ON HOMOGENEOUS KÄHLER MANIFOLDS WITH NON-DEGENERATE CANONICAL HERMITIAN FORM OF SIGNATURE ($\mathbf{2}, \mathbf{2 (n - l))}$

Hirohiкo SHIMA

(Received October 19, 1972)

We denote by M a connected homogeneous Kähler manifold of complex dimension n on which a connected Lie group G acts effectively as a group of holomorphic isometries, and by K an isotropy subgroup of G at a point o of M. Let v be the G-invariant volume element corresponding to the Kähler metric. In a local coordinate system $\left\{z_{1}, \cdots, z_{n}\right\}$, v has an expression $v=i^{n} F d z_{1} \wedge \cdots \wedge$ $d z_{n} \wedge d z_{1} \wedge \cdots \wedge d z_{n}$. The G-invariant hermitian form $h=\sum_{i, j} \frac{\partial^{2} \log F}{\partial z_{i} \partial z_{j}} d z_{i} d z_{j}$ is called the canonical hermitian form of $M=G / K$. It is known that the Ricci tensor of the Kahler manifold M is equal to $-h$. The purpose of this paper is to prove the following:

Theorem 1. Let $M=G / K$ be a simply connected homogeneous Kähler manifold with non-degenerate canonical hermitian form h of signature (2, 2($n-1$)). Then, if either G is semi-simple or G contains a one parameter normal subgroup, $M=G / K$ is a holomorphic fibre bundle whose base space is the unit disk $\{z \in \boldsymbol{C} ;|z|<1\}$, and whose fibre is a homogeneous Kähler manifold of a compact sime-simple Lie group.

In the case of $\operatorname{dim}_{C} G / K=2$, the assumption of Theorem 1 is fulfilled and we have

Theorem 2. Let $M=G / K$ be a complex two dimensional homogeneous Kähler man ifold with non-degenerate canonical hermitian form h of signature (2, 2). Then G is semi-simple or G contains a one parameter normal subgroup.

As an application of these Theorems, we obtain a classification of complex two dimensional homogeneous Kăhler manifolds with non-degenerate canonical hermitian form.

1. Let (I, g) be the G-invariant Kähler structure on M, i.e., I is the G invariant complex structure tensor on M and g is the G-invariant Kahler metric on M. Let g be the Lie algebraof all left invariant vector fields on G and let be the subalgebra of g corresponding to K. We denote by π the canonical projection
from G onto $M=G / K$ and denote by π_{e} the differential of π at the identity e of G. Let X_{e}, I_{o} and g_{o} be the values of X, I and g at e and $\pi(e)=o$ respectively. Then there exist a linear endomorphism J of g and a skew symmetric bilinear form ρ on g such that

$$
\pi_{e}(J X)_{e}=I_{o}\left(\pi_{e} X_{e}\right), \quad \rho(X, Y)=g_{o}\left(\pi_{e} X_{e}, \pi_{e} Y_{e}\right)
$$

for $X, Y \in \mathrm{~g}$. Then ($\mathfrak{g}, \mathfrak{f}, J, \rho$) satisfies the following properties [2], [3].
(1.1) $J \mathfrak{t} \subset \mathfrak{t}, J^{2} X \equiv-X(\bmod \mathfrak{t})$,
(1.2) $[W, J X] \equiv J[W, X](\bmod \mathfrak{t})$,
(1.3) $[J X, J Y] \equiv J[J X, Y]+J[X, J Y]+[X, Y](\bmod \mathfrak{t})$,
(1.4) $\rho(W, X)=0$,
(1.5) $\rho(J X, J Y)=\rho(X, Y)$,
(1.6) $\rho(J X, X)>0, X \notin \mathfrak{f}$,
(1.7) $\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0$, where $X, Y, Z \in \mathrm{~g}, W \in \mathfrak{Z}$.

Then ($\mathrm{g}, \mathrm{t}, J, \rho$) will be called the Kahler algebra of $M=G / K$.
Koszul proved that the canonical hermitian form h of a homogeneous Kähler manifold G / K has the following expression [3]. Put

$$
\begin{align*}
& \eta(X, Y)=h_{o}\left(\pi_{e} X_{e}, \pi_{e} Y_{e}\right), \quad \text { and } \\
& \psi(X)=\operatorname{Tr}_{\mathrm{g}} / \mathrm{t}(\operatorname{ad}(J X)-J \operatorname{ad}(X)) \tag{1.8}
\end{align*}
$$

it follows then

$$
\begin{equation*}
\eta(X, Y)=\frac{1}{2} \psi([J X, Y]) \tag{1.9}
\end{equation*}
$$

for $X, Y \in \mathrm{~g}$. The form ψ satisfies the following properties:

$$
\begin{gather*}
\psi([W, X])=0, \tag{1.10}\\
\psi([J X, J Y])=\psi([X, Y]), \quad \text { for } \quad X, Y \in \mathfrak{g}, W \in \mathfrak{H} . \tag{1.11}
\end{gather*}
$$

Since G acts effectively on G / K, \mathfrak{f} contains no non-zero ideal of g and there exists an ad (\mathfrak{f})-invariant inner product (,) on \mathfrak{g}. Henceforth, we assume that the canonical hermitian form h of G / K is non-degenerate, which is equivalent to the following condition:

Let $X \in \mathrm{~g}$. If $\eta(X, Y)=0$ for all $Y \in \mathrm{~g}$, then $X \in \mathfrak{Z}$.
2. We shall now prepare a few lemmas for later use. The following lemma is due to [2].

Lemma 2.1. For $E, X, Y \in \mathfrak{g}$,

$$
\begin{aligned}
& \frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
& \quad=\rho(J E, \exp t \operatorname{ad}(J E)[X, Y])
\end{aligned}
$$

Lemma 2.2. The adjoint representation of g is faithful.
Proof. Put $\mathfrak{a}=\{X \in \mathfrak{g} ; \operatorname{ad}(X)=0\}$, then \mathfrak{a} is an ideal of \mathfrak{g}. We have for $X \in \mathfrak{a}$

$$
\begin{aligned}
2 \eta(X, Y) & =\psi([J X, Y]) \\
& =-\psi([X, J Y])=0, \quad \text { for all } \quad Y \in \mathrm{~g}
\end{aligned}
$$

Since h is non-degenerate, we have $X \in \mathfrak{t}$, and hence $\mathfrak{a} \subset \mathfrak{t}$. By the effectiveness, we have $\mathfrak{a}=\{0\}$.
Q.E.D.

Lemma 2.3. Let \mathfrak{r} be a commutative ideal of \mathfrak{g}. Then, $\mathfrak{t} \cap \mathfrak{r}=\{0\}, \mathfrak{t} \cap J \mathfrak{r}=$ $\{0\}$.

Proof. Let $A \in \mathbb{P} \cap \mathfrak{x}$. Since \mathfrak{r} is a commutative ideal, we have $\operatorname{ad}(A)^{2}=0$. By the effectiveness, it follows that

$$
\begin{gathered}
\left(\operatorname{ad}(A)^{2} X, X\right)+(\operatorname{ad}(A) X, \operatorname{ad}(A) X)=0 \\
(\operatorname{ad}(A) X, \operatorname{ad}(A) X)=0
\end{gathered}
$$

for $X \in \mathrm{~g}$, with respect to the $\operatorname{ad}(\mathfrak{f})$-invariant inner product (,) on g . Hence $\operatorname{ad}(A) X=0$ for all $X \in \mathrm{~g}$, and $A=0$ by Lemma 2.2, which proves $\mathfrak{f} \cap \mathfrak{r}=\{0\}$. $\mathfrak{t} \cap J \mathfrak{r}=\{0\}$ follows from $\cap \mathfrak{r}=\{0\}$.
Q.E.D.

