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Introduction

Let R=k[X1, •••, Xn] be a polynomial ring over a field k and G be a finite
subgroup of GL(n, k) with (| G\, ch(k))=l, if ch(k)φθ. We want to investigate
the problem; "When is the invariant subring RG Gorenstein?" The main result
of this paper is the following theorem.

Theorem 1. We assume that G contains no pseudo-reflections. Then RG is
Gorenstein if and only if Gd SL(n, k).

Recall that g<=GL(n, k) is a pseudo-reflection if rank(£—I)=l and g has a
finite order (where / denotes the unit matrix). It is known that RG is again a
polynomial ring if and only if G is generated by its pseudo-reflections (cf. [7],
Thέoreme 1). So it would be natural to assume that G contains no pseudo-
reflections.

The "if" part was treated in [13]. So, in this paper, we consider the "only
if" part. To achieve the proof, we need the theory of the canonical module of
a Macaulay ring developed in [2]. As RG is a Macaulay ring, it has the canonical
module KRv> which is unique up to isomorphisms. RG is Gorenstein if and only
if KRa^RG. We want to construct a canonical module of RG. In this case, as
RG is normal, a canonical module is isomorphic to a divisorial ideal of RG. Thus
the canonical module KRβ determines a well-defined class C(KRG) of the divisor
class group C(RG) of RG. RG is Gorenstein if and only if c(KR<ή=0. But by the
"Galois descente" theory of divisor class groups, C(RG)^Hom(G, A*) (where A*
denotes the multiplicative group of non-zero elements of k). We show that by
this isomorphism, C(KRG) corresponds to det, the determinant, in Hom(G, &*)
and conclude the proof of Theorem 1.

We can apply Theorem 1 to the case of regular local rings. If (A, m) is a
local ring and if g€ΞAut(A), g induces a linear transformation of the tangent
space mjm2 of A. We denote this correspondence by λ: Aut(A)->GL(nι/m2).
We call an element g of Aut(^4) a pseudo-reflection if λ^) is a pseudo-reflection,
Then, we have the following
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Theorem 2. Let (B, n) be a regular local ring and let G be a finite subgroup

ofAut(B) satisfying the following conditions.

1. \G\ is a unit in B.

2. The automorphisms ofk=B/n induced by the elements of G are the identity,

3. G contains no pseudo-reflections.

Then RG is Gorenstein if and only if \(G)dSL(nln2).

Examining some examples, it is shown that Theorem 2 fails for non-regular

Gorenstein local rings.

1. Preliminaries

(1.1) Canonical modules.

In this paragraph, A denotes a Noetherian local ring with maximal ideal m

and residue class field k. All modules are assumed to be unitary and finitely

generated.

DEFINITION 1. Let M be a Macaulay ^4-module of dimension s. The type

of My r(M), is defined by

r(M) = dim*Exti(β, M).

The type of a Macaulay ring A is the type of A as an ^4-module. A is

Gorenstein if and only if A is Macaulay and r(A)=ί.

Proposition A. If x^m is an M-regular {resp. A-regular) element, then

r(M\xM)=r{M) (resp. r(AlxA)=r(A)). (The type of M\xM as an ^4-module

equals to the type of M\xM as an

DEFINITION 2. An ^4-module K is a canonical module of A if it satisfies the

following equivalent conditions.

ίl ifzWim.4,
(i) άimkExt*A{kK) = \ .

[0 otherwise.

(ii) a) if is a Macaulay yί-moduίe and dim K = dim A.

b) K has a finite injective dimension.

c) r{K)=l.

REMARK. In the works of R.Y. Sharp, "canonical module" is called "basic

Gorenstein module" or "Gorenstein module of rank 1".

Proposition B. (i) If K and Kr are canonical modules of A, then K^K' as

A-modules.

(ii) If there exists a canonical module of A, then A is Macaulay.

(iii) If A is Macaulay and if A has a canonical module K, then A is Gorenstein

if and only if K^A as A-moςlules,
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Proposition C. ([9], [2], [5]) If A=Bjay A is Macaulay, B is Gorenstein
and dimB-dimA=s, Ext%{A, B) is a canonical module of A, Conversely, if A has a
canonical module, A is a quotient of a Gorenstein ring.

Proposition D. ([2], [4]) If A is a Macaulay domain and if A has a canonical
module K, K is isomorphic to an ideal of A which is pure of height 1.

Proposition E. ([2], Korollar 6.12) Let Abe a Macaulay domain and M be
an A-module. M is a canonical module of A if and only if the following conditions
are satisfied.

