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The purpose of the present paper is to study the algebraic structure of
the Lie algebra JD(M) that consists of all the differential operators on a smooth
manifold M. <D{M) contains the Lie algebra Jl(M) of the vector fields on M
as a subalgebra, which has been studied by many authors from various stand-
points. Our investigation is motivated by Gelfand-Fuks's paper [1] concern-
ing the cohomology theory of Jl(M). Indeed, their strong algebraic tendency
has led us to expect that it will be fruitful to study differential operators from
the viewpoint of Lie algebra.

Our main idea lies in regarding <D(M) as a representation space of Jd(M)
through the adjoint operations. This idea applies to the following two points.
The first is to establish a kind of reducibility theorem with respect to this rep-
resentation, which reveals certain characteristic features of the algebraic structure
of 3){M). The second is to consider the one-dimensional coholomogy group
of Jl(M) associated with the representation, which yields a sufficient knowledge
of the derivation space and the automorphism group of S)(M).

We shall describe the outline of the present paper. Section 1 deals with
basic notions and certain useful lemmas. Section 2 deals with Jl(M) and refers
to Pursell-Shanks [5]. We give a characterization of the subalgebra that consists
of the vector fields vanishing at a point of M. Using this characterization we
can show that the algebraic structure of Jl(M) uniquely determines the smooth
structure of M.

A subspace of S)(M) is called an c ϊ̂-space if it is invariant under the adjoint
operations of Jh(M). For example, the space S)k{M) consisting of all the β-th
order differential operators is an e^ί-space. In section 3, we give a structural
theorem for ^-spaces, which states that any cJ?-sρace contained in S)k(M) coin-
cides with one of a finite number of canonical < ?̂-spaces in a neighborhood of all
the points of M except those which lie in a nowhere-dense subset of M. From
this structural theorem we can immediately deduce the theorems concerning
ideals and those subalgebras which contain Jl(M\ as we show in section 4.

In section 5, we determine the derivations of S)(M) and certain subalgebras.
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Although these results can be also attained directly by a rather elementary way,
we adopt here a cohomological method, relying on Losik's paper [2] and [6].
Section 6 concerns the isomorphisms of <D(M) and the automorphism group
Aut(<3)(M)) of <3){M). We prove that the algebraic structure of <3)(M) determines
the smooth structure of M. We also prove that Aut(iZ)(M)) is the product of
the subgroup consisting of those automorphisms which are induced by diffeomor-
phisms of M and a normal subgroup which is isomorphic to a semi-direct product
of the group Λj;(M) of the closed 1-forms on M and Z2, or in short,

Aut(.g)(M))~Diff(M) x ΛJ (M) x Z2.

Up to section 6, we confine ourselves to the differential operators of finite
order to avoid complications. In section 7, it is shown that all the results in
the preceding sections remain valid for the differential operators whose orders
may be unbounded around the point of infinity.

1. Preliminaries

We denote by M a smooth w-dimensional manifold with a countable basis.
Throughout the present paper, M is assumed to be connected. For any non-
negative integer k, we write 2)k(M) for the space of real differential operators
with the &-th order which are defined on M. We have a sequence of inclusions

Let

W{M) = U

The elements of S)(M) are called differential operators with finite orders. We
shall provide S)(M) with the structure of a Lie algebra over R, by setting

where φoψ means the composition of φ and ψ as differential operators. Thus
£)(M) becomes an infinite-dimensional Lie algebra over R.

2)0(M) is identified with C°°(M) the space of smooth functions on M, as a
vector space. For/, ^ E 5 ) 0 ( M ) , we have [/, ^]=0, so that 3)0{M) is an abelian
subalgebra of £){M). The subspace of <3)0(M) consisting of the constant func-
tions forms the center of <3)(M), which we identify with R. We have

From this it follows that W^M) is a subalgebra of 3)(M). But, if k>\, it is
easy to see that <Dι£M) does not form a subalgebra.

Let
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be the projection which assings φ(l) to φ, where φ^S)(M) and 1 denotes the
constant function identically equal to one. We write 3)(M) for the kernel of τr0.
Then 3){M) is a subalgebra of 3){M) and we have a direct sum decomposition

Put

g)k(M) = g)(M) n 3)k(M) , k = 0,1, 2,... .

Note that £)0(M)=0 and ^ ( M ) coincides with the Lie algebra of vector fields
Jl(M) over M. The direct sum decomposition

gives a semi-direct product, since <3)0{M) is an ideal of ίD^M). According to
this decomposition, the bracket in J Φ ^ M ) is expressed as follows:

[X+f, Y+g] = [X, Y]+(Xg- Yf), X, YSΞJI{M) ,

The support of φ(^3)(M)) as differential operator is denoted by supp φ.
If we put

Q)(M)c = {φ\φ^3)(M)y supp φ is compact} ,

then S)(M)C gives an ideal of S)(M). We shall often use the index c for indicat-
ing a subspace of Φ(M)e\ for example, Sk{M)=S)k(M) Π 5)(Af)c.

For a subset 5 of S)(M) and an open set U oί M, S\U denotes the set of all
the restrictions of elements of S to U, the restrictions being considered as ele-
ments of £D{U).

We recall that a smooth function / is flat at a point p if all the derivatives
of/ vanish at p. To any point p^M we can assign an ideal I(p) of 3)(M)\

I(p) = {φ\φ^g)(M)y φ(f) is flat atp for every/<ΞC°°(M)} .

When, on some open set U, a local coordinate system (x19 •••,#„) is given,

then any element φ of 3)(M) is expressed as Σ / a M ^ * ( a finite sum) on [/, where

α ranges over a subset of multi-indices α=(αi, •••, an), da=&a{l(dx1)*i--'(dxn)*»y

\a\=a1+-+am 3ndfΛ(x)t=C-(U). We have then

^ ^

We note that, whence [/, then <p(=I(p) holds if and only if all the coefficients

fjs of φ are flat at p.
If the underlying manifold M is fixed, we shall often write 3), S)k etc. in-
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stead of β)(M), S)k{M) etc.
Let / be an element of C°°(Rn), where supp / lies in the open unit disk of Rn.

Let £/be any open set satisfying U ID supp f Take g^C°°(Rn) such that g=\
on supp/and s u p p l e U. Moreover, by %x we denote a smooth function on Rn

which equals xx on supp / and whose support lies in U. Then we have

(1.1) i) [/3Λ + w,«J = (

where a={alf —, an) and α + ( l ) = ( α 1 + l , a2, —, an).

ϋ) a) [gK (gm [ fdxy?] = /8?+(lower order terms);
Jo

= /9ϊ*3β+9?+(lower order terms).

Here β=(0, β2, •••, βn) and φ consists of the terms with the form hd™+1dy, where

Ύ=(0, γ2, - , γ,,), 171 = 1/81-1 andh<=C~(R").

An induction argument, combined with (2.1) ii), immediately yields

(1.2) Let φ^3)k(Rn){or<^<Dk{Rn)) such that supp φ is contained in the open
unit disk. Let U be an open set satisfying supp φdU. Then there are an integer
v(k) depending only on k and n, X^Jί(Rn)(y=^\^ •••, v(k)) with supp Xv(zU and
ψ^3)k{Rn) (or£Ξ£)k(Rn)) (i/=l, •••, v{k)) with supp ψ v c U such that

We have another formula in case of Jl(M). Let / and g be as above. Take
(Rn) which satisfies supp Ac U and h= 1 on supp g. Then

(1.3) [[a1( (h \ gdxjd,], (g \
Jo Jo

From (1.1) and (1.2), we can obtain the following proposition.

(1.4) i) W{M) = [3)(M)9 Jl(M)], 2){M) =

ϋ) g)k(M) = [3)k{M\ Jί{M)l Wk(M) = [Wk(M)y JL{M)}

(ft = 0,1, 2,. ) .

iii) The similar formulas hold when each space is replaced by the inter-
section with S)(M)C.

Proof. Note that i) is an immediate consequence of ii). The assertion ii)
in the case where M is compact and the assertion iii) are both easily checked from
(1.2) and by the use of the partition of unity. For the proof of ii) in the case
where M is open, we shall make use of the fact (cf. [3]) that M admits a finite
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open covering:

(1.5) M=O0 Uθ 1 U U θ n such that, for each ί, O,= U 7 = A 7 where each

family {O ί 7 | /=1, 2, • ••} is a locally finite family of mutually disjoint open sets;

each O,7 is realized as the open unit disk with reference to certain local coordinate

system.

Hence any φ^2)k(M) is expressed as φ=φo+φ1 H \-φn where φ~ Σ φi5

with s u p P 9 > l 7 c 0 , 7 . Applying (1.2) to .®*(Of7), we have φij^[3)k{0h)c,

cJί(0 ί 7)J and so

9>,<= [3)k{M)y Jί(M)], i = 0, 1, - , n .