Lemma 2.4. Let \mathfrak{r} be a non-zero commutative ideal of \mathfrak{g}. Then $\psi \neq 0$ on \mathfrak{r}.
Proof, Assume $\psi=0$ on \mathfrak{r}. For $X \in \mathfrak{r}$, we have $2 \eta(X, Y)=-\psi([J Y, X])=$ 0 for all $Y \in \mathrm{~g}$. Since h is non-degenerate, we have $X \in \mathfrak{f}$ and hence $\mathfrak{r} \subset \mathfrak{f}$, which contradicts to Lemma 2.3.
Q.E.D.

Lemma 2.5. $\quad \operatorname{Tr}_{\mathrm{g} / \mathrm{tad}}(W)=0$, for $W \in \mathfrak{*}$.
Proof. Using (1.4), (1.7), we have

$$
\begin{gathered}
\rho(W,[X, Y])+\rho(X,[Y, W])+\rho(Y,[W, X])=0 \\
\rho(X,[Y, W])+\rho(Y,[W, X])=0
\end{gathered}
$$

for $X, Y \in \mathrm{~g}$. Hence it follows that

$$
\begin{aligned}
& \rho(J X,[W, Y])+\rho([W, J X], Y)=0 \\
& \rho(J X,[W, Y])+\rho(J[W, X], Y)=0
\end{aligned}
$$

for $X, Y \in \mathrm{~g}$. This implies that the endomorphism of g / \mathbf{t} which is induced by
$\operatorname{ad}(W)$ is skew symmetric with respect to the inner product which is defined by $\rho(J X, Y)$. Therefore $\operatorname{Tr}_{\mathrm{g} / \mathrm{tad}}(W)=0 . \quad$ Q.E.D.

Lemma 2.6. Let $\{E\}$ be a one dimensional ideal of \mathfrak{g}. Then $[E, W]=0$, for $W \in \mathfrak{f}$. Moreover, there exists an endomorphism \tilde{J} of \mathfrak{g} such that $\bar{J} X \equiv$ $J X($ mod $\mathfrak{f}),[J J E, W]=0$, for $X \in \mathfrak{g}, W \in \mathfrak{f}$.

Proof. Put $[E, W]=\lambda E, \lambda \in \boldsymbol{R}$. Using (1.10), we have $0=\psi([E, W])=$ $\lambda \psi(E)$. Since $\psi(E) \neq 0$ by Lemma 2.4, it follows $\lambda=0$ and hence $[E, W]=0$. Put $\mathfrak{h}=\mathfrak{t}+\{J E\}$, then $[\mathfrak{t}, \mathfrak{h}] \subset \mathfrak{h}$. Let $\{L\}$ be the orthogonal complement of \mathfrak{t} in \mathfrak{G} with respect to the $\operatorname{ad}(\mathfrak{f})$-invariant inner product on \mathfrak{g}. Then $[\mathfrak{f},\{L\}] \subset\{L\}$. We may assume that $L=W_{0}+J E$ where $W_{0} \in \mathcal{F}$. Therefore we can choose a linear endomorphism \tilde{J} on g such that $\tilde{J} E=L, \tilde{J} X \equiv J X(\bmod \mathfrak{t})$ for $X \in \mathrm{~g}$. Then it follows

$$
\begin{align*}
& {[\tilde{J} E, \mathfrak{t}]=[L, \mathfrak{t}] \subset\{L\},} \\
& {[\tilde{J} E, \mathfrak{t}] \subset[\mathfrak{h}, \mathfrak{t}] \subset \mathfrak{t} .}
\end{align*}
$$

This implies $[\tilde{J} E, W]=0$ for $W \in \mathfrak{t}$.
Therefore, for any one dimensional ideal $\{E\}$ of \mathfrak{g}, we may assume that $\left[J E,{ }^{*}\right]=\{0\}$.
3. We shall prove the following theorem.

Theorem 1'. Let ($\mathfrak{g}, \mathfrak{t}, J, \rho$) be the Kähler algebra of a homogeneous Kähler manifold G / K with non-degenerate canonical hermitian form h of signature $(2,2(n-1))$. If there exists a one dimensional ideal \mathfrak{r} of \mathfrak{g}, then we have the following.

1) With suitable choice of $E \neq 0 \in \mathfrak{r}$, we have $[J E, E]=E$.
2) Put $\mathfrak{p}=\{P \in \mathfrak{g} ;[P, E]=[J P, E]=0\}$. Then we have the decomposition $\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{p}$ of \mathfrak{g} into the direct sum of vector spaces. We know also that \mathfrak{p} is a compact semi-simple J-invariant ideal of g and that the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 .

The first part of the proof of Theorem 1^{\prime} is nearly the same as the previous one [6]. But, for the sake of completeness we carry out the proof.

Lemma 3.1. Let $\{E\}$ be a one dimensional ideal of \mathfrak{g} and put $\mathfrak{p}=\{P \in \mathfrak{g}$; $[P, E]=[J P, E]=0\}$. Then we have

1) $\mathfrak{f} \subset \mathfrak{p}$,
2) $J \mathfrak{p} \subset \mathfrak{p}, \operatorname{ad}(J E) \mathfrak{p} \subset \mathfrak{p}$,
3) $\operatorname{ad}(J E) J \equiv J \operatorname{ad}(J E)(\bmod \mathfrak{f})$ on \mathfrak{p}.

Proof. 1) follows from Lemma 2.6. For $P \in \mathfrak{p}$, we have

$$
\begin{aligned}
{[J E, J P] } & =J[J E, P]+J[E, J P]+[E, P]+W_{0} \\
& =J[J E, P]+W_{0}
\end{aligned}
$$

for some $W_{0} \in \mathfrak{F}$, and hence 3) is proved. For $P \in \mathfrak{p}$, it follows that

$$
\begin{aligned}
& {[[J E, P], E]=[[J E, E], P]+[J E,[P, E]]=0,} \\
& {[J[J E, P], E]=\left[[J E, J P]-W_{0}, E\right]=0,}
\end{aligned}
$$

where $W_{0} \in \mathfrak{t}$. Therefore $\operatorname{ad}(J E) P \in \mathfrak{p}$ for all $P \in \mathfrak{p}$, which proves 2).
Lemma 3.2. Let $\{E\}$ be a one dimensional ideal of \mathfrak{g}. Then $[J E, E] \neq 0$, therefore with suitable choice of $E \neq 0$, we have $[J E, E]=E$.

