proved by making use of the new index.

Recently, to show that certain homotopy classes in closed manifolds cannot
be realized by embedded sphere, R. Fenn [5] has proved a theorem of the Borsuk-
Ulam type. In this paper, I(f) will be also used to generalize the Fenn theorem.

Throughout this paper, the homology and cohomology with coefficients in
Z, are to be understood.

1. Preliminaries

Let N be a compact polyhedron with PL(=piecewise linear) involution 7.
We denote by F the fixed point set of T, and by N the quotient of NV with respect
to T. Let z: N—>Nz be the projection, and put Fr=n(F). The following
facts are well known (see [1], [2], [6], [9], [10]).

There are the transfer homomorphism

¢*: H(N) — H%Nr, Fy)

and the Smith homomorphism
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p: H(Ny, Fy) — H*"*(Ny, Fr).

These are natural with respect to equivariant maps, and the following two
sequences are exact.
p¥og* [~
(1.1) .+ —>HYN,F) ——> H‘Ny, F1)—> H"*'(Nr, Fyr)

*

BN H(N, F) — -,
o* Jrow .
(1.2) - — HY(N)—> H9(Ny, Fz)—5 H*(Ny)
* . .
L, H*™Y(N) — -,

where j*: H¥(N, F)-H*(N) and j*: H*¥(Ny, Fr)—>H*(Ny) are induced by
the inclusions.

We have

(1.3) Lemma. Let N be an n-dimensional closed PL manifold with a non-
trivial PL involution T. Then it holds

¢*: H"N)=H"(Ny, Fy) .

Proof. Since H*(N)=Z, and H**(N;)=0 in (1.2), it suffices to prove
that ¢*: H(N)—H"(N, Fr) is not trivial. Suppose this is trivial. Then we
have H*(Nr, F;)=0, and so H*(N, F)=0 by (1.1). By duality we have HyN
—F)=0 which implies N=F. Since this contradicts to the non-triviality of
T, we have proved (1.3).

For each ¢t=1, 2, ..., we define a homomorphism

E,: HYF) — H* Ny, Fy)

to be the composite

m* &* ©w
HYF)=HYF;)—> H*"'(Ny, Fr) —> H*"*(Ny, Fr)
BB H**Ny, F7),
where 8* is the coboundary homomorphism.

For a compact polyhedron M, we consider the product M*=Mx M and
define an involution 7' on M?® by T(x,, x,)=(x,, x,). The quotient (M?), is the
symmetric product. If D: M—M?* denote the diagonal map, DM is the fixed
point set of 7': M*—->M?. We have the homomorphisms

¢*: HY(M?) — H*(M?)r, (DM)r)
p : H(M)r, (DM)7) — H*(M?)r, (DM)7)
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and also the homomorphisms
E,: HY(M) — H*™(M")r, (DM)r)  (tz1)

by identifying M with DM.

R. Thom [9] and R. Bott [2] studied the cohomology of symmetric products
in connection with the Steenrod operations (see also [1], [5], [9]). In particular
they proved

(1.4) #axa) =2 ES¢ ) (asHY(M)).

Based on the results of R. Thom, the author determined in [6] the cohomology
structure of ((M?)r, (DM)s) as follows.

(1.5) Proposition. Let {a,, oty -+, a;} be a basis of H*(M). Then the
totality of elements in the following 1), ii) is a basis of H*((M?)r, (DM)r):

i) Efay) (1ft=deg a;, 1=i9),

i) gH(axa,) (1Si<jss).
Furthermore, the totality of elements in 1) is a basis of the kernel of the homomorphism
n*: H¥(M?)y, (DM)r)—H*(M?, DM).

2. The class ¢

Let Y be an n-dimensional (topological) manifold without boundary, and
let U H*(Y? Y?*—DY) denote the orientation class of Y over Z,, that is, an
element whose restriction to H*(y X (Y, Y—y)) is a generator for any yeY.
Let X be a closed manifold contained in Y, and let U'e H"(X X (Y, Y—X))
denote the restriction of U. Define a homomorphism

(2.1) Yo Hy(X) - H" (Y, Y—X)
by sending a to the slant product a\U’ (see Chap 6, §10 of [8]).
(2.2) Lemma. If Y is a closed manifold, we have
J*ru(@~[Y] = ix(a)

for ac Hy(X), where [Y] is the mod 2 fundamental class of Y, and j*: H*(Y,
Y—X)—>H*Y) and iy: H(X)—H(Y) are induced by the inclusions.

