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We denote by M a connected homogeneous Kihler manifold of complex
dimension # on which a connected Lie group G acts effectively as a group of
holomorphic isometries, and by K an isotropy subgroup of G at a point o of M.
Let v be the G-invariant volume element corresponding to the Kihler metric.

In alocal coordinate system {z,, --*, 2,}, v has an expression v=:"Fdz,A -+ A\
2
dz,Nd2 N ---Ndg, 'The G-invariant hermitian form h= 3 66 log Fdz,- dz; is
ni 0z;0%,

called the canonical hermitian form of M=G/K. It is known that the Ricci
tensor of the Kihler manifold M is equal to —h. The purpose of this paper is
to prove the following:

Theorem 1. Let M=G/K be a simply connected homogeneous Kdhler mani-
fold with non-degenerate canonical hermitian form h of signature (2,2(n—1)). Then,
if either G is semi-simple or G contains a one parameter normal subgroup, M=G|K
1s a holomorphic fibre bundle whose base space is the unit disk {zC; |z| <1}, and
whose fibre is a homogeneous Kdhler manifold of a compact sime-simple Lie group.

In the case of dim; G/K=2, the assumption of Theorem 1 is fulfilled and
we have

Theorem 2. Let M= G|K be a complex two dimensional homogeneous Kdhler
manifold with non-degenerate canonical hermitian form h of signature (2, 2). Then
G is semi-simple or G contains a one parameter normal subgroup.

As an application of these Theorems, we obtain a classification of complex
two dimensional homogeneous Kiahler manifolds with non-degenerate canonical
hermitian form.

1. Let (Z, g) be the G-invariant Kihler structure on M, i.e., I is the G-
invariant complex structure tensor on J and g is the G-invariant Kihler metric
on M. Let g be the Lie algebraof all left invariant vector fields on G and let £ be
the subalgebra of g corresponding to K. We denote by = the canonical projection
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from G onto M=G/K and denote by 7, the differential of = at the identity e of
G. Let X,, I, and g, be the values of X, I and g at e and z(e)=o0 respectively.
Then there exist a linear endomorphism J of g and a skew symmetric bilinear
form p on g such that

7(JX)e = L(m. X.), p(X, Y) =gz X, 7.Y,),
for X, Yeg. Then (g, t, ], p) satisfies the following properties [2], [3].
(1.1) jict, J’X=—X (modl),
(12) [W, JX]=JIW, X] (mod?),
(13) [JX, JYI=JUJX, YI+JIX, JY]+[X, Y] (mod?),
(14) p(W, X)=0,
(1.5) p(JX, JY)=p(X, Y),
(1.6) p(JX, X)>0, X2,
(17) p(X, Y], Z)+o([Y, Z], X)+p(1Z X], ) =0,
where X, Y, Zeg, Wet.

Then (g, t, J, p) will be called the Kzhler algebra of M=G/K.
Koszul proved that the canonical hermitian form £ of a homogeneous Kihler
manifold G/K has the following expression [3]. Put

(X, Y)=h(x X, n.Y,), and

(1.8) W(X) = Trgp(ad (JX)—Jad (X)),
it follows then
(1.9) WX, V)= LUK, YD),

for X, Yeg. The form v satisfies the following properties:

(1.10) w([W, X)) =0,
(1.11)  W(JX, JY]) = w(X, Y]), for X, Yeg Wet.

Since G acts effectively on G/K, t contains no non-zero ideal of g and there
exists an ad (f)-invariant inner product (, ) on g. Henceforth, we assume that
the canonical hermitian form & of G/K is non-degenerate, which is equivalent
to the following condition:

Let Xeg. If n(X, Y)=0 for all Y &g, then X<t

2. We shall now prepare a few lemmas for later use. The following
lemma is due to [2].
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Lemma 21. ForE, X, Yeg,
_“;7 p(exp tad (JE) X, exp tad (JE)Y)

— p(JE, exp tad(JE)[X, Y1).
Lemma 2.2. The adjoint representation of g is faithful.

Proof. Put a={X g; ad(X)=0}, then a is an ideal of g. We have for
XeEa

(X, V)= v(JX, Y])
= —y([X, JY])=0, forall Yeg.