Proof. Assume that $[J E, E]=0$. For $X \in \mathrm{~g}$, we have $J[J E, X]=$ $[J E, J X]-J[E, J X]-[E, X]+W_{0}=[J E, J X]-\lambda J E-\mu E+W_{0}$, where $\lambda, \mu \in \boldsymbol{R}$, $W_{0} \in$. We have

$$
\begin{aligned}
{[[J E, X], E]=} & {[[J E, E], X]+[J E,[X, E]]=0 } \\
{[J[J E, X], E]=} & {[[J E, J X], E]-\lambda[J E, E]-\mu[E, E] } \\
& +\left[W_{0}, E\right]=0
\end{aligned}
$$

which implies that $[J E, X] \in \mathfrak{p}$, and hence we have

$$
\begin{equation*}
\operatorname{ad}(J E) \mathfrak{g} \subset \mathfrak{p} \tag{3.1}
\end{equation*}
$$

Let $P \in \mathfrak{p}$. We have

$$
\begin{aligned}
\rho(J E,[J E, P]) & =\rho(-E, J[J E, P]) \\
& =-\rho(E,[J E, J P]) \\
& =\rho(J E,[J P, E])+\rho(J P,[E, J E]) \\
& =0,
\end{aligned}
$$

and it follows that for $X \in \mathrm{~g}$

$$
\begin{equation*}
\rho\left(J E, \operatorname{ad}(J E)^{2} X\right)=0 \tag{3.2}
\end{equation*}
$$

Applying Lemma 2.1, (3.2), we have for $X, Y \in \mathrm{~g}$

$$
\begin{aligned}
& \frac{d^{3}}{d t^{3}} \rho(\exp t \operatorname{ad}(J E) X, \exp \operatorname{tad}(J E) Y) \\
= & \frac{d^{2}}{d t^{2}} \rho(J E, \exp \operatorname{tad}(J E)[X, Y]) \\
= & \rho\left(J E, \operatorname{ad}(J E)^{2} \exp \operatorname{tad}(J E)[X, Y]\right) \\
= & 0
\end{aligned}
$$

Hence we may put

$$
\begin{align*}
& \rho(\exp t \operatorname{tad}(J E) X, \exp t \operatorname{ad}(J E) Y) \tag{3.3}\\
= & a t^{2}+b t+c
\end{align*}
$$

where a, b and c are real numbers not depending on t. Since $\operatorname{ad}(J E) \mathfrak{p} \subset \mathfrak{p}$, $\operatorname{ad}(J E) \mathfrak{f}=\{0\}$ by Lemma 2.6, (3.1), ad $(J E)$ induces a linear endomorphism $\widetilde{\operatorname{ad}}(J E)$ on $\mathfrak{p} / \mathfrak{t}$. Let $\alpha+i \beta(\alpha, \beta \in \boldsymbol{R})$ be an eigenvalue of $\widetilde{\operatorname{ad}}(J E)$. As $\operatorname{ad}(J E) J \equiv J$ ad $(J E)(\bmod \mathfrak{f})$ on \mathfrak{p}, there exists an clement $P \in \mathfrak{p}, P \notin \mathfrak{f}$ such that $[J E, P] \equiv(\alpha+\beta J) P(\bmod \mathfrak{t})$, and hence $\exp t \operatorname{ad}(J E) P \equiv \exp t(\alpha+\beta J) P(\bmod \mathfrak{f})$. Therefore we have by Lemma 3.1,

$$
\begin{aligned}
& \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{tad}(J E) P) \\
= & \rho(J \exp t \operatorname{ad}(J E) P, \exp t \operatorname{tad}(J E) P) \\
= & \rho(J \exp t(\alpha+\beta J) P, \exp t(\alpha+\beta J) P) \\
= & \rho(\exp \mathrm{t}(\alpha+\beta J) J P, \exp t(\alpha+\beta J) P) \\
= & e^{(\alpha+i \beta) t} e^{(\alpha+i \beta) t} \rho(J P, P) \\
= & \mathrm{e}^{2 \alpha t} \rho(J P, P) .
\end{aligned}
$$

From this and (3.3), we have

$$
e^{2 a t} \rho(J P, P)=a t^{2}+b t+c .
$$

Since $P \notin \mathfrak{f}, \rho(J P, P)>0$ and hence $\alpha=0$. This fact and $\operatorname{ad}(J E) \mathfrak{f}=\{0\}$ show that the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 . Therefore we have

$$
\begin{aligned}
\psi(E) & =T r_{\mathrm{g} / \mathrm{t}}(\operatorname{ad}(J E)-J \operatorname{ad}(E)) \\
& =\operatorname{Tr}_{\mathrm{g}}(\operatorname{ad}(J E)-J \operatorname{ad}(E))-\operatorname{Tr}(\operatorname{ad}(J E)-J \operatorname{ad}(E)) \\
& =\operatorname{Tr}_{\mathrm{g}} \mathrm{ad}(J E)-\operatorname{Tr}_{\mathrm{g}} J \operatorname{ad}(E) \\
& =\operatorname{Tr}_{\mathrm{p}} \operatorname{ad}(J E)-\operatorname{Tr}_{[J E\}} J \operatorname{ad}(E) \\
& =0
\end{aligned}
$$

However this contradicts to $\psi \neq 0$ on $\{E\}$ by Lemma 2.4.
Q.E.D.

Lemma 3.3 Let $\{E\}$ be a one dimensional ideal of g . Then we get the decomposition

$$
\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{p}
$$

of g into the direct sum of vector spaces with the following properties:

1) $[J E, E]=E$.
2) The factors of the decomposition are mutually orthogonal with respect to the form η, and η is positive definite on $\{J E\}+\{E\}$.
3) The real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 or $1 / 2$.
4) $\rho(J E, P)=0$ for $P \in \mathfrak{p}$.

Proof. By lemma 3.2, we may assume that E satisfies the condition $[J E, E]=E$. Since $\{E\}$ is a one dimensional ideal of g , we get $[X, E]=\alpha(X) E$, $[J X, E]=\beta(X) E$, for $X \in \mathrm{~g}$, where α, β are linear functions on g . It is easily seen that $P=X-\alpha(X) J E-\beta(X) E$ belongs to \mathfrak{p} for any $X \in \mathfrak{g}$. Therefore we have the decomposition $\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{p}$. Now, by Lemma 2.1, we have for $P \in \mathfrak{p}$,

$$
\begin{aligned}
& \frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) E, \exp t \operatorname{ad}(J E) P) \\
= & \rho(J E, \exp t \operatorname{ad}(J E)[E, P]) \\
= & 0
\end{aligned}
$$

Since $\exp t \operatorname{ad}(J E) E=e^{t} E$, we have

$$
\rho(E, \exp t \operatorname{ad}(J E) P)=a^{\prime} e^{-t}
$$

where a^{\prime} is a constant determined by P and independent of t. We have then

$$
\begin{aligned}
\rho(J E, \exp t \operatorname{ad}(J E) P) & =-\rho(E, J \exp t \operatorname{ad}(J E) P) \\
& =-\rho(E, \exp t \operatorname{ad}(J E) J P) \\
& =a e^{-t}
\end{aligned}
$$

where a is a constant determined by $J P$. Let $X=\lambda J E+\mu E+P \in \mathrm{~g}$, where $\lambda, \mu \in R, P \in \mathfrak{p}$. Then we have

$$
\begin{aligned}
\rho(J E, \exp & t \operatorname{ad}(J E) X)=\rho\left(J E, \lambda J E+\mu e^{t} E+\exp t \operatorname{ad}(J E) P\right) \\
& =\mu \rho(J E, E) e^{t}+\rho(J E, \exp t \operatorname{ad}(J E) P) \\
& =a e^{-t}+b e^{t}
\end{aligned}
$$

where a, b are constants independent of t. This fact and Lemma 2.1 show that for $X, Y \in \mathrm{~g}$

$$
\begin{aligned}
& \frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
= & \rho(J E, \exp t \operatorname{tad}(J E)[X, Y]) \\
= & a e^{-t}+b e^{t} .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
= & a e^{-t}+b e^{t}+c,
\end{aligned}
$$

where a, b and c are constants independent of t. Let $\alpha+i \beta$ be an eigenvalue of $\widetilde{\operatorname{ad}}(J E)$ on $\mathfrak{p} / \mathfrak{t}$. As $\operatorname{ad}(J E) J \equiv J \operatorname{ad}(J E)(\bmod \mathfrak{t})$ on \mathfrak{p}, there exists an element $P \in \mathfrak{p}, P \notin \mathfrak{l}$ such that $\operatorname{ad}(J E) P \equiv(\alpha+\beta J) P(\bmod \mathfrak{l})$. Hence we have

$$
\begin{aligned}
& \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{tad}(J E) P) \\
= & \rho(J \exp t \operatorname{tad}(J E) P, \exp t \operatorname{tad}(J E) P) \\
= & \rho(J \exp t(\alpha+\beta J) P, \exp t(\alpha+\beta J) P) \\
= & \rho(\exp t(\alpha+\beta J) J P, \exp t(\alpha+\beta J) P) \\
= & e^{(\alpha+i \beta) t} t^{(\alpha+i+\beta) t} \rho(J P, P) \\
= & e^{2 \alpha t} \rho(J P, P) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
e^{2 a t} \rho(J P, P)=a e^{-t}+b e^{t}+c . \tag{3.4}
\end{equation*}
$$