Proof. Let U, H*(X X Y) denote the restriction of U, and acH*(Y)
be any element. It follows that

Lo, JFro(@~[Y] = <a, (@\U)~[Y]>

= la—(a\U,), [Y]) = <a\(Uy~1xa), [Y]>
= U~1Xa, ax[Y]).
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Take a basis {a,, a,, **, a,} of H¥(Y), and put
d;; =<a~a;, [YDEZ,,
Uozgc,-ja,-Xaj (ci;€Zy),
where U, H"(Y?) is the restriction of U. It is known that
; Cipe; = 8,
(see p. 347 of [8]). Therefore we see that

latw J¥vu(a)~[Y]
= (D ey *a) X ay~1 X aw ax [Y]>

= 3 e (*a) X (a—ae), ax [Y]>
= E<a @ {aj—an, [YD

= Zj ¢;d<t* e, @y

= z: Sulcts, ixa>

= {a, 1xa) .

This completes the proof.

Remark. It is known that the homomorphism ¢y of (2.1) is an isomor-

phism (see p. 351 of [8]).

Assume now that there is given on Y a free involution 7 such that 7(X)
=X. Then the quotient Y is also a manifold without boundary, and X is
a closed manifold contained in it. Let z: Y—Y denote the projection, and
VeHY(Yr), (Yr)’—DYr) the orientation class of Y over Z,. Then we have

(2.3) Lemma. The diagram

HX) 2% B9V, Y—X)

[ [

HyX7) - H4(Yy, Yo—Xy)

is commutative, where ¢y is the transfer homomorphism. In particular, it holds

z*yv[Xr] = vu[X]
for the mod 2 fundamental classes of X and X 1.

Proof. Consider a chain map ¢: Cx(Y7)—>Cy«(Y) and a cochain map p:

C*(Y*)—C*((Yr)’) defined as follows:
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&(mye) = ¢+ Ty,

<pu, (m Xm)yo) = {uy o>+<u, (T'X 1),
where c€ C(Y), uc C*(Y?), c=Cy(Y?). Then it is easily checked that

e\ pu) = §(c)\u
for /= Cy(Yr). The homomorphism ¢y: Hy(X1)—H,(X) is induced by ¢, and
it follows from the definition of orientation class that
pPHU)=V

for the homomorphism p*: H¥*(Y? Y*—DY)—-H*(Y ), (Y)’—DY ;) induced
by p. Consequently it is easily seen that the diagram in the lemma is com-
mutative. Since ¢4[Y 7]=[Y], the proof completes.

Let M be an m-dimensional closed manifold with a free involution 7.
Regard M? as a manifold with involution by the switching map 7. Then an
equivariant map

A: M — M?

is given by A(x)=(x, Tx). The image AM is an invariant submanifold of M?,
and the map Az: M;—(M?), is a homeomorphism onto (AM),. Since T is
free, AM N DM and (AM)r N (DM)y are empty.

Obviously (M?*)r—(DM)r is a 2n-dimensional manifold without boundary,
and (AM)r is a closed manifold contained in it. Consider the homomorphisms

H,(AM)7) —%> H(M?)r —(DM)z, (M?)r—(DM)7—(AM)y)

o H @y, 0~y s B, M),
where V is the orientation class of the manifold (M?);—(DM), and 7 and k are
the inclusions. We define d=3%M)e H™(M?), (DM);) by

(2.4) 3§ = k¥ vy [(AM),] .

(2.5) Lemma. For the homomorphisms =*: H™((M?)7, (DM)1)—H™(M?)
and Ay: H,(M)—H,,(M?), we have

I (MY~[M?] = Ax[M] .