Since & is non-degenerate, we have X&¥, and hence act. By the effectiveness,
we have a= {0}. Q.E.D.

Lemma 2.3. Let t be a commutative ideal of g. Then,tNt= {0},tN Jr=
{0}.

Proof. Let A=tNr. Sincer is a commutative ideal, we have ad (4)’=0.
By the effectiveness, it follows that
(ad (4)’X, X)+(ad(4)X, ad(4)X) =0,
(ad (4)X, ad(4)X) =0,
for X g, with respect to the ad (f)-invariant inner product (, ) on g. Hence

ad(4)X=0 for all Xeg, and A=0 by Lemma 2.2, which proves Nr= {0}.
tN Jr= {0} follows from £ Nt= {0}. Q.E.D.

Lemma 2.4. Let t be a non-zero commutative ideal of . Then <=0 on .

Proof, Assume Jr=0 on t. For X&t, we have 29(X, Y)=—([JY, X])=
Oforall Yeg. Since#is non-degenerate, we have X €t and hence tC ¥, which
contradicts to Lemma 2.3. Q.E.D.

Lemma 2.5. Trgrad(W)=0, for Wet.
Proof. Using (1.4), (1.7), we have
p(X, [Y, W])—|—-p(Y, W, X))=0,
for X, Yeg. Hence it follows that

p(JX, [W, Y])+p(JIW, X], Y) =0,
for X, Yegq. This implies that the endomorphism of g/t which is induced by
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ad (W) is skew symmetric with respect to the inner product which is defined by
p(JX, Y). Therefore Trgrad (W)=0. Q.E.D.

Lemma 2.6. Let {E} be a one dimensional ideal of . Then [E, W]=0,
for Wet. Moreover, there exists an endomorphism ] of g such that JX=
X (mod 1), [ JE, W]=0, for X&g, WeL.

Proof. Put [E, W]=MAE, A eR. Using (1.10), we have 0=y ([E, W])=
MP(E). Since Y(E)=+0 by Lemma 2.4, it follows A=0 and hence [E, W]=0.
Put )=+ {JE}, then [f, h]ch. Let {L} be the orthogonal complement of ¥
in f with respect to the ad (£)-invariant inner productong. Then[f, {L}]c {L}.
We may assume that L=W,+JE where W,&t. Therefore we can choose a
linear endomorphism J on g such that JE=L, JX=]JX (mod t) for X&g. Then
it follows

[JE, ] = [L, t]c {L},
[JE, flc[b, fict.

This implies [ JE, W]=0 for Wet. Q.ED

Therefore, for any one dimensional ideal {E} of g, we may assume that

[JE, t] = {0}.
3. We shall prove the following theorem.

Theorem 1. Let (g, t, ], p) be the Kdhler algebra of a homogeneous Kdhler
manifold G|K with non-degenerate canonical hermitian form h of signature
(2, 2(n—1)). If there exists a one dimensional ideal t of g, then we have the
Sollowing.

1) With suitable choice of E+0&x, we have [ JE, E]=E.

2) Put p={Peg; [P, E]=[]JP, E]1=0}. Then we have the decomposition
g={JE}+ {E} +V of g into the direct sum of vector spaces. We know also that p
is a compact semi-simple J-invariant ideal of g and that the real parts of the eigen-
values of ad (JE) on b are equal to 0.

The first part of the proof of Theorem 1’ is nearly the same as the previous
one [6]. But, for the sake of completeness we carry out the proof.

Lemma 3.1. Let {E} be a one dimensional ideal of g and put p= {Pcg;
[P, E]=[JP, E]=0}. Then we have

1) tcp,

2) JpCp, ad(JE)pCh,

3) ad(JE)J=Jad(JE) (modt) on p.

Proof. 1) follows from Lemma 2.6. For P, we have
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[JE, JP] = J{JE, P1+JIE, JP1+I[E, P]+W,
= J[JE, P1+ W,

for some W,=t, and hence 3) is proved. For P&y, it follows that

[[.]Ex P]a E] = [[]E’ E]) P]+[JE) [P’ E]] =0,
[JIJE, P}, E]=[[JE, JP]—W,, E]=0,

where W,&t. Therefore ad(JE)P<) for all P€p, which proves 2).