Since $P \notin \mathcal{F}$ and $\rho(J P, P)>0$, we have $\alpha=0$ or $1 / 2$ or $-1 / 2$. Let \tilde{J} be the linear endomorphism of $\mathfrak{p}=\mathfrak{p} / \mathfrak{t}$ which is induced by J and put for $\alpha, \beta \in \boldsymbol{R}$;

$$
\begin{aligned}
& \tilde{\mathfrak{P}}_{(\alpha+i \beta)}=\left\{\tilde{P} \in \tilde{\mathfrak{p}} ;(\widetilde{\operatorname{ad}}(J E)-(\alpha+\beta \tilde{J}))^{m} \tilde{P}=0\right\} \\
& \mathfrak{p}_{a}=\sum_{\beta} \mathfrak{p}_{(\alpha+i \beta)}
\end{aligned}
$$

Then we have

$$
\tilde{\mathfrak{p}}=\sum_{\alpha+i \beta} \tilde{p}_{(\alpha+i \beta)}
$$

where $\alpha=0$ or $1 / 2$ or $-1 / 2$.
Let $\widetilde{P} \neq 0 \in \mathfrak{p}_{(\alpha+i \beta)}$ and let $P \in \mathfrak{p}$ be a representation of \tilde{P}. Then there exists a positive integer m such that $(\widetilde{\operatorname{ad}}(J E)-(\alpha+\beta \tilde{J}))^{m} \widetilde{P}=0$. Therefore we have

$$
\begin{aligned}
\exp t \widetilde{\operatorname{ad}}(J E) \widetilde{P}= & \exp t(\alpha+\beta \tilde{J}) \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\widetilde{\operatorname{ad}}(J E)-(\alpha+\beta \tilde{J}))^{l} \widetilde{P} \\
= & e^{\alpha t}\left\{\cos \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\widetilde{\operatorname{ad}}(J E)-(\alpha+\beta \tilde{J}))^{l} \widetilde{P}\right. \\
& \left.+\sin \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\widetilde{\operatorname{ad}}(J E)-(\alpha+\beta \tilde{J}))^{l} \tilde{J} \tilde{P}\right\}
\end{aligned}
$$

This shows that

$$
\begin{aligned}
\exp \operatorname{tad}(J E) P \equiv & e^{\alpha t}\left\{\cos \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P\right. \\
& \left.+\sin \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} J P\right\}(\bmod \mathfrak{t})
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \rho(J E, \exp t \operatorname{ad}(J E) P) \\
= & e^{\alpha t}\left\{\cos \beta t \sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P\right) t^{l}\right. \\
& \left.+\sin \beta t \sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} J P\right) t^{l}\right\}
\end{aligned}
$$

Put

$$
\begin{aligned}
& h(t)=\sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P\right) t^{l}, \\
& k(t)=\sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} J P\right) t^{l}
\end{aligned}
$$

Then $h(t)$ and $k(t)$ are polynomials of degree $\leqq m-1$. We have then

$$
\begin{aligned}
& h(t) \cos \beta t+k(t) \sin \beta t=a e^{-(1+\alpha) t}, \\
& \left|\frac{h(t)}{t^{m}} \cos \beta t+\frac{k(t)}{t^{m}} \sin \beta t\right|=\left|a \frac{t^{-(1+\alpha) t}}{t^{m}}\right|
\end{aligned}
$$

Assume that $a \neq 0$. Since $1+\alpha>0$ and since $h(t)$ and $k(t)$ are polynomials of degree $\leqq m-1$, the left side of the above formula approaches to 0 and the right side to ∞, when $t \rightarrow-\infty$. This is a contradiction, and we get $a=0$, which implies that

$$
\rho(J E, \exp \operatorname{tad}(J E) P)=0
$$

where P is a representative of $\widetilde{P} \in \tilde{\mathfrak{P}}_{(\omega+i \beta)}$. Thus we have

$$
\rho(J E, \exp t \operatorname{tad}(J E) P)=0, \quad \text { for all } \quad P \in \mathfrak{p},
$$

and hence

$$
\rho(J E, P)=0, \quad \text { for all } \quad P \in \mathfrak{p}
$$

Therefore 4) is proved. Moreover the formula (3.4) is reduced to

$$
\begin{equation*}
e^{2 \alpha t} \rho(J P, P)=b e^{t}+c \tag{3.4}
\end{equation*}
$$

This implies that $\alpha=0$ or $1 / 2$. Therefore we know that the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 or $1 / 2$. Thus the assertion 3) is proved. Now we shall show 2). The assertion that the decomposition $g=$ $\{J E\}+\{E\}+\mathfrak{p}$ is an orthogonal decomposition is clear. Put $f=\operatorname{ad}(J E)-$ $J \operatorname{ad}(E)$. Then we have $f(W)=0$ for $W \in \mathbb{f}, f(J E)=J E, f(E)=E$ and $f(P)=$ $[J E, P]$ for $P \in \mathfrak{p}$. Hence it follows that

$$
\begin{aligned}
\psi(E) & =\operatorname{Tr}_{\mathrm{g} / \mathrm{f}}(\operatorname{ad}(J E)-J \operatorname{ad}(E)) \\
& =\operatorname{Tr}_{\mathrm{g}}(\operatorname{ad}(J E)-J \operatorname{ad}(E)) \\
& =2+\operatorname{Tr}_{\mathrm{pad}}(J E) \\
& >0 .
\end{aligned}
$$

Therefore $2 \eta(J E, J E)=2 \eta(E, E)=\psi(E)>0$.
Q.E.D.

For $\alpha, \beta \in \boldsymbol{R}$, put

$$
\begin{aligned}
& \mathfrak{p}_{(\alpha+i \beta)}=\left\{P \in \mathfrak{p} ;(\operatorname{ad}(J E)-(\alpha+i \beta))^{m} P=0\right\} \\
& \mathfrak{p}_{\infty}=\sum_{\beta} \mathfrak{p}_{(\alpha+i \beta)}
\end{aligned}
$$

and let π^{\prime} be the canonical projection from g onto g / t. Then we have

$$
\begin{aligned}
& \mathfrak{p}_{(a+i \beta)}=\pi^{\prime}\left(\mathfrak{p}_{(a+i \beta)}\right), \quad \mathfrak{p}_{a s}=\pi^{\prime}\left(\mathfrak{p}_{a}\right), \\
& \mathfrak{p}=\mathfrak{p}_{0}+\mathfrak{p}_{\frac{1}{2}}, \\
& J \mathfrak{p}_{a} \subset \mathfrak{\mathfrak { p } _ { a s }}, \\
& \operatorname{ad}(J E) \mathfrak{p}_{a} \subset \mathfrak{p}_{a} .
\end{aligned}
$$