The similar arguments hold for <3)k(M). This completes the proof.

In the course of the above proof, we have used the following convention.

For any open set O of M, there exists the canonical injective homomorphism

3){0)c-^S}{M\ through which we identify £D(O)e with a subalgebra of <D{M).

Henceforth, we shall use this identification without any comment.

As a consequence of (1.4), we have

(1.6) 3){M), S)(M\ 3)X{M) and JL{M) coincide with their respective com-

mutator subalgebras.

2. Vector fields

We first recall the classical result.

(2.1) (Pursell-Shanks [5]). Let I be an ideal of Jl{M). Then we have

one of the following two cases:

i) / C I(ρ) Π Jl(M) for some point p(=M.

ii) IdJl(M)e.

For the sake of completneess, we shall give a proof to (2.1).

We assume that i) does not hold. Then for any p^M we can find Z E /

such that X&I(p). Take a local coordinate system around p and let Y19 ~9YU

be vector fields which satisfy y t = 3 , near p. Then by the repeated applica-

tion of ad(Y, ) ( ι = l , 2, ••-,«) to X we can get X<=I with Z(^)Φθ. This, in

turn, implies that / contains a vector field which is equal to dx near p for a

suitable local coordinate system. Then (1.3), together with the partition of

unity, shows that the alternative ii) holds. This completes the proof.

As a result, we find that I(p) Π JL(M) is a maximal ideal of JL{M) besides,

any maximal ideal of Jl(M)c is obtained in this way. Hence for any proper ideal

IdcΛ(M)c we have codim / = oo.

Now we proceed to study the subalgebras of Jl(M). Let N(p) be the
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subalgebra which consists of vector fields vanishing at p^M. Note that codim

N(p)=n.

Theorem (2.2). N(p) is characterized as a maximal subalgebra with finite
codimension.

Proof. It suffices to show that a proper subalgebra B with finite codimen-
sion is included in some N(p). We assume the contrary; that is, for any p^M,
B(tN(p). We shall show that from the assumption we are led to a conclusion
B=Jl(M), which is a contradiction. The proof is divided in three steps.

(i): We shall show that for any p^M there is a neighborhood U of p such
that B\ U=Jl(M)\ U. By the assumption there is Z G £ satisfying X(/>)Φθ.
We may assume X is equal to dλ on some neighborhood U of p in terms of a
suitable local coordinate system. Put E=JL{M) \ U> F=B \ U and ^=ad(Z) | U.
Then we have codim E/F<-{-ooy and <p(F)dF because B is a subalgebra. Take
any non-zero polynomial P over R and consider the endomorphism P(φ) of E.
Since P(φ) is expressed as a linear differential equation in d19 P(φ) becomes a
surjective endomorphism of E.

We are now in a position to apply the following fact, which is easily verified.

(2.3) Let E be a vector space over R and F a subspace of E with finite codi-
mension. Suppose that there is an endomorphism φ of E such that φ(F)dF and,
for any non-zero polynomial P, P(φ) is a surjective endomorphism of E. Then
we have E=F.

Hence we have proved B | U=Jl(M) \ U.

(ii): We shall prove that, if B\ U=Jl(M)\ U holds for an open set U, then
B~DJI{U)C. Set B(U)c=BΓϊJl(U)c. First observe that B(U)C is an ideal of
Jl(U)c. In fact, by the assumption for any F E J ( [ / ) C we can find Ϋ<=B such
that Ϋ~ 7 on ί/; we then obtain

= *d{Ϋ)(B{U)e)czB{U)e.

Since we have dim^A(U)cIB(U)ci^dim <_̂ ?/5< + oo, and Jl(U)c does not possess
any proper ideal with finite codimension, it follows cA(U)c=B(U)c, as we wished
to prove.

(iii): Making use of the partition of unity, from i) and ii) we can get
the conclusion Bz^^Λ(M)c. This completes the proof when M is compact.
Now, let M be open. Take a covering M= \J Oij{i=0, 1, •••, n;j=l, 2, •••) with
the properties stated in (1.5). Fix i and choose Ys^Jl(M) (ί=0, 1, 2, •••) such
that Ys=jsd1 on each 0 t 7 (/=1, 2, •••). If codim B=d, we have a non-trivial
linear relation
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for suitable α,eΛ. Set Y=a0Y0-\ \-adYd. Note that Y\O{j=

Hence, if we takey sufficiently large, say j>j'(i), we have Y\ Oij=Cijd1 (O=t=Ct7

The existence of such a Y implies, by the same argument as in (i), that

(*) B I U y > / Λ = J(Λf) I U y>/«Ay

Let M = U O' ty be another open covering of M satisfying the condition
(1.5) and 0 ' , y c 0 ί 7 . For each /, take y7,G Jί(Af) (ί=0, 1, 2, •••) such that

y/ = J ' rj-i> o n O O

I 0 , on the complement of U yθ,7 ,

where φ5 is a smooth function which equals to 1 on Of

{j and vanishes outside
Oij. Then, by a similar argument together with the fact BzDJl(M)cy we can
find an element YΈίB and an integer j(ι) with j(i)^f(i) for which we have
Y'\ Oί

i~Cf

ijd1 (OΦC^ GΛ) for j>j(i) and Y'=0 outside U ;>/(t-)O lV. Let Z
be any element of <Jl(M) with supp Z c U j>jc»O'ij By (1 3) there exist XJ9 X/'j
(=Jl(M) (j>j(i)) such that supp XJy supp X^-dO'^ and

But, in view of (*), we can find X, Γ e δ with Z | Otj=X'}\O<7, X'\Oi}=X'}|
O,7 (J>i(i)). Then we have

Thus we have proved that any element of Jt(M) whose support lies in U J
belongs to B.

Similar results hold for ί=0, 1, •••, n. These together show that there
exists a compact set KdM for which we have

B\Kc = Jl(M)\Kc.

Combining this with the fact Bz)Jl(M)cy we have finally B=Jl(M). This
completes the proof of (2.2).

Referring to (2.1) and (2.2), we find that there is no proper ideal with finite
codimension. Hence we have

(2.4) Jl(M) has no non-trivial finite-dimensional representation.

REMARK. There is a maximal subalgebra which is not of finite codimension.

In fact, take two distinct points p> q from a local coordinates neighborhood Uy

and set B= {X\X^JL{M), & f'{p)=& f\q) for i = l , - , n, | α | = 0 , 1, 2, - ,

when X is written as Σ/'O*)9? o n u}. Then B is a subalgebra which possesses
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the desired properties.

Using (2.2), we shall establish the following theorem which gives a gener-
alization of Pursell-Shanks's Theorem [5].

Theorem (2.5). Let M and N be two smooth manifolds and let Φ be a

Lie algebra isomorphism from JH{M) to Jl{N). Then there is a unique dίjfeomor-

phism Ψ from M onto N such that Φ=Ψ*.

Proof. Φ sends any maximal subalgebra of ^Λ(M) with finite codimension
to a subalgebra of Jl(N) with the same property. Thus from (2.2) we can get
a bijection Ψ from M onto N, such that Φ(N(p))=N(Ψ(p)). Note that Ψ~ι is
similarly related to Φ'1.

(i) Ψ is a homeomorphism: Let K be a closed set of M. Assume that
Ψ(K) is not a closed set of N. Then there is a sequence {#,} of Ψ(K) which
tends to a point q outside Ψ{K). Let p=Ψ~\q) and p~Ψ~\qt). Take an X
EΞJI(M) such that X(p)φO, X\K=0. Then we have Φ(X)(q*)=0 since Φ(X)
€Ξi%, ), so that Φ(X)(q)=0. This implies X^N(p) and Φ(X)<=ΞN(Ψ(p)) which
is a contradiction. Hence Ψ maps a closed set to a closed set. Since Ψ'1 has
the same property, Ψ is a homeomorphism.

(ii) Ψ is a diffeomorphism: For any given p^M, take a local coordinate
system {U; xly , #„} around ̂ >, where >̂ corresponds to the origin (0, , 0). Set
q= ψ(p). Let X19 -, Xn be vector fields on M such that X{ \ U= 9/9^. Then
[JΓ,, JΓy]=O on [/ and so [Φ{Xi)9Φ(XJ)]=0 on F(ί/j. Hence, there is a local
coordinate system {V;yiy * ,JM} around g' such that Φ{Xt)=^djdy{ on F. We
may assume that Ψ(U)= V and q has the coordinates (0, •••, 0). If X= Y on U,
then we have Φ(X)=Φ( Y) on F, so that we have only to consider the behavior
of Φ on U. We write 9—9/9*,. and ^ = 9 / 3 ^ . ( ί=l , 2, —, n). Since [9A, xβj\
= Sikδj on Z7, we have [dk, Φ(xidj)] = SikdJ on F (δ^ denotes the Kronecker
symbol). Hence we obtain Φ(χidJ)=yidJ-\-C, where C is a constant vector.
Since xβj vanishes at the origin, yβj+C has the same property, whence C=0
follows. Therefore we have

which, in turn, implies that Ψ\ U sends a point p with coordinates («„ •••, an) to
a point p(^V) with the same coordinates. Thus ¥ is a diffeomorphism.