Lemma 3.2. Let {E} be a one dimensional ideal of . Then [JE, E]=0,
therefore with suitable choice of E +0, we have [ JE, E]=E.

Proof. Assume that [JE, E]=0. For Xe&g, we have J[JE, X]=
[JE, JX]—J(E, JX]—[E, X]+ W ,=[JE, JX]—N\JE—pE+W, where \, nER,
W,=t. We have

[[JE, X], E] = [[JE, E], X]+[JE, [X, E]] =0,
+[W09 E] =0 ’

which implies that [ JE, X]&p, and hence we have
3.1) ad(JE)gCp.
Let Pep. We have
p(JE, [JE, P]) = p(—E, JJE, P))
= —P(E’ []Ea ]P])

= p(JE, [JP, E])+p(JP, [E, JE])
=0,

and it follows that for Xeg
(3.2) p(JE, ad(JEYX)=0.
Applying Lemma 2.1, (3.2), we have for X, Yeg

%}p(exp tad(JE)X, exp tad(JE)Y)

— a €xX
= 7 PUE, exp tad (JE)[X, Y])

= p(JE, ad (JEY exp tad (JE) [X, Y))
=0.

Hence we may put
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(3.3) p(exp tad (JE)X, exp tad(JE)Y)
= at*+bt+c
where a, b and ¢ are real numbers not depending on . Since ad(JE)pCp,
ad(JE)t= {0} by Lemma 2.6, (3.1), ad(JE) induces a linear endomorphism
gcvi(]E) on p/t. Let a+iB(a, BER) be an eigenvalue of ad(JE). As
ad( JE)J= Jad(JE) (mod ) on p, there exists an element P p, P&t such that
[JE, P]=(a+BJ)P(mod?t), and hence exp ¢ ad (JE)P=exp t(a-+ 3 J)P(mod ¥).
Therefore we have by Lemma 3.1,
p(exp tad(JE)JP, exp tad(JE)P)
= p(J exp tad( JE)P, exp tad(JE)P)
= p(J exp t(a+RBJ)P, exp t(a+B])P)
= p(exp t(a+B J)JP, exp a+BJ)P)
— e(‘”+iﬂ)fe(¢+l'ﬂ)t p(]P’ P)
=& p(JP, P).
From this and (3.3), we have
e p(JP, P) = at’+bt+c.
Since P&t p(JP, P)>0 and hence a=0. This factand ad(JE)f= {0} show
that the real parts of the eigenvalues of ad(JE) on p are equal to 0. Therefore
we have
W(E) = Trgp(ad(JE)—Jad(E))
= Trg(ad(JE)— Jad(E))—Tri(ad (JE)— Jad(E))
= Trgad(JE)—TrgJad (E)
= Tryad (JE)—TrypJad(E)
=0.

However this contradicts to ¥==0 on {E} by Lemma 2.4. Q.E.D.

Lemma 3.3 Let {E} be a one dimensional ideal of . Then we get the

decomposition
g= {JE}+{E}+p

of g into the direct sum of vector spaces with the following properties:

1) [JE E]=E.

2) The factors of the decomposition are mutually orthogonal with respect to
the form 3, and 7 is positive definite on {JE}+ {E}.

3) The real parts of the eigenvalues of ad( JE) on p are equal to 0 or 1/2.

4) p(JE, P)=0 for P=p.
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Proof. By lemma 3.2, we may assume that E satisfies the condition
[JE, E]=E. Since {E} is a one dimensional ideal of g, we get [X, E]=a(X)E,
[JX, El=B(X)E, for X=g, where «, 3 are linear functions on g. It is easily
seen that P=X—a(X) JE—B(X)E belongs to p for any X €g. Therefore we
have the decomposition g={JE}+'{E}+p. Now, by Lemma 2.1, we have for
Pep,