(i) M is a Macaulay A-module and dim M=ά\m A.
(ii) r(M)=l.

Proposition F. ([2], Satz 1.24, [10]) Let (A, m), (By n) be Macaulay local
rings andf: A-+B be a flat local homomorphism. If M is a Macaulay A-moduley

then r(M®AB)=r{M)-r(BjmB).

(1.2) Descent theory for divisor class groups.

If B is a Noetherian normal domain, we denote by C(B) the divisor class
group of B.

Let A be a U.F.D. (unique factorization domain) and let G be a finite
subgroup of Aut(^l).

Proposition G. ([6], Chapter III, Theorem 1.1) There is a monomorphism
i: C(AG)^H\G, U(A)) (U(A) denotes the multiplicative group of units of A). If
A is divisoήally unramified over AG, i is an isomorphism.

Proposition H. (cf.[ll], Proposition 1) If R=k[Xly "-,Xn] is a polynomial
ting over a field k, GczGL(n, k) and if G does not contain any pseudo-reflections,
then ί:C(i?G):::>Hom(G, k*) (A* is the multiplicative group of non-zero elements ofk).
//ωGHom(G, k*)y then there exists an element f^R such that for every g^G, g(f)
= ω(σ)/.

Proposition I. ([11], Theorem 2) Let (A, m) be a local U.F.D. and let G
be a finite subgroup ofAut(A). We assume the following conditions for A and G.

1. \G\ is a unit in A.
2. A contains a primitive \ G \ -th root of unity.
3. G acts trivially on k=A/m.
4. G contains no pseudo-reflections.

Then i: C(AG)^Hom(Gy k*). If ω<ΞHom(G, k% then there exists an element
f^m which satisfies the following conditions.

1. The ideal fA is invariant under G.
2. For every g<=G, In(g(f))=ω(g)-In(f). (Recall that \ff<=mn and/φmM + 1,
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then In(f)=f mod mn+1 in Grn

m{A).)

(1.3) Associated graded rings of local rings.

Let (A, m) be a Noetherian local ring and N be an ^4-module. Let

be a filtration on A with F0=A and F1=m. We assume that (Fn)n>0 defines the

same topology as the m-adic topology. We put R=G'(A)=(BFnlFn+1, M=R+

= θFnjFn+1 and N=G (N)=®FnNIFn+1N. If α e ί 1 , and α$F B + 1 1 we write

In(ά)=a mod Fn+1^Rn=FnIFn+1. We define /W(Λ ) for X G J V in the same manner.

Proposition J. Letfi=In(ai) {ί— 1, , s) be homogenous elements of M which

make an N-regular sequence. Then ai ( i = l , •••, s) make an N-regular sequence and

we have a canonical isomorphism G\N\{aly •••, as)N)^Nl(fly •

Proof. The proof of Lemma 10 of [13] works by the change of notations.

Proposition K. (i) If RM is Macaulay, then A is Macaulay.

(ii) If RM is Gorenstein, then A is Gorenstein.

(iii) IfNju is a Macaulay RM-module, then N is a Macaulay A-module.

(iv) If NM is Macaulay and if r(NM) = 1, then r(N) = 1.

Proof, (i) and (ii) are Theorem 3 of [13]. (iii) is clear by Proposition J.

The proof of Lemma 11 of [13] works for the proof of (iv) if we use the following

lemma instead of Lemma 3 of [13].

L e m m a 1. If (A, m) is a Noetherian local ring and if N is an Artinίan A-

module, the following conditions are equivalent.

(a) r(N)=l.

(b) lengthA(O:m)N=l.

(c) There exists an element # φ θ in N such that for every yΦO in N there

exists an element a in A satisfying ay=z.

Proposition L. Let A— ®An be a Noetherian graded ring with A0=k afield.

Let M= 0 M M be a finitely generated graded A-module and f^Ad be a homogenous

M-regular element. Then dimfe(M//M)M depends only on M, n and d.

Proof. dim/;(M//M)M=dim^Mw—dim^M^.^.

(1.4) Invariant subrings and the Reynolds operator.

In this paragraph, R is a Noetherian ring and G is a finite subgroup of Aut

(R). We assume that \G\ is a unit in R. We define the Reynolds operator

p: R^RG by p(r)=-X-gg(r) for r<=R.
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L e m m a 2. Let M be an R-module. We assume that G acts on M satisfying
the condition g(ax)z=g(a)g(x) for g€=:G, a^R and xe= M. If alf , as be elements of
RG which make an M-regular sequence, then they make an MG-regular sequence and
there is a canonical isomorphism MG/(aly •••, as)M

G^(MI(aly •••, as)M)G.