(iii) Ψ%=φ. This follows immediately from the fact stated in (ii).
Since the uniqueness of Ψ is obvious, (2.5) has been proved by (i), (ii)

and (iii).

REMARK. By the similar arguments we can prove that a Lie algebra iso-

morphism from Jl(M)ς to <Jl(N)ς is induced from a. diίfeomorphism from M XQ
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N. This result is due to Pur sell-Shanks [5]. Their proof, however, depends
upon the characterization of maximal ideals and does not seem to be directly
applicable to JL{M).

3. A-spaces

A subspace E of S)(M) is called an Jl-space if it is invariant under the ad-
joint operation of <Jl(M). In other words, E is an < ?̂-space if for any φ^E and
any Z E J ( M ) we have [X> φ]^E. A linear map Φ from an ^?-space E to an
<Jί-sρace F is called an Jl-map if Φ is equivariant with respect to the adjoint
operation of Jl(M), or in other words, Φ[X, <p]=[X> Φ(<p)] (X^Jl(M), φ^E).

If E and F are ^-spaces, then E-\-F is an cJί-space. If {£"λ}λeΛ is a family
of ^-spaces, then Π λ e Λ £ λ is an c^?-sρace. It is clear that S)k(M\ &k{M) (k=
0, 1, 2, •••) and I(p) (p^M) give examples of ^-spaces. Hence, for any subset
SaM,

also are ^-spaces. If Φ is an ^?-maρ from E to F, then both Ker Φ and Im Φ
become cJ?-spaces.

In the special case n=l> as we shall show below, there exists an interesting
c ϊ̂-map \\ , by the use of which certain ^-spaces can be constructed. Since a
one-dimensional connected manifold M is isomorphic either to the circle or to
the real line, the differentiation 3 by the usual coordinate function gives rise
to a vector field which does not vanish at any point of M, Let φ* denote the
formal adjoint of <p^<3)(M), which is defined by using the standard measure
on M. Then we have

3* = - 9 .

Since every element of $)(M) can be uniquely expressed as the product φd for
φ^.3)(M\ we can define the involutive mapping φd^{φd)^ of £){M) to itself by
putting

For any <p, ψ^S){M)y we have

and hence

= [{φd)\

which implies that \\ is an automorphism of <£(M). Since / * = / for every

), the restriction of \\ to Jl(M) is the identity. It follows that \\ i§
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an e>ί-map from 3)(M) to itself.

Since \\ is involutive, we have a direct sum decomposition

(*) 3){M) = 2)+

where

W+ = [φ\ φ* = <?}, 4)

It is clear that both iZ)+ and S)~~ are ^-spaces.
For later use, we shall give an explicit description of the elements belong-

ing to iZ)+ and S)~. Observe that any element of 3)(M) is uniquely expressed
in the form

Since (32*+1)i=92*+1 and (92*)"=-92*, we have

J + = {φ\φ = [ a ^ / ^ + p * - 1 , / * . ^ " - Λ = 0, 1, 2,

J - = {φ\Ψ = [θ2*,/2fe3]+[32*-2,/2*-23]+ k = 1, 2, •••} .

Hence if we write

<?*= {φ\φ= [3*,/fe9]+[9*-2,Λ_29]+[9*-4,Λ

for A=l, 2, •••, then each ^ is an ĉ ?-space and we have

3+ = u -ί-off̂ +i, i)- = u i = 1 ^

Now we shall begin with the study on the local features of ^-spaces. For
this purpose, it is useful to introduce a linear map Tim of <D(Rn) to itself, defined
for each integer m and i = l , 2, •••, n by setting

Then, for any multi-index a=(alf •••, αrt) we have

(**) TitJJV) = {ai(

where a—(i) denotes (a19 •••, of,.-!, α f —1, ai+1, •-, αΛ). Here the first term of
the right hand side vanishes if and only if m=(Xi and the second term vanishes
when α t = 0 or α t—1 or / is constant.

Let φ^S)ko(Rn). Denote by £*(<p) the smallest c^-space of 3){Rn) con-
taining φ. That is, i?(<7>) is the subspace of 3){Rn) spanned by the elements with
the form a d ^ - a d i ^ ) ^ , where X19 -,XsςΞ<Jl{Rn) and *=0, 1, 2, - f We

find î n integer k such that φ can be written as
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φ= Σ *.(*)9 +Σ«Λ*)9 ,

where 6Λ(Λ?) are all flat at 0 and some of aΛ(x) {\a\ =k) is not flat at 0. It should
be noted that k is invariant under the change of local coordinates. The integer
k is called the essential order of φ at 0. Since ad(X) ( Z G j ( β n ) ) does not in-
crease the essential order k, we know that any element belonging to E(φ) has the
essential order k\f^k) at 0. Moreover, it is clear that E(φ)(Z.2)kJ<R

n).
The following proposition is crucial.

(3.1) There is a neighborhood UofO such that

U, ifn=l;

Proof. First note that Tim{'^r)^E{φ) for any ψ G % ) . We shall take a
multi-index β=[βly •••, βn) with \β\=k such that aβ(x) is not flat at 0. Let
a'={a'u -~,a'n) be any multi-index with \a'\=k0. If kQ>k> then \a'\ >\β\,

so that we can find a!{ with α' Φ/^ . Then the application TiιΛ

f. to φ yields an
element of E(φ) whose principal part is 2 cΛba(x)d*(cΛ e /2) with <V=0, and

whose essential order is & at 0. Hence, starting from φ and applying suitable
Tif^% successively, we can eliminate all the terms of φ occuring from the order
k0 to k-\-l, and in this procedure the essential order at 0 is kept invariant. Thus
we arrive at the conclusion that there exists an element φ1 of E(φ) such that both
the order and the essential order of φ1 are k.

Consider a multi-index a with \a\=k> such that the coefficient of 8* in
the expression of φx is not flat at 0. After a finite number of suitable ap-
plications of ad(3t )'s to φx (i=ly 2, ••-,/*), we can get φ2^E(φ) for which the
coefficient / of 3* does not vanish at 0. Now, for any i with α t φ0, we can
find a smooth function g satisfying

in a neighborhood U of 0. Let φz=2id(gdi)φ2. Then the principal part of
φz I U contains a term with the form 3*. Actually U is the required neighborhood
of 0. In order to prove this, we may assume without losing generality U=Rn.

Let

φz = d*+ Σ ay(x)dy+(lower order terms).
i γ ι = *

Take any multi-index β with αΦ/3 and \β\=k. Let / be any integer such that

a4Φβt. Then Titβ.(φ3) has the form

Γ. β(φ\ = £rt3*+ Σ ^7(^)37+(lower order terms),
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where ca, cΊ are real numbers, and moreover £ΛΦθ. Thus Tiβ. eliminates from
φz the term associated to 9β. Note that Titβ.(d*)=cΛd

a. Therefore, repeating
the similar procedure, we can eliminate all the terms of φz except 9*. Thus we
can conclude dΛ^E(φ). Next, the applications of ad(#t9y)'s (t,j=ly •••, n) to 9*
shows that dβ^E(φ) for every β with | β\ =k.

Now we shall deal with the case n=l and n>\ separately. In case »=1,
we have

(k+l)k(k-l)(k-2)dk-2 = 2(2&-l)[9*, *39]-3[[9*, x2d], x2d],

while, in case n > 1

It follows from these that, in case w=l,

dk-2

and, in case w>l

for ^

Applying the same argument successively, we can conclude that

9*, 9*~2, ~-eϊE(φ) in case n = 1

for every /3 with | β\ ^ky in case

This however, completes the proof in the case n=ί. In case n>\, consider
further the relation

ad(^9,)(9Λ) = - α , — 9*+(lower order terms)

where g^ C°°(Rn). From this we can easily deduce the desired result S)kcE{φ),
which completes the proof.

We have actually also proved the following proposition.

(3.2) In case n = 1, E(dk, 9*"1) = 3)k{Rλ) for k = 1, 2, •••

In case n > 1, £(9,.*) = i 4 ( / O fσri=l,—,n and

Λ = l , 2 f - .

e a r ώ 2?(9*, dk-χ)for the Jί-space of ^(R1) generated by 9* W 9*"1, and
we set 9°=0.

Since the notion of the essential order introduced above is invariant under
the change of local coordinates, we can define for any φGU(M) the essential order
of φ at every point p^M, by using the local expression of φ around^). We



LIE ALGEBRAS OF DIFFERENTIAL OPERATORS 151

denote this by ess.ord.^. In case n=ί, according to the splitting 3){M)=3)+

given in (*), we can write any element φ as φ=φ++φ~. Then we define

ess.ord.^+<p = ess.ord./,<p+, ess.ord.^"^ = ess.ord./,<£>" .