Lemma 3.4. The form η is positive definite on $\mathfrak{p}_{\frac{1}{2}}$.
Proof. We shall first prove that the decomposition $\mathfrak{p}_{\frac{1}{2}}=\sum_{\beta} \mathfrak{p}_{\left(\frac{1}{2}+i \beta\right)}$ is an orthogonal decomposition with respect to η. Let $P \neq 0 \in \mathfrak{p}_{\left(\frac{1}{2}+i \beta\right)}, Q \neq 0 \in \mathfrak{p}_{\left(\frac{1}{2}+i \beta^{\prime}\right)}$, and assume $\beta \neq \beta^{\prime}$. Then we have

$$
\begin{aligned}
& \exp t \operatorname{ad}(J E) P \equiv \exp t(1 / 2+\beta J) \sum_{l=0}^{r-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} P\left(\bmod \mathfrak{Z}^{\mathfrak{t}}\right) \\
& \exp t \operatorname{ad}(J E) Q \equiv \exp \left(1 / 2+\beta^{\prime} J\right) \sum_{l=0}^{s-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q\left(\bmod \mathfrak{Z}^{\mathfrak{t}}\right)
\end{aligned}
$$

By Lemma 2.1, we have

$$
\begin{align*}
& \frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) J P, \quad \exp t \operatorname{ad}(J E) Q) \tag{3.5}\\
= & \rho(J E, \exp t \operatorname{tad}(J E)[J P, Q])
\end{align*}
$$

The left side of this equation is equal to

$$
\begin{aligned}
& \quad \frac{d}{d t} \rho(J \exp t \operatorname{tad}(J E) P, \quad \exp t \operatorname{tad}(J E) Q) \\
& =\frac{d}{d t} \rho\left(J \exp t(1 / 2+\beta J) \sum_{l=0}^{r-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} P,\right. \\
& \left.\quad \exp t\left(1 / 2+\beta^{\prime} J\right) \sum_{l=0}^{s-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q\right) \\
& = \\
& \frac{d}{d t} e^{t} \rho\left(\exp \beta t J \sum_{l=0}^{r-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{t} J P,\right. \\
& \left.\quad \exp \beta^{\prime} t J^{s-1} \sum_{l=0} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q\right) \\
& = \\
& \frac{d}{d t} e^{t} \rho\left(\{\cos \beta t+(\sin \beta t) J\} u(t), \quad\left\{\cos \beta^{\prime} t+\left(\sin \beta^{\prime} t\right) J\right\} v(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{d}{d t} e^{t}\left\{\left(\cos \beta t \cos \beta^{\prime} t+\sin \beta t \sin \beta^{\prime} t\right) \rho(u(t), v(t))\right. \\
& \left.+\left(\sin \beta t \cos \beta^{\prime} t-\cos \beta t \sin \beta^{\prime} t\right) \rho(J u(t), v(t))\right\} \\
= & \frac{d}{d t} e^{t}\left\{h(t) \cos \left(\beta-\beta^{\prime}\right) t+k(t) \sin \left(\beta-\beta^{\prime}\right) t\right\} \\
= & e^{t}\left\{a(t) \cos \left(\beta-\beta^{\prime}\right) t+b(t) \sin \left(\beta-\beta^{\prime}\right) t\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
u(t) & =\sum_{l=0}^{r-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-(1 / 2+\beta J)^{l}\right) J P \\
v(t) & =\sum_{l=0}^{s-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q \\
h(t) & =\rho(u(t), v(t)), k(t)=\rho(J u(t), v(t)) \\
a(t) & =h(t)+h^{\prime}(t)+\left(\beta-\beta^{\prime}\right) k(t) \\
b(t) & =k(t)+k^{\prime}(t)-\left(\beta-\beta^{\prime}\right) \mathrm{h}(t)
\end{aligned}
$$

Hence $a(t)$ and $b(t)$ are polynomials. Since $[J P, Q] \in\left[\mathfrak{t}+\mathfrak{p}_{\frac{1}{2}}, \mathfrak{p}_{\frac{1}{2}}\right] \subset\{E\}+\mathfrak{p}_{1}$, we put $[J P, Q]=\lambda E+P^{\prime}$, where $\lambda \in \boldsymbol{R}, P^{\prime} \in \mathfrak{p}_{\frac{1}{2}}$. Using Lemma 3.3; 4), the right side of the equation (3.5) is equal to

$$
\begin{aligned}
& \rho(J E, \exp t \operatorname{ad}(J E)[J P, Q]) \\
= & \rho\left(J E, \exp \operatorname{tad}(J E)\left(\lambda E+P^{\prime}\right)\right) \\
= & e^{t} \lambda \rho(J E, E)+\rho\left(J E, \exp t \operatorname{ad}(J E) P^{\prime}\right) \\
= & e^{t} \lambda \rho(J E, E) .
\end{aligned}
$$

Therefore we have

$$
a(t) \cos \left(\beta-\beta^{\prime}\right) t+b(t) \sin \left(\beta-\beta^{\prime}\right) t=\lambda \rho(J E, E)
$$

Since $a(t)-\lambda \rho(J E, E)$ is a polynomial and since $a\left(t_{n}\right)-\lambda \rho(J E, E)=0$ for $t_{n}=$ $\frac{2 n \pi}{\beta-\beta^{\prime}}$, where n integer, it follows that $a(t)$ is a constant a. Similarly $b(t)$ is a constant b. Hence we have

$$
a \cos \left(\beta-\beta^{\prime}\right) t+b \sin \left(\beta-\beta^{\prime}\right) t=\lambda \rho(J E, E)
$$

By this formula, we have $\left(\beta-\beta^{\prime}\right)^{2} \lambda \rho(J E, E)=0$. Since $\beta-\beta^{\prime} \neq 0$ and $\rho(J E, E)>0$, we get $\lambda=0$. Moreover $\operatorname{ad}(J E)$ is non-singular on $\mathfrak{p}_{\frac{1}{2}}$ and so there exists an element $P^{\prime \prime} \in \mathfrak{p}_{\frac{1}{2}}$ such that $P^{\prime}=\left[J E, P^{\prime \prime}\right]$. Thus we have

$$
\begin{aligned}
2 \eta(P, Q) & =\psi([J P, Q]) \\
& =\psi\left(P^{\prime}\right) \\
& =\psi\left(\left[J E, P^{\prime \prime}\right]\right) \\
& =-\psi\left(\left[E, J P^{\prime \prime}\right]\right) \\
& =0
\end{aligned}
$$

This shows that $\mathfrak{p}_{\left(\frac{1}{2}+i \beta\right)}$ and $\mathfrak{p}_{\left(\frac{1}{2}+i \beta^{\prime}\right)}$ are mutually orthogonal with respect to η. Now, let $P \neq 0 \in \mathfrak{p}_{\left(\frac{1}{2}+i \beta\right)}$. Then we have

$$
\exp t \operatorname{ad}(J E) P \equiv \exp t(1 / 2+\beta J) u(t)(\bmod \mathfrak{f})
$$

where $u(t)=\sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} P$. By Lemma 2.1, it follows that

$$
\begin{align*}
& \frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{tad}(J E) P) \tag{3.6}\\
= & \rho(J E, \exp \operatorname{tad}(J E)[J P, P])
\end{align*}
$$