%p(exp tad(JE)E, exp tad(JE)P)
= p(JE, exp tad(JE)[E, P])
=0.
Since exp tad (JE)E=¢'E, we have
p(E, exp tad(JE)P) = d’e™*
where a’ is a constant determined by P and independent of z. We have then
p(JE, exp tad(JE)P) = —p(E, J exp tad(JE)P)
— —p(E, exp tad (JE)JP)

== ae—t

where a is a constant determined by JP. Let X=\JE+uE+PeEg, where
A, pnER, Pep. Then we have

p(JE, exp tad (JE)X) = p(JE, N JE+ pe*E+exp tad (JE)P)
— up(JE, E)é+p(JE, exp tad(JE)P)
= ae *+-bet

where a, b are constants independent of ¢. This fact and Lemma 2.1 show that
for X, Yeg

%p(exp tad(JE)X, exp tad(JE)Y)
= p(JE, exp tad(JE)[X, Y])
=aet}-be.

Hence we obtain
p(exp tad(JE)X, exp tad(JE)Y)
=ae *+beftc,

where a, b and ¢ are constants independent of . Let a+ 8 be an eigenvalue

of zflzl(]E) on p/t. As ad(JE)J=Jad(JE) (mod ) on p, there exists an
element P€p, P&t such that ad(JE)P=(a+BJ)P (mod ). Hence we have
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p(exp tad(JE)JP, exp tad(JE)P)
= p(J exp tad(JE)P, exp tad (JE)P)
= o(J exp t{a+B])P, exp a-+B])P)
— plexp Ha+B])JP, exp Ha+B])P)
j— e<a+iﬁ)te(m+iﬂ)tp(]P’ P)
= & p(JP, P).
Therefore

(3.4) e p(JP, P) = ae~*+be'+c.

Since P&t and p(JP, P)>0, we have a=0 or 1/2 or —1/2. Let J be the
linear endomorphism of §=p/t which is induced by J and put for o, BE R;

Bearir = {PEP; (ad(JE)—(a+B])"P= 0},
54» = ; 5(a+iﬂ) .

Then we have

b= 2 Peasip>
@+if

where a=0 or 1/2 or —1/2.
Let P40EH s, s and let PEY be a representation of P. Then there exists a

positive integer m such that (ad (JE)—(a+BJ))"P=0. Therefore we have
exp tad (JEYP = exp ta+B]) 3 - Ga(JE)—(a+BI))P
— e {oos f1 31 L @(JE)—(a-+8I)'P
+sin 613 £ -@d(JE)—(a+B])) JP} .
This shows that
exp tad (JE)P = & {cos £t - (ad (JE)—(a+B]))'P

+sin Bt 3]+ (ad (JE)—(a-+B))JP} (mod ).
Hence we have
P(JE, exp tad(JE)P)

= e {eos 133 p(JE, (d (JE)—~(a+B ) P)

+sin 813 ——p(JE, (ad (JE)—(a+B]) JP)}
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Put

1) = - pUE, d(JE)—(a+B])P)

K) = 3]+ p(JE, (ad(JE)—(a+B])) JP)Y'

Then h(t) and k(t) are polynomials of degree <m—1. We have then

h(t) COos Bt—l—k(t) sin Bt = ae”@+**

h(z) cos ,Bt—i—li(i) sin Bt’ =
[ "

t—(1+¢l)t

tm

a

Assume that a+0. Since 14a>0 and since k(t) and k(#) are polynomials of
degree < m—1, the left side of the above formula approaches to 0 and the right
side to oo, when #—>—oco. This is a contradiction, and we get a=0, which
implies that

p(JE, exp tad(JE)P) = 0

where P is a representative of PEPs.is . Thus we have

p(JE, exp tad(JE)P)=0, forall Pep,
and hence

p(JE, P)=0, forall Pep.
Therefore 4) is proved. Moreover the formula (3.4) is reduced to
(3.4Y ep(JP, P) = bet+c.

This implies that a=0 or 1/2. Therefore we know that the real parts of the
eigenvalues of ad(JE) on p are equal to 0 or 1/2. Thus the assertion 3) is
proved. Now we shall show 2). The assertion that the decomposition g=
{JE}+{E}+p is an orthogonal decomposition is clear. Put f=ad(JE)—
Jad(E). Then we have f(W)=0 for Wel, f(JE)=JE, f(E)=E and f(P)=
[JE, P] for Pep. Hence it follows that

W(E) = Trgn(ad (JE)—Jad(E))
= Tro(ad(JE)—Jad(E))

= 2+ Tryad(JE)
>0.
Therefore 29( JE, JE)=27(E, E) = y(E)>0. Q.E.D.