Proof. Let W be the orientation class of the manifold M2 Then it
follows from (2.2) that

J*Y wlAM]~[M?] = Ax[M]
for the homomorphism j*: H*(M?, M*—AM)—H*(M?) induced by the inclu-
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sion. Therefore it suffices to prove
¥ = j*y ,[AM].
Let U denote the orientation class of M*—DM. Then by (2.3) we have
m*yy[(AM)r] = vo[AM]

for n*: H*((M?)r—(DM)y, (M?)y—(DM)r—(AM)y)—H*(M*— DM, M*—DM
—AM). Since U is the restriction of W, it follows that

7*9 = jR* ke, [(AM)7]
= jr*y[AM] = j*y w[AM],

where *: H¥(M?®, M*—AM)=H*(M*—DM, M*—DM—AM) is the excision
isomorphism. This completes the proof.
We have the following (compare Prop. 3.2 of [7]).

(2.6) Proposition. Let M be a closed PL manifold with a free involution
(not mecessarily PL). Take a basis {a,, otz, =+, a;} of H*(M), and put

Ay[M] = ;je,-ja,-Xaj ,
where a;=a;~[M]. Then we have
E;j=2¢&u €;=0,
and also
IM)= :j] €;;9*(a; X a;) mod Ker n*

for the homomorphism =*: H*(M?)z, (DM)7)—H*(M?, D(M)) and the transfer
¢*: H*(M*)—H*((M?*)r, (DM)r).

Proof. By (1.5) we can put
Y= ; &;/¢*(a;Xa;) mod Ker z*.
Then it follows from (Z.S)Jthat
Ay[M] = %E,-j'j*n*qi*(a,-Xa,-)A[MZ]
= %8;,-’(01,- Xajta; X a)~([M]x[M])
= ;}_E,-j’(a,.Xaj—l—ana,-) ,

where j*: H¥(M* DM)—H*(M?) is induced by the inclusion. Therefore we
have &;;=¢€;,=¢,;/, £,;=0, and the proof completes.

In virtue of (2.6) we have the following theorem (see Theorem 3.4 of [7]).
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(2.7) Theorem. Let M be a closed PL manifold with a free involution T.
Then there is a basis {p,, =+, ppy o'y =+, p,’} of H*(M) such that

= TH*pyy MDD = p/~T*u, M =0,
<ll'ivT*l"‘j,’ [M]> = 3:’;’ ’
and it holds
M) = Z *(p; X n/) mod Ker n*.

We call such a basis a symplectic basis of H*(M).
From (2.7) and (1.5) we have

(2.8) Corollary. Let = be a mod 2 homology m-sphere with a free involu-
tion. Assume 3. is a PL manifold. Then we have

I3) = ¢*(1X o),
where o= H™(Z) is the generator.
REMARK. It is seen that the element A.e H™(S= X M?) in [7] is the image
of # under the homomorphism p*: H™((M?)r, (DM)T)T—>H'"(S°°>T<M %) induced
by the projection p: S* X MP—(M?)r.

3. The equivariant point index I ()

Let N and M be m-dimensional closed PL manifolds on each of which
an involution T is given. We assume that the involution of M is free, and the
involution of N is nontrivial and PL. As in the preceding section we regard
M? as a manifold with involution by the switching map 7.

Given a continuous map f: N—M, define an equivariant map f: N—M? by

() = (fO), f(Ty).

This induces a homomorphism f%: H*((M?)z, (DM)y)—~H*(Ny, F7). We
define a mod 2 integer I(f) by

) = I(H$*()

where v H™(N) is the generator and ¢*: H™(N)=H"(Ny, Fr) (see (1.3)). We
call I(f) an equivariant point index of f.
We have the following (compare (1.4) of [7]).

(3.1) Theorem. If [(f)=£0, there exists an equivariant point of f, i.e. a
point yE N such that f(Ty)=Tf(y).

Proof. Put A(f)={yeN; fT(y)=Tf(y)}. Then the following diagram is
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commutative.
k*
H™(M?)z, (M?)r—(AM)r) —> H™((M")r, (DM)r)
| 72 | 72
1%

H™(Nz, Nr—A(f)r) —> H™(Nr, Fr),

where k* and /* are induced by the inclusions. Since $(M) is the image of
* 'y [(AM)r]e H™((M?) 1, (M?)r—(AM);) under k* (see 2.4)), the assumption
implies that [*of% is non-trivial. Thus H™(N;, Nz—A(f)r)#+0, and hence
A(f) is not empty. This completes the proof.