The left side of the equation (3.6) is equal to

$$
\begin{aligned}
& \frac{d}{d t} \rho(J \exp t \operatorname{ad}(J E) P, \exp t \operatorname{ad}(J E) P) \\
= & \frac{d}{d t} \rho(J \exp t(1 / 2+\beta J) u(t), \exp t(1 / 2+\beta J) u(t)) \\
= & \frac{d}{d t} \rho(\exp t(1 / 2+\beta J) J u(t), \exp t(1 / 2+\beta J) u(t)) \\
= & \frac{d}{d t} e^{\left(\frac{1}{2}+i \beta\right) t} e^{\left(\frac{1}{2}+i \beta\right) t} \rho(J u(t), u(t)) \\
= & \frac{d}{d t} e^{t} \rho(J u(t), u(t)) \\
= & e^{t}\left(h^{\prime}(t)+h(t)\right)
\end{aligned}
$$

where $h(t)=\rho(J u(t), u(t))$, and $h(t)$ is a polynomial of degree $\leqq 2 m-2$. Since $[J P, P]=\lambda E+P^{\prime}$, where $\lambda \in \boldsymbol{R}, P^{\prime} \in \mathfrak{p}_{1}$, the right side of the equation (3.6) is equal to

$$
\begin{aligned}
& \rho\left(J E, \exp t \operatorname{ad}(J E)\left(\lambda E+P^{\prime}\right)\right) \\
= & e^{t} \lambda \rho(J E, E)+\rho\left(J E, \exp t \operatorname{ad}(J E) P^{\prime}\right) \\
= & e^{t} \lambda \rho(J E, E) .
\end{aligned}
$$

Hence we have

$$
h^{\prime}(t)+h(t)=\lambda \rho(J E, E)
$$

The solution of this equation is $h(t)=c e^{-t}+\lambda \rho(J E, E)$, where c is an arbitrary
constant. However, $h(t)$ is a polynomial and so $c=0$. Hence we have

$$
h(t)=\lambda \rho(J E, E),
$$

and hence it follows that

$$
\lambda=\frac{h(t)}{\rho(J E, E)}=\frac{h(0)}{\rho(J E, E)}=\frac{\rho(J P, P)}{\rho(J E, E)}>0
$$

Therefore we have

$$
\begin{aligned}
2 \eta(P, P) & =\psi([J P, P]) \\
& =\lambda \psi(E)+\psi\left(P^{\prime}\right) \\
& =\lambda \psi(E)>0
\end{aligned}
$$

This shows that η is positive definite on $\mathfrak{p}_{\left(\frac{1}{2}+i \beta\right)}$ and hence on $\mathfrak{p}_{\frac{1}{2}}=\sum_{\beta} \mathfrak{p}_{\left(\frac{2}{2}+i \beta\right)}$.
Q.E.D.

Proof of Theorem 1^{\prime}. Since η is positive definite on $\{J E\}+\{E\}+\mathfrak{p}_{\frac{1}{2}}$ and since the signature of h is $(2,2(n-1))$, we have $\mathfrak{p}_{\frac{1}{2}}=\{0\}$, and hence $\mathfrak{p}=\mathfrak{p}_{0}$. Let $P, Q \in \mathfrak{p}$. Since $[P, Q] \in\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subset \mathfrak{g}_{0}$, where $\mathfrak{g}_{0}=\{J E\}+\mathfrak{p}$, we put $[P, Q]=$ $\lambda J E+P^{\prime}$, where $\lambda \in \boldsymbol{R}, P^{\prime} \in \mathfrak{p}$. It follows that $[E,[P, Q]]=\left[E, \lambda J E+P^{\prime}\right]=$ $-\lambda E$ and $[E,[P, Q]]=[[E, P], Q]+[P,[E, Q]]=0$. This implies that $\lambda=0$ and $[P, Q] \in \mathfrak{p}$. Therefore \mathfrak{p} is a subalgebra of \mathfrak{g} and also an ideal of \mathfrak{g}. Moreover we see easily that ($\mathfrak{p}, \mathfrak{f}, J, \rho$) is an effective Kahler algebra. Since the decomposition $\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{p}$ is orthogonal with respect to η and η is positive definite on $\{J E\}+\{E\}$ and since the signature of h is $(2,2(n-1))$, we know that $\eta(P, P)<0$, for $P \in \mathfrak{p}, P \notin \mathfrak{l}$. Now, for $P, Q \in \mathfrak{p}$, put

$$
\begin{aligned}
& \psi^{\prime}(P)=\operatorname{Tr}_{\mathrm{p} p} / \mathrm{r}(\operatorname{ad}(J P)-J \operatorname{ad}(P)), \\
& 2 \eta^{\prime}(P, Q)=\psi^{\prime}([J P, Q])
\end{aligned}
$$

For $P \in \mathfrak{p}, P \notin \mathfrak{f}$, we have $(\operatorname{ad}(J P)-J \operatorname{ad}(P)) E=0,(\operatorname{ad}(J P)-J a d(P)) J E \equiv 0$ $(\bmod \boldsymbol{t})$ and hence $\psi(P)=\psi^{\prime}(P)$. This implies that

$$
\begin{aligned}
2 \eta^{\prime}(P, P) & =\psi^{\prime}([J P, P]) \\
& =\psi([J P, P]) \\
& =2 \eta(P, P)<0
\end{aligned}
$$

which proves that the canonical hermitian form of $(\mathfrak{p}, \mathfrak{t}, J, \rho)$ is negative definite. Therefore we know that \mathfrak{p} is a compact semi-simple subalgebra of \mathfrak{g} [5].

> Q.E.D.

Proof of Theorem 1. When G is a semi-simple Lie group, our assertion follows from the results of Borel [1] and Koszul [3]. We shall show the case where G contains a one parameter normal subgroup of G. Let $\{E\}$ be the ideal
of g corresponding to the one parameter subgroup. With appropriate choice of J, we may assume that $J^{2} E=-E$. Put $\mathfrak{g}^{\prime}=\{J E\}+\{E\}$. Then $\left(\mathfrak{g}^{\prime}, J, \rho\right)$ is a Kähler algebra of the unit disk $\{z \in \boldsymbol{C} ;|z|<1\}$. Now, for $X, Y \in \mathrm{~g}$, we define

$$
\tilde{\rho}(X, Y)=\rho\left(X^{\prime}, Y^{\prime}\right)
$$

where X^{\prime}, Y^{\prime} are the g^{\prime}-components of X, Y with respect to the decomposition $\mathfrak{g}=\mathfrak{g}^{\prime}+\mathfrak{p}$ respectively. Then $(\mathfrak{g}, \mathfrak{p}, J, \tilde{\rho})$ is a Kähler algebra. We denote by G^{\prime} (resp. P) the connected subgroup of G corresponding to \mathfrak{g}^{\prime} (resp. \mathfrak{p}). Since $(\mathrm{g}, \mathfrak{p}, J, \tilde{\rho})$ is a Kähler algebra, G / P admits an invariant Kähler structure and is holomorphically isomorphic to the G^{\prime}-orbit passing through the origin o. We know by Theorem 1^{\prime} that G / K is a holomorphic fibre bundle whose base space is $G / P \cong\{z \in C ;|z|<1\}$, and whose fibre is P / K.
Q.E.D.