For a, BER, put
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Pearipy = {P €Y; (ad(JE)—(a+1B8))"P = 0} ,
Ps= ; Pewtip> »

and let 7’ be the canonical projection from g onto g/f. Then we have

Bwrir = 7' (Pewrim) s Po = 7'(Pa) »
p=Dpth;,

JPaCl+Da,

2d(JE)PuCPa.

Lemma 3.4. The form n is positive definite on 9.

Proof. We shall first prove that the decomposition p;= ;pqﬁp) is an

orthogonal decomposition with respect to 7. Let P3+=0E P48, OF0E D485,
and assume 8=+ /3’. Then we have

exp tad(JE)P = expt (1/2+8 ])':g: %(ad( JE)—(1/24-8J))'P (mod ¥),

exp tad(JE)Q = exp (112+8')) 5} - ad (JE)—(112+8']))Q (mod ).

By Lemma 2.1, we have

(3.5) 7dt——p(exp tad(JE)JP, exp tad(JE)Q)
= p(JE, exp tad(JE)[JP, Q]).

The left side of this equation is equal to
L p(J exp 1ad(JEYP,  exp tad (JE)Q)
=2 p(J exp (1[2+6)) g - (d(JE)—(112+B]))P,
exp Y(1[2+)) E} - @d(JE)~(112+B')YQ)
= L eolexp Bt 3] LA (JE)-(112+8)))JP,
exp £1) 3} 4 (@d(JE)—(1/2+6]))Q)

= %e‘p( {cos Bt+(sin Bt) J}u(t), {cos B't+(sin B’'t)J}v (t))
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- _dd;_e, {(cos Bt cos B't-sin Bt sin BHp(u(t), v(t))
+(sin B¢ cos B’t—cos Bt sin B't)p( Ju(t), v(t))}

- _d‘?;et{h(t) cos (8— @) t-+k(2) sin (8—B")t}

= ¢*{a(?) cos (8—@')t+b() sin (B—L')}

where

ut) =5 L -@d(JE)—(12+ 8] V)P,

o) = 5} - UE)-(12+ B))YQ,

h(t) = p(u(t) , ©(t)) , k(t) = p(Ju(t) , ©(2)),
a(t) = h(t)+ 1)+ (B—B)k(2),
b(t) = k()+K(1)—(B— B)h() .

Hence a(t) and b(t) are polynomials. Since [JP, Ql€ [t+;, p]C {E}+by
we put [JP, Q]=AE-+P’, where A€ R,P’cp,. Using Lemma 3.3; 4), the
right side of the equation (3.5) is equal to

p(JE, exp tad(JE)LJP, O))

= p(JE, exp tad(JE)AE+P"))

= ¢Np(JE, E)+p(JE, exp tad (JE)P')
= e\p(JE, E).

Therefore we have
a(t) cos (B—B')t-+b(2) sin (B—B')t = Mp(JE, E).

Since a(t)—Ap(JE, E) is a polynomial and since a(t,)—\p(JE, E)=0 for t,=
20z
B—B"

constant 5. Hence we have

where n integer, it follows that a(¢) is a constant @. Similarly b(¢) is a

a cos (B— B)t+b sin (8— Bt = rp(JE, E).

By this formula, we have (8—@’)*Ap(JE, E)=0. Since B8—pB’+0 and
p(JE, E)>0, we get .=0. Moreover ad(/E) is non-singular on p; and so there
exists an element P” &y, such that P’=[JE, P””]. Thus we have
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29(P, Q) = ¥([JP, Q)
= ¥(P’)
= ¥(JE, P"))
= —¥(E, JP"))
=0.