We have the following theorem which is more general than Theorem (5.2)
in [7].

(3.2) Theorem. Let N be an m-dimensional closed PL manifold with a
non-trivial PL involution T, and let M be an m-dimensional closed PL manifold
with a free involution T. Let F denote the fixed point set of the involution T of
N, and let f: N—M be a continuous map satisfying a condition:

(*) (fIF)*: H(M)—HF) is trivial for g=m/2.

Taking a symplectic basis {uy, ***, pyy p)'y =, p/} of H¥(M), put
X(f) = <D f*u=T*f*u/, INDE Z,,
where f*: H*(M)—H*(N). Then we have
Iih=x(f).
Consequently if ?AC( f)=E0 then f has an equivariant point.

Proof. Since the diagram

vy LI e oy £ vy, (oM,
fleﬁ lf* lf#
D* ¢*

H*(N*) ——> H*(N) —> H*(Ny, F7)
is commutative, it follows from (2.7) that
FEM)=3] ¢*(f*ur—T*f*u/) mod FH(Ker x*),
where z*: H™((M?)r, (DIM)T)—>H "(M?, DM). Since the diagram
HA(M) s H (), (DM))
l(fl F)* lf%

t

E
HYF) — H""*(Nr, Fr)
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is commutative, it follows from (1.5) that f%(Ker z*) is generated by the elements
E, _f|F)*a (ac HY(M), m|2=<q<m). Therefore, by the assumption we have
S #(Ker z*)=0. Consequently it holds

7

FEI(M) = 22 §*(fFur—T*f*u/) .

i=1

Since ¢*a=<a, [N]>¢*v for the generator v of H™(N) and any ac H™(N), we
have

I5)g#v = X()p*v
which proves the desired result.

ReMARk 1. The above theorem shows that, if the condition (%) is satisfied,
)AC( f) is independent of the choice of symplectic bases of H*(M). By making
use of Corollary (1.11) of Bredon [3], we can prove the independency under a
weaker condition that (f|F)*: H™*(M)—H™?(F) is trivial.

ReMARk 2. The condition (%) is satisfied for any continuous map f: N—M
in the following cases:

1) The homomorphism *: HY(N)—HF) is trivial if m2=<q<m. In
particular, dim F<m/2 or N is a mod 2 homology m-sphere.

if) M is a mod 2 homology m-sphere. (In this case, we have 92( f)=deg
fmod 2.)

(3.3) Corollary. Let N be an m-dimensional closed PL manifold with a
free involution T. Assume that the semi-characteristic DZ(N ) of N is not zero.
Let T’ be a PL involution on N with the fixed point set F. Assume that i*:
H(N)—HF) is trivial for q=m|2, and that Ty=Ty': HyW(N)—>HN).
Then T and T’ have a coincidence, i.e. there is a point y=N such that T(y)
=T'(y)-

As a special case of (3.3), we have the following result which answers a
question rasied in [4].

(3.4) Corollary. If 3 is a mod 2 homology sphere which is a PL manifold,
then a free involution T on = and a non-trivial PL involution T’ on = have a
coincidence.

4. Generalization of the Borsuk-Ulam theorem

R. Fenn has proved in [5] the following theorem of the Borsuk-Ulam type:
Let T be a free PL involution on S”. Then, for a continuous map g,: S"—S"*
of odd degree and a continuous map g,: S"—R”", there exists points y,, y, in S”
such that g,(y,)=Tg(y;) and g(y,)=g(y;).- This theorem is generalized as
follows,
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(4.1) Theorem. Let 3 be a mod 2 homology n-sphere which is a PL
manifold, and L be an n-dimensional closed PL manifold. Let T: 5—72. be a free
involution (not necessarily PL). Then, for a continuous map g,: L—3, of odd degree
and a continuous map g,: L—3. of even degree, there exist points y,,y, in L such

that g(y,)="Tg\(y) and g,(3:)=g«¥)-
Proof. Put
M=%} N=UL,
and regard M and N as manifolds with involution by T given as follows:

T(x,, x,) = (Tx,, x,) (x,€3),
T(yu )= (92 1) (»:€L).
For any continuous maps g, g,: L—3, put f=g,xg,: N->M. If A(f) denotes

the set of equivariant points of f, we have

A(f) = (30, 3)EL*; &(3)) = Tgu(2), €431) = 8:(2)} -

Therefore, in virtue of (3.1), it suffices to prove that I(f)=0 if deg g, is odd
and deg g, is even.

It follows from (1.5) that the kernel of z*: H**(M?*)y, (DM))—H*"(M?,
DM) is generated by E,(wX 1), and E,(1 X »), where o H"(Z) is the generator.
By (1.4) we have

E(ox1)=¢*¥(oX1Xwx1),
E (1Xw)=¢*(1XoX1Xw).
Therefore, in virtue of (2.6) we may put
HM) = ¢*(oX o X 1X1)+¢¥(wX1X1Xw)
+ Ep*(0X 1 X oX1)+EH* (I X 0 X 1 X w)
(& €€ 2Z,). It follows that
fA#¢*(a1 X, X B, X B;)
= ¢*((8: X &) (o X o)~ T*(g: X £.)*(B: X B2))
= ¢*((g¥ o X gf o) —(g% 6, X g'8,))
- ¢*((g;k0(1vg;kﬁz) X (g;kazvgikﬁl)) .

Consequently we have
Fo(M)
= ¢*(gfoxgio)+56* (g0 X glw)+E¢*(gfo X giw)
= (deg g,-deg g,+-¢€, deg g,+¢€, deg g,)¢*(o X o),
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where o= H”(L) is the generator. This shows
I(g, x g,)=deg g,-deg g,+€, deg g,+&, deg g, mod 2.
Consider a special case when L=3, and g,=identity. We see that
A(g,x1) is empty,
I(g,x1)=deg g,+6€, deg g,+& mod 2
for any g,: Z—=. Therefore, it follows from (3.1) that
deg g,+¢&, deg g,+6,=0 mod 2

and hence £,=0 and &,=1.
Thus we have

I(g,xg,)=deg g,-deg g,--deg g, mod 2,

which proves the desired result.
We have also the following theorem.

(4.2) Theorem. Let = be a mod 2 homology n-sphere which is a PL mani-
fold, and L be an n-dimensional closed PL manifold. Let T: 2—%. be a free in-
volution. Then, for continuous maps g,, g,: L—3. of odd degree, there exist points

Vi Y2 in L such that g,(y,)=Tg\(y.), £(y:)=TgAy.)-

Proof. As in the proof of (4.1), we put M=3’, N=L? and regard N
as a manifold with involution by the switching map. However we regard M
as a manifold with involution by the following T':

T (%, %,) = (T, Tx,) (x;,€%).
By the same arguments as in the proof of (4.1), we see that
I(g,xg,)=deg g,-deg g,+€, deg g,-+¢€, deg g, mod 2
for any continuous maps g,, g,: L—3, where

HM) = ¢*(wX 0X1X1)+¢* (o X1X1X o)
+ Ep*¥ (0 X1 X0 X 1)+-E*(I X0 X 1 X w) .
We have

A(g:xg) = {(yn y)EL; g(3.) = Tgu(y2), 8(3.) = Tgy2)} -

If g, or g, is trivial, then A4(g,xg,) is empty. Hence it follows from (3.1) that
€, deg g,=0 and &, deg g,=0 for any g, and g,. Thus we have

=0 and ¢&,=0,
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and so

I(g,xg,)=deg g,-deg g, mod 2,

which proves the desired result.

By applying (4.1), the following theorem can be proved as in the proof of
Theorem 2 of [5].

(4.3) Theorem. Let acn, (RP*XS") (n=2) be any element such that
P En, (RP") is an odd element and p,soSn,(S™) is an even element, where p,
and p, are the projections. Then a can not be realized by a topologically embedded
sphere.
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