4. Proof of Theorem 2

Let $(\mathfrak{g}, \mathfrak{f}, J, \rho)$ be the Kähler algebra of G / K. We show that, if \mathfrak{g} is not semi-simple, then there exists a one dimensional ideal of \mathfrak{g}. Assume that \mathfrak{g} is not semi-simple. Then there exists a non-zero commutative ideal \mathfrak{r} of \mathfrak{g}. Consider a J-invariant subalgebra $\mathfrak{g}^{\prime}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{r}$. Then we have

Lemma 4.1. $\quad \operatorname{dim}_{C} \mathfrak{g}^{\prime} / \mathfrak{t}=1$.
Since $\mathfrak{t} \cap \mathfrak{r}=\{0\}$ by Lemma 2.3 and $\operatorname{dim}_{C} \mathfrak{g} / \mathfrak{t}=2, \operatorname{dim}_{C} \mathfrak{g}^{\prime} / \mathfrak{t}=1$ or 2 . Suppose that $\operatorname{dim}_{C} \mathfrak{g}^{\prime} / \mathfrak{t}=2$. Then $\operatorname{dim}_{C} \mathfrak{g} / \mathfrak{t}=\operatorname{dim}_{C} \mathfrak{g}^{\prime} / \mathfrak{t}, \operatorname{dim} \mathfrak{g}=\operatorname{dim} \mathfrak{g}^{\prime}$ and hence $\mathfrak{g}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{r}$. Since $\operatorname{dim} \mathfrak{g}^{\prime} / \mathfrak{f}=4$ and $\mathfrak{f} \cap \mathfrak{r}=\{0\}$, we have $2 \leqq \operatorname{dim} \mathfrak{r} \leqq 4$. Let π^{\prime} be the projection from g onto g / f. Then it follows that

$$
\begin{aligned}
\operatorname{dim} \pi^{\prime}(J \mathfrak{r}) \cap \pi^{\prime}(\mathfrak{r}) & =\operatorname{dim} \pi^{\prime}(J \mathfrak{r})+\operatorname{dim} \pi^{\prime}(\mathfrak{r})-\operatorname{dim} \pi^{\prime}(\mathfrak{g}) \\
& =2 \operatorname{dim} \mathfrak{r}-4
\end{aligned}
$$

First, we shall show $\operatorname{dim} \mathfrak{r} \neq 3$, 4. Suppose $\operatorname{dim} \mathfrak{r}=3$ or 4. Then $\operatorname{dim} \pi^{\prime}(J \mathfrak{r}) \cap$ $\pi^{\prime}(\mathfrak{r})>0$, and so there exist $A \neq 0, B \neq 0 \in \mathfrak{r}$ and $W \in \mathfrak{l}$ such that $J A=B+W$. Therefore we have $2 \eta(A, C)=\psi([J A, C])=\psi([B+W . C])=0$ and $2 \eta(A, J C)=$ $\psi([J A, J C])=\psi([A, C])=0$ for all $C \in \mathfrak{r}$. Since $\mathfrak{g}=\mathfrak{t}+J \mathfrak{r}+\mathfrak{r}$, we know $\eta(A, X)=0$ for all $X \in \mathfrak{g}$. This implies $A \in \mathfrak{f}$, which is a contradiction to Lemma 2.3. Next, we shall prove $\operatorname{dim} \mathfrak{r} \neq 2$. Suppose $\operatorname{dim} \mathfrak{r}=2$. Then $\operatorname{dim} \pi^{\prime}(J \mathfrak{r}) \cap$ $\pi^{\prime}(\mathfrak{r})=0$, and hence $\mathfrak{g}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{r}$ is a direct sum as vector spaces. Let A be an element in \mathfrak{r} such that $\eta(A, B)=0$ for all $B \in \mathfrak{r}$. Since $\mathfrak{g}=\mathfrak{r}+J \mathfrak{r}+\mathfrak{r}$ and $2 \eta(A, J B)=\psi([J A, J B])=\psi([A, B])=0$, we have $\eta(A, X)=0$ for any $X \in \mathfrak{g}$, which implies $A \in \mathfrak{f}$, and hence $A=0$ by Lemma 2.3. This shows that η is nondegenerate on \mathfrak{r}. Therefore there exists a unique non-zero element $E \in \mathfrak{r}$ such that $2 \eta(E, A)=\psi(A)$ for all $A \in \mathfrak{r}$. We have then

$$
\begin{align*}
& {[J E, E]=E,} \tag{4.1}\\
& \psi(E) \neq 0 .
\end{align*}
$$

Indeed, for $A \in \mathfrak{r}$ we have

$$
\begin{aligned}
& 2 \eta([J E, E], A)=\psi([J[J E, E], A]) \\
& \quad=-\psi([[J E, E], J A]) \\
& \quad=\psi([[E, J A], J E])+\psi([[J A, J E], E]) \\
& \quad=-\psi([E, J A])+\psi([J[J A, E]+J[A, J E], E]) \\
& \quad=\psi(A)+\psi([J A, E])+\psi([A, J E]) \\
& \quad=\psi(A)
\end{aligned}
$$

This shows that $[J E, E]=E$. Let F be an element in \mathfrak{r} independent of E. Put $[J E, F]=\lambda E+\mu F$, where $\lambda, \mu \in \boldsymbol{R}$. Then $\psi(E)=T r_{\mathrm{g}} / \mathrm{p}(\operatorname{ad}(J E)-J \operatorname{ad}(E))=$ $2(1+\mu)$. We shall show $\psi(E) \neq 0$. Suppose $\psi(E)=0$. Then $\mu=-1$ and $\psi(F)=2 \eta(E, F)=\psi([J E, F])=\lambda \psi(E)-\psi(F)=-\psi(F)$. Therefore $\psi(F)=0$, and hence $\psi=0$ on \mathfrak{r}, which is a contradiction to Lemma 2.4.
(4.2) There exists an element F in \mathfrak{r} independent of E such that

$$
\begin{aligned}
& {[J E, E]=E, \quad[J E, F]=\alpha F} \\
& {[J F, E]=\beta F, \quad[J F, F]=-E,} \\
& \psi(F)=0,
\end{aligned}
$$

where $\alpha, \beta \in \boldsymbol{R}$.
Proof. By $2 \eta(E, E)=\psi(E) \neq 0$, there exists $\widetilde{F} \neq 0$ such that $2 \eta(E, \widetilde{F})=$ $\psi(\widetilde{F})=0$. Since η is non-degenerate on \mathfrak{r} and the signature is (1,1), we have $\eta(E, E) \eta(\widetilde{F}, \widetilde{F})<0$. Put $[J E, \widetilde{F}]=\alpha \widetilde{F}+\alpha^{\prime} E$, where $\alpha, \alpha^{\prime} \in \boldsymbol{R}$. We have then $0=\psi(\widetilde{F})=2 \eta(E, \widetilde{F})=\psi([J E, \widetilde{F}])=\alpha \psi(\widetilde{F})+\alpha^{\prime} \psi(E)=\alpha^{\prime} \psi(E)$, and hence $\alpha^{\prime}=0$, and $[J E, \widetilde{F}]=\alpha \widetilde{F}$. Similarly we have $[J \widetilde{F}, E]=\beta \widetilde{F}$. Now, we put $[J \widetilde{F}, \widetilde{F}]=$ $\gamma E+\delta \widetilde{F}$, where $\gamma, \delta \in \boldsymbol{R}$. Then we have $0=\psi(\widetilde{F})=T_{r g / f}(\operatorname{ad}(J \widetilde{F})-J \operatorname{ad}(\widetilde{F}))=2 \delta$ and so $[J \widetilde{F}, \widetilde{F}]=\gamma E$. Since $2 \eta(\widetilde{F}, \widetilde{F})=\psi([J \widetilde{F}, \widetilde{F}])=\gamma \psi(E)=2 \gamma \eta(E, E)$, it follows $\gamma=\frac{\eta(\widetilde{F}, \widetilde{F})}{\eta(E, E)}<0$. Putting $F=\frac{1}{\sqrt{-\gamma}} \widetilde{F}$, we have $[J F, F]=-E$.

$$
\begin{equation*}
\mathfrak{t}=\{0\} . \tag{4.3}
\end{equation*}
$$

Q.E.D.