Let E be an cJί-space of 3)ko(M). Define

O2Si2t-1 = {p\p^M; There exists a neighborhood U of p such that

EI U(p) = (S>2s+S>2t.1) I U] in case n = 1 ,

Ot = {p\p^M; There exists a neighborhood of p such that

E\U=S)ι{M)\U) incase

where /ranges over 0, 1, •••, koy s over 0, 1, •••, [ko/2] and t over 0, 1, •••, [(Λ0+l)/2].

Then the family of {O2St2t.^
 o r {O/} forms a family of disjoint sets open of M.

For every point p^M, put

k(p) ^= Max ess .ord.^;

moreover, in case n= 1 put

^+(/>) = Max ess.ord.^+cp, k~(p)=M3x ess.ord.^"^).
φtΞE φe=E

A global version of (3.1) now can be formulated as follows:

Theorem (3.3). Let E be an Jίspace of <Dko(M). Then

i) Both the open sets U O2s>2t.1 and U ki%Ol are dense in M.

ii) In case n=l,

in case

iii) For each point p^M, there is a neighborhood U of p, on which we have

in case n— 1

in case

Proof, i) Suppose, for example, U Ot is not dense. Let Q be the open

set which consists of the interior points of ( U O7)
c. Let
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kf = Max ess.ord.^ .

P(ΞQ

Referring to the definition of the essential order, we find that E\Qc.£Dk'(Q)
holds. Assume that for φo^E and for a point p0^ Q we have really &'=ess.ord./,0

φ0. Then, applying (3.1) to φ0 and/)0, we can deduce that there exists a neigh-
borhood U(C Q) of p0 such that E \ U=<Dk'{M) \ U. This implies po(= Ok', which
is a contradiction. In case n=l, using ess.ord^ instead of ess.ord. itself, we can
apply arguments similar to the above.

ii) This follows from Proposition (1.2), together with the fact that St

and 3)t are < ?̂-spaces.

iii) This follows immediately from (3.1).

(3.4) i) Let E be an Jl-space of £D0(M). Then there is an open dense set O

with the properties:

For any point p^O, there exists a neighborhood U of p such that E \ U coincides

with one of the Jί-spaces O, R\U and 3)Q(M) \ U.

ii) Let E be an Jl-space of <DkQ{M). For any point p^M, there exists a

neighborhood U of p such that

E\U=(EΓι£)ko(M))I U@(EΠ£>0{M))\ U.

Proof, i) Assume that E contains an element / which is not constant.
Take an open set U where dfjdx{ does not vanish for some i. Then for any

hence E coincides with 3)Q(M) on U. Let Q be the open set consisting of those
points/) such that the germs of E at p coincide with the germ of <3)0{M). Set
O=Q{jQc. Then from the above it is easily checked that O satisfies the con-
ditions stated in i). This completes the proof.

ii) Let U be a local coordinate neighborhood of/), and let us consider only
the behavior of E on U. Take any element φ^E\U and write

U, φ2 €Ξ 4)0(M) \ U) ,

according to the decomposition 3)ko{M) \ U=S)k^M) \ UΦ^)O(M) \ U. We can
find a finite sequence of {Tim} such that the successive application of Timto
φ diminishes the order of φx and at last makes φx vanish. It turns out that the
element of Έ \ U obtained at the final step of this procedure is nothing but φ2

multiplied by a non-zero constant. Hence we have φ2^E\ U. This proves ii).
By virtue of (3.3) and (3.4), the structure of ^-spaces contained in 3)k&M)
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has been considerably clarified. As to the ^?-maps, we have the following
theorem.

Theorem (3.5). Let Φ be an Jί-map from Jlk(M) to Q){M). Then, in
case n=l, there exists real numbers c1 and c2 such that

Φ(φ) = clΨ for φ <EΞ S)k{M) Π i ) +

Φ(φ) = c2φ far φ<EΞ 3)k(M) Π 3)~

in case n>\, there exists a real number c such that

Φ[φ) = cφ for every φ^£)k(M).

Proof. We first note that for any φ^3)k(M) we have

supp Φ{φ)asupp φ .

In fact, this is checked from a simple fact that, for any Z G J ( M ) with
supp XΠ supp φ=φ9 we have [X, Φ(φ)]=Φ[X, φ]=0. Take a local coordinate
system (xly"

m,xn) on a neighborhood U. Then the differential operators
9f.*(/=l, 2, •••, ή)y defined on U, are completely characterized up to a multiplica-
tive constant by the following formulas:

[9y,8/] = 0, 7 = 1 , 2 , ..-,*,

Since Φ is an cJί-map, this implies that the restriction of Φ to U sends 9,*
to cd{

fc where c is a suitable real number. Hence, in view of (3.2), together
with the assumption on Φ, we find that, at least locally, Φ must have the form
stated in the theorem. Since M is assumed to be connected, the assertion now
immediately follows.

For later use, we state a consequence of Theorem (3.5).

(3.6) Let Φ be an Jί-map from 3)k{M) to 3)(M) such that Φ\Jl(M)=0.

Then we have

ΦIS)k(M)Πi)+ = 0, in case n=l;

Φ~0y in case n > 1.

Furthermore, in case n=l, if we put the supplementary condition that k^>3 and

for every φ,ψGS)2(M)

Φ[φ, ψ]=

holds, then we have Φ=0.

It is only necessary to check the final part. Confine our consideration to a
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local coordinate neighborhood. The application of Φ to the identity [32, [82, x2d]]
= 893 yields Φ(d2)=0, from which Φ \ 3)k{M) Π S)' = 0 follows. Hence we have
ΦΞΞO.

4. Subalgebras

Theorem (4.1). i) For every ideal I of 3)(M)y we have Icil(p) Π 3){M)for
some point p<=M or / 3 3){M)C.

ii) For every ideal I of <3)(M), we have Idl(p)+Rfor some point p^M or

Proof, i) Take p^M and assume that / contains an element φ such that
ess.ord.^ΦO. Note that this assumption is equivalent to the requirement
Ictl(p). Since / is an ideal, we may assume ess.ord.^ is odd. (This assump-
tion is only necessary in case n=l . ) Consider the smallest <_̂ ?-space E(φ)
containing φ. Then E(φ)dl since / is an ideal, and, moreover, by (3.1) we can
find a neighborhood U of p such that E(φ)\ Uz)Jl(M)\ U. Then, by virtue of
(1.2), we can conclude that E{φ)z^3){U)c. From these facts, i) immediately
follows.

ii) Using (3.4) and (1.1) i), we can apply similar reasonings to show the
validity of ii).

As a result, we find that ϊ(p)=I{p) Π 2){M) is a maximal ideal of 3){M) and
I(p)+R is a maximal ideal of <D(M) for each point pG:M. Moreover, I(p)Γ\
i)(M)c and (I(p)+R) Π S){M)C yield all the maximal ideals of S){M)C and S)(M)cy

respectively.
Corresponding to (2.4), we have the following proposition.

(4.2) S){M) and 3){M) have no non-trivial finite-dimensional representa-
tions.

Proof. In view of (1.4) i), we find that, if Φ is non-trivial representation of
<D(M) or <3)(M)y then the restriction of Φ to <Jl(M) gives rise to a non-trivial
representation of Jl(M). Thus it turns out that (4.2) is an immediate con-
sequence of (2.4).

The following proposition often provides us with a reduction principle
for the investigation of 3)(M).

(4.3) Assume that a subalgebra B of 3){Rn) satisfies the conditions

i) Jt(Rn)dB9

ii) θ/ei? for some i.

Then B necessarily coincides with £)(Rn).

Proof. The simple formulas
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Γr) 2 v Λ 1 07\ f) Γr) r) v r) Ί ri 2

yield that 9y

2(y=l, 2, •••, n) belong to B. On the other hand, we have for any
multi-index a with | a \ =k ( ^ 1)

[3/, /9*] = 2-^9"+ ( '> (mod 2)k(Rn)).
OX I

From these facts we can easily deduce B=3)(Rn), which completes the proof.
The following family of subalgebras of 3)(M) gives rise to a * 'locally generic"

family for the subalgebras containing Jl{M):

(Sλ) (In case n = l ) : Jl(M), R+Jl(M), ^ ( M ) , ^ + ( M ) , R+3)+(M),

2){M), R+3){M)y S)(M).

(S) (In case n>ί): JL{M), R+Jl(M), 3)X{M), 4)(Λf), Λ+4)(Λf), ώ)(M).

More precisely, we have

Theorem (4.4). For any subalgebra B of JD(M) containing B(M), we can
find a dense open set O of M which has the following property: For any point
/)Gθ, there exists a neighborhood U of p such that B\U coincides with one of sub-
algebras listed in (S\ or (S)} according to the case n=l or n>l.