Proof. It suffices to prove the last equality for s=l. We put a=aλ. There
exists a natural inclusion MG\aMG^(M\aMf\ If x^M and g(x)—x^aM for
every ^ e G , then ρ(x)—x^aM and ρ(x)&MG. So this inclusion is an isomor-
phism.

Lemma 3. Let M be as in Lemma 2. If M is a Macaulay R-module, then
MG is a Macaulay RG-module.

Proof. We can take a parameter system a19 ~-yasoϊM from RG. Then a19

*- ,as make an M-regular sequence. By Lemma 2, they make an MG-regular
sequence.

Lemma 4. Let M be as in Lemma 2. We assume further that R is local with
maximal ideal m and M is Artinian with r(M)= 1. Let z be an element of N which
satisfies the condition in (c) of Lemma 1. If z^ MG, then r(MG)— 1.

Proof. The same as the proof of Lemma 4 of [13].

2. The main theorem

Theorem 1. Let R=k[Xly •••, Xn] be a polynomial ring over afield k and G
be a finite subgroup of GL(n, k) with (| G \, ch(k))= 1 if ch(k) Φ 0. We also assume
that G contains no pseudo-reflections. Then RG is Gorenstein if and only if GdSL
(n,k).

The "if" part was proved in [13]. So it suffices to prove the "only if" part.
First we fix our notations. We put n=(Xly •• ,Xw)i?, m=nΓϊRG

y B=Rn and

As A is Macau]ay (Lemma 3) and is a quotient of a regular local ring, it has
a canonical module KA. By Proposition D, KA is isomorphic to a divisorial
ideal of A. As isomorphic ideals determine the same element of the divisor class
group, KA determines a well-defined element c(KA)EiC(A). A is Gorenstein if
and only if c(KA)=0. But as RG is a graded ring, C(A)^C(RG) by Proposition
7.4 of [6] and by Proposition H, C(RG)~Hom(Gy &*). To prove the theorem, it
suffices to show that c(KA)^C(A) corresponds to deteHom(G,&*), the determi-
nant map, by these isomorphisms. The realization of deteHom(G, &*) as a
divisorial ideal is done by the following way. Take f^R as in Proposition H.
That is to say,/satisfies the condition ^(/)=det(^)/ for g^G. We can assume
that/ is homogenous. We put deg(/)=d. Then K=(fR (Ί RG)A is a divisorial
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ideal of A whose class in C(A) corresponds to det in Hom(G, k*). Thus Theorem
1 reduces to the following

Theorem V. Let f be as above. Then K=(fR Π RG)A is a canonical module
of A.

Proof. By Proposition E, it suffices to prove that K is a Macaulay ̂ 4-module
and r(K)= 1. (It is clear that dim(K)=dim(A) as K is an ideal of A.) We divide
the proof into several steps.

Lemma 5. K is a Macaulay A-module.

Proof. Let (a19 •••, an) be elements of RG which make a parameter system
for A. Then (aly •••, an) make an i?-regular sequence. As fR is a free i?-module,
they also make an /R-regular sequence. As fR Π RG=(fR)G, they also make an
fR Π i?G-regular sequence by Lemma 2 and thus make a if-regular sequence.
Thus K is a Macaulay A -module.

Lemma 6. r(K) = 1.

Proof. We divide the proof into two steps.

Case 1. G is cyclic.
If k' is an extension field of k and if we put R/=R®kk\ then G acts naturally

on R and (R'f^R0®^' by Lemma 3 of [13]. If we put n'=(X19 •••, XnW
and m'=n'ϊ\(R!)G, then A'=({Rf)G)m> is faithfully flat over A and K®AA'^
{fRf Π {R')G)A'. By Proposition F, it suffices to show that r(K®AA')=\. Thus
we may assume that k is algebraically closed.

Let g be a generator of G. We may assume that g is in a diagonal form. If
m is a multiple of | G\, we can take JYT, •••, Z J as a parameter system for A.
As B=RI(X?, •••, J?Γ) is an Artinian Gorenstein local ring and M=fRj(XT, —,
-Y?)/R is a free β-module, r( f l )=l and z^X^-X^-'f mod {X?, •
satisfies the condition in (c) of Lemma 1. But as <§

f((Xi ^«)wl~1/)
( ^ . . . ^ Γ - M e t ^ ) / ^ ^ . . . ^ ) - 1 / , SGΞMG. AS MG=KI(X?,-, X%)K by
Lemma 2, we have r(jK^)=l by Lemma 4 and Proposition A.