Proof. For $W \in \mathbb{E}$, put $[W, E]=\lambda E+\mu F$. Since $0=\psi([W, E])=\lambda \psi(E)+$ $\mu \psi(F)=\lambda \psi(E), \lambda=0$ and hence $[W, E]=\mu F$. We have $\psi([J F,[W, E]])=-$ $\mu \psi(E)$ and $\psi([J F,[W, E]])=\psi([[J F, W], E])+\psi([W,[J F, E]])=$ $\psi([J[F, W], E])=\psi([J E,[F, W]])=\psi([F, W])=0$. Thus $\mu=0$ and $[W, E]=0$. Now, put $[W, F]=\lambda E+\mu F$. By $0=\psi([W, F])=\lambda \psi(E)+\mu \psi(F)=\lambda \psi(E)$,
we have $\lambda=0$ and $[W, F]=\mu F$. Hence it follows $\psi([J F,[W, F]])=-\mu \psi(E)$. On the other hand we have $\psi([J F,[W, F]])=\psi([[J F, W], F])+\psi([W$, $[J F, F]])=\psi([J[F, W], F])=-\mu \psi([J F, F])=\mu \psi(E)$. Therefore $2 \mu \psi(E)=0$, and hence $\mu=0,[W, F]=0$. Thus $[\mathfrak{t}, \mathfrak{r}]=0$. Since $[\mathfrak{t}, J \mathfrak{x}] \subset \mathfrak{f},[\mathfrak{t}, \mathfrak{t}] \subset \mathfrak{f}$ and $\mathfrak{g}=\mathfrak{t}+J \mathfrak{r}+\mathfrak{r}$, we know that \mathfrak{t} an ideal of \mathfrak{g}. By the effectiveness, we have $f=\{0\}$.
Q.E.D.

$$
\begin{equation*}
2 \alpha=\beta+1 \tag{4.4}
\end{equation*}
$$

Proof. Using Jacobi identity and (1.3), we have

$$
\begin{aligned}
0 & =[[J E, J F], F]+[[J F, F], J E]+[[F, J E], J F] \\
& =[[J[J E, F]+J[E, J F], F]+[[J F, F], J E]+[[F, J E], J E] \\
& =(\alpha-\beta)[J F, F]-[E, J E]-\alpha[F, J F] \\
& =(-2 \alpha+\beta+1) E .
\end{aligned}
$$

Hence it follows $2 \alpha=\beta+1$.
Q.E.D.

By (1.7), (4.2) and (4.4), we have

$$
\begin{aligned}
0 & =\rho([J E, F], J F)+\rho([F, J F], J E)+\rho([J F, J E], F) \\
& =\alpha \rho(F, J F)+\rho(E, J E)-(\alpha-\beta) \rho(J F, F) \\
& =(-2 \alpha+\beta) \rho(J F, F)-\rho(J E, E) \\
& =-\rho(J F, F)-\rho(J E, E) .
\end{aligned}
$$

This contradicts to $\rho(J E, E)>0, \rho(J F, F)>0$. Therefore $\operatorname{dim} \mathfrak{r} \neq 2$ and hence $\operatorname{dim}_{c} \mathfrak{g}^{\prime} / \boldsymbol{q} \neq 2$. Thus we have proved $\operatorname{dim}_{C} \mathfrak{g}^{\prime} / \boldsymbol{t}=1$, this completes the proof of Lemma 4.1.
Q.E.D.

Let $\mathfrak{r} \neq\{0\}$ be a commutative ideal of \mathfrak{g}. Since $\operatorname{dim} \mathfrak{g}^{\prime} / \mathfrak{t}=2$ by Lemma 4.1 and $\mathfrak{f} \cap \mathfrak{r}=\{0\}$, it follows that $\operatorname{dim} \mathfrak{r}=1$ or 2 . Assume $\operatorname{dim} \mathfrak{r}=2$. Then we have

$$
\begin{aligned}
\operatorname{dim} \pi^{\prime}(J \mathfrak{r}) \cap \pi^{\prime}(\mathfrak{r}) & =\operatorname{dim} \pi^{\prime}(J \mathfrak{r})+\operatorname{dim} \pi^{\prime}(\mathfrak{r})-\operatorname{dim}\left(\pi^{\prime}(J \mathfrak{r})+\pi^{\prime}(\mathfrak{r})\right) \\
& =2 \operatorname{dim} \mathfrak{r}-2 \\
& =2
\end{aligned}
$$

This implies $\pi^{\prime}(J \mathfrak{r})=\pi^{\prime}(\mathfrak{r})$ and hence $J \mathfrak{r} \subset \mathfrak{r}$. For any $A \in \mathfrak{r}$, we have $J A=$ $A^{\prime}+W$, where $A^{\prime} \in \mathfrak{r}, W \in$. It follows then

$$
\begin{aligned}
\psi(A) & =T r_{\mathrm{g} / \mathrm{t}}(\operatorname{ad}(J A)-J \operatorname{ad}(A)) \\
& =\operatorname{Tr}_{\mathrm{g} / \mathrm{t}}\left(\operatorname{ad}\left(A^{\prime}\right)-J \operatorname{ad}(A)\right)+T r_{\mathrm{g} / \mathrm{tad}}(W) \\
& =\operatorname{Tr}_{\mathrm{t}}+\mathrm{r} / \mathbf{t}\left(\operatorname{ad}\left(A^{\prime}\right)-J \operatorname{ad}(A)\right) \\
& =0 .
\end{aligned}
$$

Hence $\psi=0$ on \mathfrak{r}, which is a contradiction to Lemma 2.4. Thus \mathfrak{r} is a one dimensional ideal of \mathfrak{g}. Therefore Theorem 2 is proved.
Q.E.D.
5. We shall classify two dimensional connected simply connected homogeneous Kähler manifolds with non-degenerate canonical hermitian form h. The signature of h is $(4,0)$ or $(2,2)$ or $(0,4)$.
(i) The case $(4,0)$. Since h is positive definite, G / K is isomorphic to a homogeneous bounded domain. Hence G / K is either $\{z \in C ;|z|<1\} \times$ $\{z \in C ;|z|<1\}$ or $\left\{\left(z_{1}, z_{2}\right) \in C^{2} ;\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}$.
(ii) The case $(0,4)$. Since h is negative definite, G is a compact semisimple Lie group by [5]. By a theorem in [4], G / K is a hermitian symmetric space. Hence G / K is either $P_{1}(\boldsymbol{C}) \times P_{1}(\boldsymbol{C})$ or $P_{2}(\boldsymbol{C})$, where $P_{n}(\boldsymbol{C})$ is a complex n-dimensional projective space.
(iii) The case (2, 2). Applying Theorem 1 and 2, we obtain that G / K is a holomorphic fibre bundle whose base space is the unit disk $\{z \in \boldsymbol{C} ;|z|<1\}$, and whose fibre is $P_{1}(\boldsymbol{C})$.

Yamaguchi University

References

[1] A. Borel: Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. USA 40 (1954), 1147-1151.
[2] S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kähler manifolds, "Geometry of Homogeneous Bounded Domains", Centro Int. Mat. Estivo, 3° Ciclo, Urbino, 1967.
[3] J.L. Koszul: Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math. 7 (1955), 562-576.
[4] A. Lichnerowicz: Espaces homogènes Kählériens, Colloque Géométrie Différentielle, Strasbourg, 1953, 171-201.
[5] H. Shima: On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad. 46 (1970), 209-211.
[6] H. Shima: On homogeneous Kähler manifolds of solvable Lie groups, J. Math. Soc. Japan 25 (1973), 422-445.