This shows that p,;e and P, e, are mutually orthogonal with respect to 7.
Now, let P£0EP;.. Then we have

exp tad(JE)P = exp #(1/2+ 8] )u(t) (mod ¥),

where u(t):ml_Ez ;—:(ad (JE)—(1/24+B]))'P. By Lemma 2.1, it follows that

(3.6) dit p(exp tad(JE)JP, exp tad(JE)P)
= p(JE, exp tad(JE)[JP, P])
The left side of the equation (3.6) is equal to

%p(j exp tad(JE)P, exp tad(JE)P)
= L p(J exp (1248 Yu(t), exp #(1/2+B] yu(H)

- 7;’;p(exp t(12+B]) Ju(t), exp 12+ BJ)u(t))

4 e

= dite'p(]u(t), u(?))

= ¢ ('(2)+h(2))

where A(t)=p(Ju(t), u(t)), and k(¢) is a polynomial of degree <2m—2. Since
[JP, P]=AE+P’, where A€ R, P’cp,, the right side of the equation (3.6) is
equal to
P(JE, exp tad (JEYNE+P")
— ¢ xp(JE, E)+p(JE, exp tad(JE)P')
=e'Ap(JE, E).
Hence we have

K (8)+h(t) = Mp(JE, E).

The solution of this equation is A(tf)=ce *+Ap(JE, E), where ¢ is an arbitrary
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constant. However, A(¢) is a polynomial and so c=0. Hence we have
k() = \p(JE, E),

and hence it follows that

kM) _ KO _ p(JP,P)
p(JE, E) p(JE,E) p(JE, E)

Therefore we have

27(P, P) = {([JP, P])
= M(E)+(P’)
= MHE)>0.

This shows that 7 is positive definite on Py, ;s, and hence on ;= > Peyrip-
B
Q.E.D.

Proof of Theorem 1. Since 7 is positive definite on {JE}+ {E}-+p, and
since the signature of 4 is (2, 2(n—1)), we have p,= {0}, and hence p=p,. Let
P, Qep. Since [P, Q1<[60 8]<8, where g,={JE}+p, we put [P, O]=
AMJE+P’, where AER, P’ep. It follows that [E, [P, Q]]=[E, M JE+P']=
—AE and [E, [P, Q]]=[[E, P], O]+[P, [E, O]]=0. This implies that A=0
and [P, Q]p. Therefore p is a subalgebra of g and also an ideal of g. More-
over we see easily that (p, I, J, p) is an effective Kihler algebra. Since the
decomposition g= { JE} 4 {E} +p is orthogonal with respect to 7 and % is posi-
tive definite on {JE}+ {E} and since the signature of & is (2, 2(n—1)), we
know that »(P, P)<0, for Pep, P&t. Now, for P, QEp, put

V(P) = Trppp(ad(JP)—Jad(P)),
27'(P, Q) = ¥(LJP, O)) -

For Pep, P&t, we have (ad(JP)—Jad(P))E=O, (ad(JP)—Jad(P))JE=0
(mod ) and hence y+(P)=+(P). This implies that

27'(P, P) = ¥'([JP, P))
= ¥([JP, P])
= 27](Pv P)<O ’

which proves that the canonical hermitian form of (b, ¥, J, p) is negative definite.
Therefore we know that p is a compact semi-simple subalgebra of g [5].
Q.E.D.

Proof of Theorem 1. When G is a semi-simple Lie group, our assertion
follows from the results of Borel [1] and Koszul [3]. We shall show the case
where G contains a one parameter normal subgroup of G. Let {E} be the ideal
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of g corresponding to the one parameter subgroup. With appropriate choice of
J, we may assume that J’E=—E. Putg’={JE}+{E}. Then (g, /], p)isa
Kahler algebra of the unit disk {z=C; |z| <1}. Now, for X, Y&g, we define

P(X, Y) = p(X", Y7)

where X’, Y’ are the g’-components of X, Y with respect to the decomposition
g=g'+p respectively. Then (g, p, J, p) is a Kahler algebra. We denote by G’
(resp. P) the connected subgroup of G corresponding to g’ (resp. p). Since
(g, b, J, p) is a Kuhler algebra, G/P admits an invariant Kahler structure and
is holomorphically isomorphic to the G’-orbit passing through the origin
o. We know by Theorem 1’ that G/K is a holomorphic fibre bundle whose
base space is G/P=={z=C; |z| <1}, and whose fibre is P/K. Q.E.D.