Case 2. General case.
We take a parameter system (#!,-••,#„) of JRG satisfying the following condi-

tions.
1. a{ are homogenous of the same degree m.
2. m is a multiple of | G | .
We put B=RI(a1, ••-, aM)2? and M=fRj{aλ, •••, αΛ)/K. The BG~Aj{aly •••,

αw)̂ 4 and MG^K\(ax, •••, αM)if. As B~M as J3-modules and as β is Gorenstein,
r(ikf)=l. As/is a homogenous element of i?,/i? is a graded ideal and B and M
have induced structures of a graded ring and a graded β-module respectively.
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As in the proof of Theorem la of [13], dimkBn(:m-Ό=l and Bt=0 for t>n(m— 1).
Similarly, dimkMnCm_Ό+d= 1 and Mt=0 for t>n(m— l)+d. Let H be a cyclic
subgroup of G and £ be a generator of H. We can assume that g is in a diagonal
form. Then we can take (XT> •••, X™) for a parameter system of RH. If # is a
generator of {fR/(Xψy •••, X™)fR)ncm-Ό +d> we have seen in Case 1 that z is in-
variant under H. If we use Proposition L to RH and (fR)H, we have dim*
((fR)Hl(Xΐ, -,X™)(/i?)ίr)M(m_1)+rf=dim,((/i?)^/(α1) »., fl.)(/R)iW1J+,= diniik

(MH)n C w ί_ 1 ) + < ί=l. Thus we see that each element of Mn(im^Ό+d is invariant under
the action of H. As H is arbitrary cyclic subgroup of G, we can say that each
element of MnCm_1)+d is invariant under the action of G. By Lemma 4 and
Proposition A, r{K)=r{Kj{aly —, an)K)=r(MG)=l.

This completes the proof of Theorem V.

3. The case of regular local rings

In this section, let (JB, n) be a regular local ring of dimension n and G be a
finite subgroup of Aut(5) with \G\ a unit in B. If g€=Gy g induces a linear
transformation of the tangent space njn2 of B. We denote this transformation
by X(g). Thus we get a group homomorphism X: G-+GL(n/n2). We call an
element g of G a pseudo-reflection if λ(^) is a pseudo-reflection.

Theorem 2. Le£ (#, n) fo a regular local ring and G be a finite subgroup of
Aut(B) which satisfies the following conditions,

1. \G\ is a unit in B.
2. G acts trivially on k=Bjn.
3. G contains no pseudo-reflections.

Then BG is Gorenstein if and only if λ(G) c SL(njn2).

Proof. We put A=BG and m=n Π A. First, we need a lemma.

L e m m a 7. We may assume that B contains a primitive \G\-th root of unity.

Proof. We know that A is a Noetherian local ring (cf. the proof of Theorem
4 of [13]). G acts on β and we have (β)G^ A ([14], Chapter II, Lemma 1,
Corollary), φ denotes the completion of B.) G induces the same linear trans-
formations on the tangent spaces of B and U and A is Gorenstein if and only if
A^(U)G is Gorenstein. Thus we may assume that B is complete. If k=B/n
contains a primitive | G | -th root of unity, then B contains a primitive | G | -th
root of unity by HensePs lemma. If k does not contain primitive | G | -th roots
of unity, let F be a monic polynomial in the polynomial ring B[T] whose image
in k[T] is an irreducible polynomial for a primitive | G | -th root of unity. We
put B'=B[T]I(F). Then Bf is free over B and Bf contains a primitive | G | -th
root of unity. As B/jnB/ is a field, Bf is a regular local ring and we can extend
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the action of G to B\ As Br is free over JB, it is easily seen that (B'ψ is also
free over A and (Bf)G\m(Br)G^B'\nBf. Thus A is Gorenstein if and only if
(B')G is Gorenstein ([12], Theorem 1). This completes the proof of Lemma 7.

By Lemma 7, we can use Proposition I. By the similar reasoning as in the
case of Theorem 1, we reduce Theorem 2 to the following

Theorem 2'. Let (B, ή)> G be as in Thoerem 2 and let f be an element of B

which satisfies the following conditions,

1. The ideal fB is invariant under the action of G.

2. For every g<=Ξ G, In(g(f))=X(g)In(f)==det(X(g))In(f).

Then (fB) f]A=Kis a canonical module of A.