Proof. Since B is an cJ?-space, (3.4) applies to B which shows that we have
only to consider B Π 3){M). Set B2=B Π 3)2{M). Consider first the case n>l.
Notations being the same as in (3.3), the dense open sets associated to the <Jl-
space B2 of 3)2{M) are either O2\jO1 or Oly because B2Z)Jl(M). If the first
case occurs, then we have

by virtue of (3.3) and (4.3). On the other hand, in the second case, we have
B Π £)(M)=Jl{M). Similar reasoning applies to the case /z=l, where we have
only to note that Φ+ forms a subalgebra, but <3)++3>

2k(k=l, 2, •••) do not.
From these the theorem directly follows.

In contrast with Theorem (2.2), we obtain

Theorem (4.5). In £D(M) there is no proper subalgebra with finite codimen-

sion.

We first prove a local version of (4.5).

(4.6) Let B be a subalgebra of <D{Rn) with finite codimension. Then there
is a neighborhood U of the origin such that

B\U=4)\U.
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Proof of (4.6). Set

B*= {φξΞB\ad(φ)3)czB} .

It is easily verified that B* is an ideal of B and the codimension of B* in 3) is
finite. Hence the codimension of £**=(£*)* in S) is finite and so there is a
linear combination

such that j>e J3**. If we take a small neighborhood £/ of the origin, then we may
assume that

after a suitable change of local coordinates on U. Now we restrict our con-
siderations only to the behaviour of B on [/, and write x for x1 and 3 for 3/3^.

Put u=xd. Then we have the formulas:

xu = (a— l)χ9 du = (u+1)3

x»dn = (u-n+l)(u-n+2)-u

dnxn =

Since / G B 1 ' , we obtain ad^JDcJB1, whence

[MV, xm] = (uι-(u-m)ι)xk+m<EΞB*

for all intergers l,k^>0. It follows that

uιxs^B* for /^0 and

Hence we have ad(uιxs)<D(zB. In particular,

belongs to β, where a,b^>0 and ί^m. Put

P = (u-tn+l)-u, Q = (u+m+l)-(u+2).

Then we can deduce from (*):

In case a = b = 0, s = m, (P-Q)d<=B;

In case a = b = 0, s = m + l , {(M-m)P-(M+m+2)09Gΰ;

In case Λ = 1, i = 0, s = tn, {uP—(u+m+l)Q}d<=B .

From these it turns out that

P3, Qd, u{P-Q)d^B.
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We wish to prove that the following assertions (i)^, (n)k hold true for all
6 = 1 , 2 , . -

( i ) , uk(P-

(iϊ)k uιPd,u'Qd(ΞB f o r / = 0 , 1 , 2 , - , 6 - 1 .

We note that for 6 = 1 the assertions have already been verified. Assume that
for some 6, (ϊ)k and (n)k be true. We shall again use (*). In case s=m9 a=
6 + 1 , b=Oy we have

(**) {uk+1P-{u+m+l)k+1Q}d^B;

in case s=m, #=0, i = 6 + l , we have

{(u-m)k+1P-uk+1Q}d^B.

Hence, taking the difference and using (ii)^, we have

{(k+ί)ukmP-(k+l)uk(m+ί)Q}d^B.

In view of (ϊ)k, we can deduce

ukPd, ukQd(=B,

which, together with (**), yields

Thus, we have obtained (i)jfe+1, (ϋ)jfe+1, so that, by the induction, the (i)ky (ii)*
(6=1,2,—) are all valid.

In conclusion, for any 6=0, 1, 2, •••, we have

UkPdy UkQdEΞB.

Since P and Q are mutually prime polynomials in u, we can find two poly-

nomials P(u) and Q(u) such that

P(u)P(u)+Q(u)Q(u)=l .

It follows that

Now we are in a position to apply Lemma (2.3) to E=£)\ U, F=B\ U and
<p=ad(9), which yields B\U=W\U. This completes the proof of (4.6).

Proof of Theorem (4.5). Assume that there be given a subalgebra B of
3)(M) whose codimension is finite. We shall adopt the ideas which we have
used in the proof of Theorem (2.2). In fact, for such B} the conclusion obtained
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from the first step of that proof just corresponds to (4.6) which we have proved
above. The second and the third steps remain valid without any essential
alteration. Hence, referring to the proof of Theorem (2.2), we can immediately
arrive at the conclusion B=3). This, however, establishes (4.5).

5. Derivations

Let B be a subalgebra of S){M). A linear map δ of B to 3){M) is called
a derivation if

holds. If δ=ad φ0 for some φ^3)(M)y then δ is called inner in S)(M).
Suppose that, for a given derivation δ of B to $){M)y there exists a subspace E
of S)(M) such that 8(B)dE. Then we say that δ is a derivation of B to E.

(5.1) i) Assume that B coincides with me of JL{M), W^M), 2){M) and
3){M). Then any derivation δ of B to S)(M) has the support-preserving property
(i.e., δ satisfies supp S(φ)c supp φ for φ^B).

ii) Assume that B is a subalgebra of S)(M) which contains Jd(M). Then
any derivation δ of B to 3)(M) has the support-preserving property.

Proof i): We shall prove the assertion in the case B=Jl(M). The other
cases will be treated in a similar way. Take any XEzJl{M). Let U be any
open set with supp XcU. By virtue of (1.6), X can be written as X=
*Σj[Yiy Z;]> where Y, , Z t are a finite number of elements of <Jl{M). Referring
to the proof of (1.4), we find that Yiy Z{ may be so chosen that supp Yiy supp Z t

are contained in U. Then we have

and hence supp S(X)d U. Therefore δ has the support-preserving property.
ii): By i) δ I <Jl(M) has the support-preserving property. Take any

φ G δ . Choose X<Ξ.Jl(M) such that supp XΠ supp φ=φ. Then

0 = δ[X, φ] = [SX, φ] + [X, Sφ] = [Xy Sφ] ,

since supp 8X Π supp <p=φ. From this it follows directly that supp Sφd supp φ.
This completes the proof.
Related to the support-preserving property, we have

(5.2) Let δ be a linear map from S)t{M) to S)(M) which has the support-
preserving property. Then there is an integer k such that

The similar result holds if we replace S)ιby
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Proof. Suppose that the first assertion is false. Then there are a sequence
{<Pi} (<Pi^&ι(M)) and a sequence {pf} (p^M) such that a term of order kt arising
from the local expression of δ(φi) does not vanish at pi and kx<k2< .
We may assume that each p£ is distinct and is not a cluster point of a sequence
{pi}. Since δ is support-preserving, we may then take these φi(i=l) 2, •••) so
as to satisfy the condition that supp φ{ is compact and supp ^-(Ίsupp <pj=φ

for i+j. Choose a suitable sequence {αf } of positive numbers such that 2 cttΨi
ί=-l

uniformly converges to a certain φ^SlJ^M) on each compact set. We have
h(φ)^<3)krl near p{ and Af -*oo, which, however, contradicts the fact that S(φ)
has a finite order. This establishes the first assertion. Since the same reasoning
applies to the case where δ is a map from S)t{M) to S)(M), this completes the
proof of (5.2).

We shall give some examples of derivations:
(a) Let ω be a closed differential 1-form. Take a locally finite open

covering {£/,-} ί e / of M> where each C/f is realized as the open unit disk through
a system of local coordinates. Then Poincare's lemma shows that there exists
fi^C^Ui) such that ω\Ui=dfi. We say that {t/, ,/f } ί e 7 is a Poincare distri-
bution associated to ω. Note that /,. is uniquely determinied up to an additive
constant. Making use of a Poincarό distribution {[/,-, /,-},•<=/, we shall define
the derivation [ω] of <D(M)> by setting

[ω]<p = [/,-, <p] , on Ui.

Clearly, the derivation [ω] is well-defined, independent of the choice of Poincare
distribution. We note that [ω] 13)X(M) gives a derivation of ίD^M) to £D0(M).

(b) We introduce a volume element v to M. Recall that div X (X^Jl(M))
is then defined by the formula

Lxv — (div X)v ,

where L x denotes the Lie derivative along X. Then the assignment

div: X-^άivX

gives rise to a derivation of ^A(M) to <Jlo(M). In fact, this can be easily checked
from the formula L tχtγi=LxLγ—LγLx.

(c) Let π0 and πx be the canonical projections from S)X(M) onto
and <JL(M), respectively. Then π0 gives rise to a derivation of iD^M) to
and div 07^ a derivation of S)λ{M) to itself.

To proceed with the study on the derivations, we shall make use of the
results on differential complexes [2], [6]. Let T be the tangent bundle of M
and S1 the trivial one-dimensional vector bundle over M. Jk{£1) denotes the
k-\\ι jet bundle of £\ We have the canonical splitting of vector bundle
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Put

D(k) = Hom(J*(?), 61), ΰ(k) = Hom(/*(£>), θ 1).