4. Proof of Theorem 2

Let (g, £, J, p) be the Kihler algebra of G/K. We show that, if g is not
semi-simple, then there exists a one dimensional ideal of g. Assume that g is
not semi-simple. Then there exists a non-zero commutative ideal ¢ of g. Con-
sider a J-invariant subalgebra g’=%4-Jt-+t. Then we have

Lemma 4.1. dim; g’[t=1.

Since £Nr= {0} by Lemma 2.3 and dim,g/t=2, dimcg'/f=10r2. Sup-
pose that dim. ¢'/t=2. Then dim; g/f=dim; ¢/f, dim g=dim g’ and hence
g=!+ Jr+r. Since dim ¢’/f=4 and £ Nr= {0}, we have 2<dim t<4. Letn’
be the projection from g onto g/f. Then it follows that

dim '(Jx) Nz’(t) = dim z/(Jt)+dim #(t)—dim 7'(g)
=2 dimt—4.

First, we shall show dimr=+3, 4. Suppose dimt=3 or 4. Then dim z’(Jt)N
7'(t)>0, and so there exist A+0, B0t and Wt such that JA=B+4W.
Therefore we have 29(4, C)=+([JA4, C])=+([B+W. C])=0 and 279(4, JC)=
([ JA, JC)=+([4, C])=0 for all Cer. Since g=t+ Jr+r, we know
7(A, X)=0forall Xeg. Thisimplies 4<=¥, whichisa contradiction to Lemma
2.3. Next, we shall prove dim r5=2. Suppose dim t=2. Then dim z’(Jxr)N
7'(t)=0, and hence g=%+ Jr+1 is a direct sum as vector spaces. Let 4 be an
element in t such that 7(4, B)=0 for all Bex. Since g=f+4Jr+1r and
29(4, JB)=+([JA, JB])=+([4, B])=0, we have 7(4, X)=0 for any Xe&g,
which implies 4A<¥, and hence A=0 by Lemma 2.3. This shows that » is non-
degenerate on t. Therefore there exists a unique non-zero element E€t such

that 29(E, A)=+(A) for all Aex. We have then
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[JE, E] =

(4.1) H(E)+0

Indeed, for A=t we have

20([JE, E], 4) = ([JLJE, E], 4])
= —v([JE, E], JA])
=v([[E, J4], JED)+¥([[J4, JE], E])
= —Y([E, JA)+¥(J[J4, E]1+][4, JE], E])
= YA+ ([J4, ED)+¥([4, JE])
= ¥(4).

This shows that [ JE, E]=E. Let F be an element in t independent of E. Put
[JE, F1=X\E+uF, where A, uR. Then ¥(E)=Trgt(ad(JE)—Jad(E))=
2(14-p). We shall show y/(E)+0. Suppose y(E)=0. Then p=-—1 and
W(F)=27(E, F)=v([ JE, F1)=M(E)—VY(F)=—vY(F). Therefore y-(F)=0,

and hence Y=0 on t, which is a contradiction to Lemma 2.4.
(4.2) 'There exists an element F in t independent of E such that

[JE,E]l=E, [JE, F]1= aF,
[JF, E]=BF, [JF,F]=—
Y(F) =0,

where o, GER.

Proof. By 27(E, E)=v(E)=+0, there exists F'==0 such that 2x(E, F)=
Y(F)=0. Since 7 is non—degenerate on t and the signature is (1,1), we have
(E, E)??(F' F)<0 Put [JE, Fl=aF+a’E, where a, o’ R. We have then
0=r(F)= =27(E, F) W([JE, F])= axp(F)—t—a "Y(E)=a'\(E), and hence a’=0,
and []E Fl=aF. Similarly we have [JF, E]=BF. Now, we put []F Fl=
vE+-8F, where v, & R. Then we have 0= ‘\]/‘(F) Trg/r(ad(]F)—]ad(F)) 28
and so [JF, F] vE. Since 29(F, F)=+([JF, F))=vy(E)=2vn(E, E), it
follows '}'—Y](F F)<0 Putting F_———__F we have [ JF, Fl=—E.