Proof of Theorem 2'. We put R=Gr'n(B) the associated graded algebra of
B. We know that R^k[Xly -- ,XM], where n=άim(B). G acts on R by the
action of λ(G) on linear forms of R. We define a filtration (-F,),̂ o

 o n A by
putting Fi=AΠni=(ni)G. It was shown in [13], §7, that the nitration
defines the same topology as the m-adic topology on A. The filtration
induces a filtration on K. We define Fi'K=(f-ni)G=Fi+d(K) if deg(In(f))=d.
We put G\A)=φFi/Fi+1 and G\K)=®Fi(K)/Fi+1(K).

Lemma 8. K is a Macaulay A-module.

Proof. This is a direct consequence of Lemma 3.

Lemma 9. G\A)^RG and G\K)=In{f)R Π G\A).

Proof. The first assertion was proved in [13], in the proof of Theorem 4.

As K is an ideal of A, G\K) is the ideal of G\A) generated by {In(a)\a<=K}.

But if we consider G\A) as a subring of R and if a^A> then In(a) in R is equal

to In(a) in G\A) As G'n(fB)=In(f)-R in R, the second assertion follows.

Lemma 10. r(K)=l.

Proof. This is a consequence of Lemma 6, Lemma 5 and Proposition K,
(iv).

By Lemma 8 and Lemma 10, the proof of Theorem 2r is complete.

4. Base extensions

In this section, let A be a Noetherian ring and G be a finite subgroup of
GL(n,A) with | G | a unit in A. G acts naturally on R=A[Xly — ,-YJ, the
polynomial ring over A. When p^ Sρec(^ί) and g^G, we say that g is a pseudo-
reflection at p if the canonical image of g in GL(ny k(p)) is a pseudo-reflection.
(k(p)=AplpAp.) Under these terminologies, we have the following
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Theorem 3. If G does not contain any pseudo-reflections at each point of

Spec{A)> then RG is Gorenstein if and only if A is Gorenstein and det(g)— 1 is nil-

potent for

Proof. By Lemma 9 of [13], RG is faithfully flat over A. Thus RG is
Gorenstein if and only if A is Gorenstein and RG®Ak{p) is Gorenstein for all
/>e=Spec(<4)([12], Theoreml'). But as RG®Ak(p)^(k(p)[X1) -,Xn])G,RG®Ak(p)
is Gorenstein if and only if the canonical image of G in GL(n, k(p)) is contained
in SL(ny k(p)) by Theorem 1. From these facts, Theorem 3 follows easily.

5. Examples

In this section, k always denotes a field and em denotes a primitive m-ύι root
of unity in k. We assume always that | G \ is not a multiple of ch(&). We denote
G=ζg} if G is a cyclic group generated by g.

(5.1) "RG is Gorenstein" does not imply "Λ is Gorenstein".

EXAMPLE 1. Let R=k[T\ T\ T5] and G=<£>. Ifg acts on R by g(T)=e3Ty

then RG=k[T3] is regular but R is not Gorenstein.

EXAMPLE 2. Let R=k[S\ S3T, S2T\ ST\ T4] and G=<£> acting on R by
g(S)=e8S and g{T)=e^T. Then RG=k[S2T\ S\ Γ] is Gorenstein but R is
not Gorenstein.

(5.2) "(A,m) is Gorenstein local and \(G)'ΏSL(mlm2yy does not imply
"AG is Gorenstein".

EXAMPLE 3. Let R=k[S\ STy T2] and G=<£> acting on R by g(S)=e3S
and g(T)=ezT. If A is the local ring of R at the maximal ideal (S2, ST, T%
then A is Gorenstein, λ(^) e SL(m\m2) and AG is not Gorenstein because RF

s5τ, s*τ\ s3τ\ s2τ\ sτ; r6].
(5.3) "(A, m) is Gorenstein local and AG is Gorenstein" does not imply

"\(G)c:SL(tnltn2y\

EXAMPLE 4. Let R=k[T\ T3] and G=<£> acting on R by g(T)=e4T.
Then i? is Gorenstein and ΛG=&[T4] is regular. But if A is the local ring of R
at the maximal ideal (Γ2, T3), \{g)^SL{mjm2y

EXAMPLE 5. Let R=k[X2, XYy Y2, Z] and G=<£> acting on i? by g(X)
=Xy g(Y)=e3Y, g(Z)=e3~

λZ. Then R is Gorenstein and by Theorem 1, RG is
Gorenstein. But if A is the local ring of R at the maximal ideal (X2, XY, Y2, Z),
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