Then D(k) and D(k) are smooth vector bundles over M. Note that D(l) is
canonically isomorphic to r. In what follows, we shall identify

= T(D(k)), Φ^M) = T(D(k)).

Now the well-known Peetre's theorem (cf. [4])) together with (5.1) shows
that any derivation δ of Jί{M) (or 3)X{M)) to S)kiM) (*=0, 1, 2, •••) really gives
rise to a differential operator from Γ(τ) (or Γ(D(1)) to T(D(k)). According to
the notations used in [6], it is possible to write this fact as

Consider the differential complex {Cp[τy D(k)], d} associated to the adjoint
representation of Jl(M) to WJ^M) (cf. [6]). In this complex, the criterion that
a 1-cochain becomes a derivation or an inner derivation can be simply stated as
follows:

(5.3) i) L^Cλ\τ, D(k)] is a derivation ^ L is a cocycle;
ii) L e C^r, D(k)] is inner in D(k) ^ L is a coboundary.

The similar statement holds for the derivations of S)X(M) when we consider the
adjoint complex {Cp[D(ί), D(k)], d).

Let H*(τ, D(k)) and i/*(D(l), D(k)) denote the cohomology groups of the
adjoint complexes {Cp[ry D(k)]y d] and {Cp[D(l), D(k)]y S}y respectively.
Concerning these cohomology groups, we know ([2], [6]):

(5.4) i) There is a canonical isomorphism

where B(τc) denotes the principal U(n)-bundle over M, associated to τ(g)C.
ii) For any k, the injection D(0)-*D(k) induces the isomorphism

H*(r,D(0))^H*(τ,D(k)).

iii) There is a canonical isomorphism

ff*φ(l), D(0))^H*(B(τC)χ&; R),

where S1 denotes the circle.

iv) For any kf the injection D(fy-+D(lή induces the isomorphism



L I E ALGEBRAS OF DIFFERENTIAL OPERATORS 161

H*(D(1), D(O))^H*(D(1), D(k)).

In view of (5.3), more exact informations on the one-dimensional cohomology
groups are necessary for our aim. Actually, we know the following facts ([2],
[6]). Let {ωf }(/=l, •••, bx\ bx may be infinite) be a family of closed 1-forms on
My whose de Rham cohomology classes give rise to a basis of Hι{M\ R). Note
that bx is the first Betti number of M. Then, {ωf }(/=l, •••, bλ) and one more
closed differential 1-cochain Ω give representative cocycles of a basis of Hx{τy D
(0)) . (Ω can be taken so as to be dependent only upon the first jet of T, and if
Ω is so chosen, then the stalk of Ω at each point of M corresponds to a generator
of H1( U(ή) R) in the local considerations.) On the other hand, {ωf } (i= 1, , ij),
Ω>oπ1 and π0 give representative cocycles of a basis of £P(Z)(1), D(Q)).

We shall make a remark that we may take div as Ω, if we introduce a volume
element to M. In fact, this follows from the observations that by (b) and (5.3)
div is regarded as a closed differential 1-cochain, and that there is no non-trivial
linear relation between {ωz } and div, because, for any X^Jl{M) with X(p)=0>
dX(p)3=0, we have ωi(X)(p)=0 and div (X)(p)^0. Furthermore, we observe
that, for any ωt , we have ωi(X)=[ωi](X) according to the notation used in (a).
Now we are in a position to formulate the theorem:

Theorem (5.5). i) Any derivation δ of Jl(M) to S)(M) is uniquely ex-
pressed as

as

δ = ad

ii) Any derivation δ of W^M) to <D(M) is uniquely expressed as

8 = ad φ-\- 2 μf [ωj+λ divoTΓj+Λ:̂ ;

iii) Any derivation δ of S){M), or <3)(M), to S)(M) is uniquely expressed

δ = ad φ+ Σ μi[ωt] .
» = - l

Here φ is an element of 3){M), uniquely determined by δ, and μiy \, K denote real
numbers moreover, μ{ are almost all zero if bx= oo.

Proof, i), ii): In each case, if a derivation δ admits an expression as
described above, then it is easy to see that φ is uniquely determined by δ.
With this understood, the assertions immediately follow from (5.2) and (5.4),
together with the preceding discussions.

iii): First we shall prove the assertion in the case of S)(M). The
restriction of δ to Jl(M) gives rise to a derivation from Jl{M) to 3){M). Hence,
by i), δ I Jl{M) is uniquely written a§



162 I. AMEMIYA, K. MASUDA AND K. SHIGA

H
δ I Jl(M) = ad φ+ Σ fJbi[ωi\ + ^ div.

ί = - l

Set

Δ = δ—ad<^—
ί=-i

Then Δ is a derivation of £D{M) to <D(M), satisfying Δ| <_i(M)=λ div. If we
can show λ = 0 , then Δ becomes an ^?-maρ vanishing on Jl{M)> whence by (3.6)
Δ is identically zero. (Note that (3.6) remains true if we replace 3){M) by S)(M)
when Φ is support-preserving.) This will establish ii) in case of 2){M).

Now we shall give a proof to λ = 0 . Since this is of local character, we have
only to consider on a neighborhood U, diίϊeomorphic to the open unit disk.
Moreover, we may assume d i v ί Σ / ^ O ^ Σ d / ' / ^ ' holds on U. Since Δ(9y)=0
and Δ(* y 8 y )=l (j=l, •• , n)> we have A(di

2)=aβi

2 for suitable αf.eΛ(cf. the
proof of (3.4)). From

it follows that

Δ((3, /)3 (

 2) = « < (9 < /)9 <

ί +(-f + λ)(9, 2/)9, .

Using this relation, we apply Δ to both sides of

Then we can easily obtain λ = 0 , as we wished to prove.
Next we shall consider the case of 3)(M). From ii) and the above we know

that δ admits the expressions:

δ 13)X(M) = ad <p+ Σ Aφ>,]+λ άivoπi+κπ0,

But <p, φ' μiy μ( and λ are completely determined by the behavior of δ on <JL(M)
=3)λ{M) Π 3)(M). It results that φ=φ\ μi=μ/ and λ = 0 . Hence, if we denote
by 7Γ0 the canonical projection from 3){M) to ^)0(M), δ must take the form

h

δ = ad φ+ Σ •̂•[ωJ+ΛΛΓo.

Since π0 does not give a derivation on S)(M), we can conclude /e=0, which
completes the proof.

As a corollary, we obtain

(5.6) Every derivation of Jl{M) to itself is inner *
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REMARK. This is also regarded as a consequence of a more general theorem
that the cohomology group of the adjoint complex of <Jί{M) vanishes (cf. [6;
I, Th 4.3, Cor. 2]).

Finally we shall treat with the derivations defined on a subalgebra.

Theorem (5.7). Let B be\ a subalgebra of £)(M) containing Jl(M). Then
every derivation δ of B to 3)(M) is uniquely written as δ=ad φ, where

Proof. Using (3.3) and (4.4), we know that there exist mutually disjoint
open sets O1 and O2 of M such that O1U O2 is dense in M and that

^(OO.cΰlO.c^OO, £){O2)c<zB\O2a$){O2)

hold. Since δ | Jί(M) is a derivation of Jl{M) to iD(M), by (5.5) i) we can find
a unique φ<=ID(M) such that ad φ=S\ Jl{M). Set Δ=δ—ad φ. Then Δ gives
rise to an ^?-maρ from B to <Z)(M), which vanishes on ^A(M). Apply (3.6) to
(BI O2) (Ί £)k{O2) for k= 1, 2, ••• and to the e^-map Δ | O2. Then we obtain Δ | O2

= 0, whence Δ = 0 throughout M. Thus δ=ad φ, which completes the proof.
As a result, we have

(5.8) Every derivation of 3)(M) to itself is inner.

Also we can easily prove the following proposition when dim M=ί.

(5.9) Every derivation of <3)+(M) to itself is inner.

6. Isomorphisms

Let M and N be two smooth manifolds. In this section we shall deal
with Lie algebra isomorphisms from $){M) to 2)(N).

(6.1) Let Φ be an isomorphism from <£{M) to <3){N). Then we have

ii)

This assertion will, however, become an immediate consequence of the
following proposition, which gives Lie algebraic characterizations of
and ^ ( M ) .

(6.2) i) ΦQ{M)= {φ\φ^S}{M)\ For any ψ^W(M) there is an integer m

such that (ad (?>)">=0}.

ii) 3)X(M)=

Proof. For convenience' sake, we denote the sets stated in, the right-hand

sides above by £)*(M) and iDf (M), respectively.
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i): It is clear that <3)0(M)(Z<3)%(M). In order to prove the converse
implication <D0(M)Z)£)$(M)y we take and fix an element φ^2)$(M). We shall
introduce the C°°-topology of uniform convergence on each compact set to\£)0(M)
(~C°°(M))so that WQ(M) becomes a Frechet space. Set

Em = {ψ|ψ€=4)0(M), ad(^Γψ = 0} m = 1, 2 - .

Then we have U Em=<3)Q(M) and each i?m is a closed subspace of <3)0(M)y whence
we find an integer m such that

Now observe that we have

( * • )

From this relation we wish to deduce φ^3)0(M). Since this, however, is of
local character, we may assume M=Rn. Set ψ=eyxi. Since

we have

Σ(Γ)(-W-V = o,
*=-o

where ^ is a differential operator defined by

φ(x; dlf - , 9rt) = φ(x; d19 - , 9f..lf 3,+γ, 3,+1, - ,

Arrange φ according to the order of θt and write it as follows:

where φt (1=0, 1, ••*, k) denote differential operators containing only the partial
derivatives with respect to dly •••, d^ly 3 ί + 1, ••-,dn. Note that

Φ = <pk(di+Ύ)k+φk-1(di+y)k-1+'~

Using the fact that the highest order term in y of (*) vanishes, we can get

φ/g

m = 0 if

But it is known (or directly proved by the use of the similar argument) that the
algebra of differential operators has no nilpotent element, whence ^ = 0 follows.
Successive application of the similar argument shows that we have really ψk=
φk_1=-"=φι=0. By virtue of the same reason, it turns out that <p0 contains
no partial derivatives. Hence we have the desired conclusion φ^φ^ which
completes the proof of i),
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ii): It is clear that SD*(M) is an <Jί-space containing Q^M). Also it
is easy to verify that, locally* 3,Λ( | a | ^ 2 ; i= 1, 2, •••, n) do not belong to iDf(M).
Hence, from (3.1) it results that β)^(M) coincides with <DX(M). This com-
pletes the proof of ii).

We shall describe some examples of automorphisms of £D(M).
(A) Let Ψ be a diffeomorphism of M onto itself. Then Ψ naturally

induces an automorphism Ψ* of 3){M).
(B) Let ω be a closed differential 1-form. Using a Poincare distribution

{£/,., /,} of ω, we define an automorphism (ω) of £)(M) as follows:
On each U£, put

(ω)φ = exp (.—/,.) φ exp (/,.) .

It is easy to verify that (ω) really gives a well-defined automorphism of <D(M),

independent of the choice of Poincare distribution; moreover, if ωφω1 ? then (ω)

ΦK).
(C) Fix a volume element of M. For φ^S){M), we denote by φ* the

formal adjoint of φ with respect to this volume element. Since (95-^)*=^*^)*,
we have an automorphism σ of 3){M) by setting

σ(φ) = —9?* .

It is clear that (ω) and σ are support-preserving automorphisms. We have
relations

which are easily verified.
Let M and iV be two smooth manifolds. We shall now prove the follow-

ing theorem.

Theorem (6.3). Let Φ be an isomorphism of 3){M) onto 3)(N). Then we
have

i) There exists a diffeomorphism Ψ of M onto N;
ii) By the use of this Ψy Φ is written as either

φ=ψ*o(ω)9 or Φ =

for a suitable closed ί-form ω.

Proof, i): By (6.1) we have Φ{3)ι{M))=S)1{N). Hence we can consider
the composition of maps

Φ,: Jί{M) Λ g>x(M) -* g)x{N) ^ Jl{N),
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where i denotes the canonical injection. Since Φ(<3)O(M))=1DO(N), it follows
immediately that Φx gives an isomorphism from Jl{M) onto <A(N). Hence
Theorem (2.5) applies to get a diffeomorphism Ψ of M onto N which satisfies
Ψ^=Φ1. This establishes i).

ii): Using the result of i), we have

π1oψ^1oφ(X) = X for I G J ( M ) .

Since Ψ*~ιoφ maps 3)0{M) (or £)λ(M)) to itself, it follows that πQ°Ψ*~ι°Φ gives
rise to a derivation from Q^M) to <3)0(M), as is easily checked. As a result,'
πQoψjei-

1oφ\<3)1(M) has the support-preserving property, whence we find that
Ψ*~1oφ\Jt(M) has also the same property. By (1.4) any φ^2){M) is expressed
as 9>=Σ[Ψί> X,](^,G^}(M), X£(=Jl(M))y where ψ , X, can be taken such that
supp yjrir supp X{ are contained in an arbitrary small neighborhood of supp φ.

Since y#- 1 oΦ(^)=ΣF*" l o φ ( ; Ψ l ί)» ? r * " l o φ ( ^ ) ] > * follows that Ϊ V ^ φ is a
support-preserving automorphism of 3)(M). Our goal is to find an explicit form
of Ψfc^oφ, which is, however, reduced to finding a local expression of Ψ ^ o φ
because of the support-preserving property. Hence we restrict our considera-
tions only to the local behaviour of Ψ*~xoφ.

Since π0oψ^r1 oφ\g)λ[M) gives a derivation of S}X{M) to Φ0(M), we have
from Theorem (5.5) ii) that

on a certain local coordinates disk [/, where λ and K are independent of the
choice of local coordinates; a smooth function £ is determined up to an additive
constant, so that dg is uniquely determined. Since a volument element on U
is arbitrarily taken and fixed, we may assume without losing generality that

divX=±diX
i

for X=^Xidi. We can then write

(**) (-dg)oΨ^oΦ(X+f) = X+ {λΣ^H-*/} .

We shall insert the following lemma:

(6.4) Suppose that we have an automorphism Φ of <D(Rn) which satisfies

Then

i) K = 1, λ = 0 or K — — 1 , λ =

ii) If /t—1, then Φ becomes an identity.
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Proof of (6.4). Set Φ(9, 2 H Σ / » 9 Λ . Apply Φ to both sides of the identity
P Λ Xj]=2SiJdi (δ,.y denotes Kronecker index). Then we obtain

[ Σ / * 3 Λ , *xj] = 2δ f y8, = K Σ / , α y 8 - < »

where a—(j) means the multi-index (aly ••-,cty-i, a5—1,αi+1, ••*, α«). Therefore
we have/eφO and

Note that h really becomes a constant function; in fact, this follows from [3, 2,3^]
=0(i ,y=l,2,- ,M).

Starting from the identities

[3,\ x{>] = 2 * ^ + 2

[8Λ/9J = 2(3(./)3,.2+(3//)9,.

we can proceed the similar calculations, which yields the relations

1 = tc+2\ ,

/) = f [29,/.9/+(l-/C+2λ)a,2/.9,

Here in order to obtain the third relation, we have used the relation

Φ(A 2) = - ( / 3 , 2 +2λ3 ( /.3,.+λ23 f

2/),

which can be directly obtained from the first and the second relations. There-
fore, we have either κ=\ and λ=0, or κ= — 1 and λ = l , which proves i).

In order to prove ii), consider the case where κ=l and λ = 0 . Then we

have ΦI ̂ ( J B ^ Ξ identity and φ(9ί

2)=9f.
2. In view of (4.3), we can deduce from

these facts that Φ coincides with the identity map on 3){M). This completes

the proof of ii).

Now we come back to the proof of Theorem. Apply (6.4) to the formula (**).

Then it turns out that there arise only two cases: /c=l, λ = 0 and /c= — 1,

λ = l .
The first case: * = 1 , λ=0. From ii) of (6.4) it results that (—dg^Ψ^oφ

= identity, on U. Define a closed differential 1-form ω on M, by setting

co = dg on U.
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Then we obtain

( — ^ O Ϊ ^ O Φ Ξ Ξ identity on M

whence, in this case, we have

Φ = y # o ( ω ) . '

The second case: κ= — 1, λ = l . We have

On the other hand, we have σ( l)= — 1 . Hence, referring to the formula (*),

we have the corresponding formula

σoΨ^oφ(X+f) = X+ {[Z,<?

/] +V div X+f} ,

on U. This means that σoψ^oφ must satisfy the condition of the alternative

case stated in (6.3) i). Therefore, as we have seen above, there is a closed

differential 1-form ω such that

φ = Ψ*oσo(ω') ,

which establishes the alternatives of ii). This completes the proof.

From Theorem (6.3) we can describe the structure of the automorphism

group Aut(ίD(Af)) of 3){M) in detail. Let Φ be an automorphism of ,g)(M).

We note that the expression of Φ in the form stated in Theorem (6.3) ii) is

unique. This follows from the following observations: First, Ψ* is unique,

because (ω) and cro(ω) have the support-preserving property, while Ψ* is the

identity if it is support-preserving; secondly, (ω)l = l and σl = — 1, so that σo(ω)

does not coincide with any (α/).

Let Diff (M) be the diίfeomorphism group of M and A]ι(M) be the abelian

group consisting of all closed differential 1-forms on M. We assign to any

(r,ω,l), if Φ = Ψ*6(ω),

(Ψ,ω, - 1 ) , if Φ = y*oσo(ω) .

This assignment induces a bijective map i of Aut(<D(M)) onto DifF(M)χΛcZ(M)

χ Z 2 , More precisely, we have

Theorem (6.5). There is a bijective map

t:Aut(£>(M)) -> Diff(M)x A]ι(M)xZ2.

Under the identification via ι, Aλ

cl(M) x Z2 becomes a normal subgroup of Aut(<D(M)),

the elements of which are characterized as the support-preserving automorphisms. The
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multiplication rule in A1

cl(M)χZ2 is given by (ω, 6)(ω\ 8')=(ω+6ω'9 66% where
ω, ω'^Λ^M) and 8, 8' are ±\.

From (**) we can easily prove

Theorem (6.5). Let Φ be an ίsomorphsim of β)x{M) onto W^N). Then
we have

i) There exists a diffeomorphism Ψ of M onto N;
ii) By the use of this Ψy Φ is written as

φ = y j | ς o( ω )o( 7 Γ l +λ divoTΓi+zcTΓo) ,

where /c=t=O.

As to the automorphism group Aut (iZ)(M)) of J3)(M), we have

(6.6) Let Φ be an element of Kut{3)(M)) for which we have Φ\JL(M)=
identity. Then

i) In case n=\} Φ is either the identity or \\ , where \\ is the automor-
phism introduced in Section 3.

ii) In case n>\y Φ is the identity.

Proof. From the assumption it follows immediately that Φ becomes an
cj-map from 3){M) to itself. Hence, Proposition (3.5) applies to Φ, which yields
that ΦΞΞidentity if rc>l, and Φ\β+=identity, Φ\S)~=cJ (c2<=R) if n=l. Let
us further consider the case n=\. If X, Y<ELSΓ> then [X, Y](=SD+, hence c2

2=l.
Thus if Φ is not the identity, then we have c2= — 1, which implies Φ= \\ . This
completes the proof.

This proposition involves the following: If there is a Lie algebraic char-
acterization of JH{M) in 3)(M\ then

Aut(J(M))^Diff(M)xZ 2 if n = 1,

Aut(£)(M))~Diff(Λf) if n > 1 .

At the present, we have only succeeded in attaining this end in the one-dimen-
sional case. So the following problems remain open.

Problem 1. Is every automorphism of J3)(M) induced by a diffeomorphism
of M in the case n>\ ?

Problem 2. Does the structure of Lie algebra S)(M) determine the underly-
ing smooth structure of M?

7. Differential operators as support-preserving maps

Until now, we have only treated with differential operators with finite orders.
But the differential operator is often defined in an alternative way to be the linear
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map φ from C°°(M) to itself with supp <p(/)csupp/(/eC°°(M)) (cf. [4]). If
we start from this definition, then the differential operator has not necessarily a
finite order. Nevertheless, the space of the differential operators in this sense
also has a structure of Lie algebra, the bracket being defined by [<p9 ψ]=φo>ψ—
ψoφ. This Lie algebra is denoted by iZ)(M). £D(M) contains <D{M) as a sub-
algebra. By virtue of Peetre's Theorem (cf. [4]), for any open set U with the
compact closure, we have £)(M) \ U=<D(M) \ U. Hence if M is compact, we have
i|)(M)=iZ)(M) so that there will not arise any new situation here. On the con-
trary, if M is open, we have ,2)(M)Φ.g)(M); specifically, we may say that β)(M)
consists of the differential operators which possibly take infinite order at the
point of infinity.

In this section, we shall show that the results obtained hitherto for 3){M)
can be extended to the case of i2)(M) without any essential alteration. For this
purpose, we may and do assume that M is open. Corresponding to 2){M\ we
denote by CD(M) the subalgebra of «£D(M), consisting of those elements of i2)(M)
which have no "constant terms".

It is clear that all the arguments in the preceding sections which are con-
cerned with local situation of 3){M) remain valid in Φ{M). Therefore we have
to pick up propositions and theorems which are of global nature, and to verify
that these results also hold in case of £l(M) without any essential modification.
According to this plan, after a careful examination, we find that what we must
do is reduced to giving the proofs to the following propositions.

(7.1)
(cf. Proposition (1.4) i)).

(7.2) Every derivation ofgl(M), or J2)(M), to Φ{M) has the support-preserving
property (cf. Proposition (5.1) i)).

(7.3) Let δ be a linear map from 3)t{M) to |D(M) which has the support-
preserving property. Then, for any open set U with the compact closure, we can
find an integer k such that

The similar result holds if we replace 3)ι by 2)t (cf. Proposition (5.2)).

(7.4) There are Lie algebraic characterizations of <DQ(M) and Φ^M) in
. Proposition (6.2)).

(7.5) Every automorphism of 3[{M) which leaves any element of Jl(M)
fixed has the support-preserving property (cf. Proof of Theorem (6.3)).

Proof of (7.1). Since M is open, we can take an open covering {Oh)
(i=0, 1, •••, n; j=ί, 2, •••) of M which has the properties stated in (1.5). For
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each /, we can find an imbedding γ, of Rn~λ X R to M such that U y~iθ, y is con-
tained in 7, ([0, l ]x x[0, l]x[0, oo)). We adopt 771 as a local coordinates
map so that any pointp^ rγ i{Rn~ 1xR) has a coordinatep=(xu •••, xn-19 t). We
assume that γ t is so chosen that, if ί-»oo, then p=(xly •••, #„_„ £) tends to the
infinity.

Let φ^3){M) be given. Using the partition of unity, we may write

Φ = Φo~\-φi~\ Vφn

where supp <pz C Uy-iOf y Since supp φ{ is contained in y^R"'1 X Λ), <ptl is
expressed in terms of the coordinates (xly •••, xn_ly t). Setting

rt
\ <

Jo

> •"> χn-i, s; d*)ds, iϊp = (xly —, xn,191),

= 0, if p$ytRn-1xR),

we have ψ f e ^ ( M ) . It is clear that

supp ψ , cγf.([0, 1] X — X [0, 1] X R).

Take I , G J ( M ) such that X~i\dt on γ, ([0, 1] X — X [0, 1] xR) and 0 outside
ΊiiR^XR). Then

n

Φ = Σj [ ^ > Ψί]»

whence we have proved the first assertion of (7.1). The second assertion can
be proved in a similar way.

Proof of (7.2). Let δ be a derivation of ΪD_(M) to itself,
be given, we write Φ=^Σl[Xi, Ψi\ m v ι t w °f (7.1). Take any point p from the
outside of supp φ. Then, referring to the proof of (7.1), we find that, in case
w>l, we can choose Xiy ψt such that p& U(supρ X{ Usupp ψ ,.). From this
follows (Sφ)(p)=Oy whence δ has the support-preserving property. In case
n=ίy we take a small positive number S such that (p—£y />+£) lies in the outside
of supp φ. Let

rt
1 φ(s)ds, for t<>p—e
Jp-ζ

0, for p—S^t^p-\-S
rt
\ <p(s)dsy for t^>p-\-ε

IJP+z

Also, let ρ(t) be a smooth function, identically equal to 1 on (— oo, p—S) U (p+6,
oo), and 0 on a neighborhood of p. Then we have φ=\pd\dty ψ] and p(p)=ψ(p)
=0, whence (8φ)(p)=0 by the same reasoning as above. This completes the
proof.
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Proof of (7.3). This can be proved in the same way as in (5.2).

Proof of (7,4). Applying the similar arguments to those used in the proof

of (6.2), we find

<DQ(M)C= {φ\φ<= W(M) For any ψeW_{M) there is an

integer m such that (adφ)mψ=0\ ,

and

<DQ{M) = {φ\φ(Ξg)(M); For any ψ G ^ Λ ί ) there is an

integer m such that (adφ)mψ=0}.

Hence we have obtained characterizations of ΦQ(M) and

Proof of (7.5). Referring to the proofs of (6.3) and (7.2), we can easily verify

the assertion.

TOKYO INSTITUTE OF TECHNOLOGY

References

[1] I.M Gelfand and D.B. Fuks: Cohomologies of Lie algebra of tangential vector
fields on a smooth manifold, 1, Functional Anal. Appl. 3 (1969), 194-210.

[2] M.V. Losik: On the cohomologies of infinite-dimensional Lie algebras of vector fields.
Functional Anal. Appl. 4 (1970), 127-135.

[3] J.R. Munkres: Elementary Differential Topology, Ann. of Math. Studies 54,
Princeton, 1961.

[4] R. Narasimhan: Analysis on Real and Complex Manifolds, Paris: Masson &
Cie, 1968.

[5] L.E. Pursell and M.E. Shanks: The Lie algebra of a smooth manifold, Proc. Amer.
Math. Soc. 5 (1954), 468-472.

[6] K. Shiga: Cohomology of Lie algebras over a manifold I, II, J. Math. Soc. Japan
26 (1974), 324-361; 587-607.