7(E, E) V-
Q.E.D.

(4.3) t= {0}.

Proof. For Wet, put [W, E]l=NE+ pF. Since 0=+([W, E])=M(E)+
pr(F)=xy(E), =0 and hence [W, E]l=uF. We have ([ JF, [W, E]])=—
py(E) and  W([JF, [W, EI)=v([JF, W], E))+¥(W, [JF, E]})=
W(JF, W], EN)=V(JE, [F, W)=V ([F, W])=0. Thus p=0and [W, E]=0.
Now, put [W, F]=AE+uF. By 0=V([W, F])=Mr(E)+ pd(F)=AP(E),
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we have A=0 and [W, F]=uF. Hence it follows ([ JF, [W, F]])=— p(E).
On the other hand we have y([JF, [W, F1)=v([[JF, W], F])+¥([W,
[JE, FI)=v(J[F, W], F])=—pu¥([JF, F])=p¥(E). Therefore 2uy(E)=0,
and hence p=0, [W, F]=0. Thus [, t]=0. Since [f, Jr]c?, [, f]ct and
g=1-+Jr4r, weknow that tis anideal of g. By the effectiveness, we have f= {0}.
Q.E.D.

4.4 2a = B+1.
Proof. Using Jacobi identity and (1.3), we have

0=[[JE, JF], F1+I[[JF, F], JE]+I[IF, JE], JF]
= [[J[JE, F1+JIE, JF], F1+[[JF, F1, JE1+[[F, JE], JE]
= (a—RB)[JF, F]—[E, JE]—alF, JF]
= (~2a-+B+1E.
Hence it follows 2a=8-1. Q.E.D.

By (1.7), (4.2) and (4.4), we have

0= o([JE, Fl, JE)+p([F, JF], JE)+p(LJF, JE], F)
= ap(F, JF)+p(E, JE)—(a—B)p(JF, F)
— (—2a+B)p(JF, F)—p(JE, E)
= —p(JF, F)~p(JE, E).
This contradicts to p(JE, E)>0, p(JF, F)>0. Therefore dim 42 and hence

dim; ¢’/t+2. Thus we have proved dim ¢’/t=1, this completes the proof of
Lemma 4.1. Q.E.D.

Let r+ {0} be a commutative ideal of g. Since dim ¢'/f=2 by Lemma
4.1 and tNt= {0}, it follows that dimr=1 or 2. Assume dim t=2. Then we
have

dim #/(Jr) N 7'(x) = dim #/(Jt)+dim z/(t)—dim ('(Jt)-+7'(x))
= 2dimt—2
=2.

This implies z’(Jt) = n’(t) and hence Jrcf+r. For any A<x, we have JA=
A’ +W, where A'er, Wet. It follows then

W(d) = Trgt(ad(J4)—Jad(4))
— Trype(ad (4)—Jad (A))+ Trgad (W)
= Tretyt(ad(A4’)— Jad (A4))
=0.
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Hence Y=0 on r, which is a contradiction to Lemma 2.4. Thus t is a one
dimensional ideal of g. Therefore Theorem 2 is proved. Q.E.D.

5. We shall classify two dimensional connected simply connected homo-
geneous Kihler manifolds with non-degenerate canonical hermitian form 4.
The signature of 4 is (4, 0) or (2, 2) or (0, 4).

(i) The case (4, 0). Since 4 is positive definite, G/K is isomorphic to a
homogeneous bounded domain. Hence G/K is either {z&C; |z| <1} X
{==C; |31 <1} or {(z, 2)EC% |2,1*+|5,1°<1}.

(i) The case (0,4). Since % is negative definite, G is a compact semi-
simple Lie group by [5]. By a theorem in [4], G/K is a hermitian symmetric
space. Hence G/K is either P,(C)x P,(C) or P,(C), where P,(C) is a complex
n-dimensional projective space.

(iti) The case (2, 2). Applying Theorem 1 and 2, we obtain that G/K is
a holomorphic fibre bundle whose base space is the unit disk {zC; |2| <1},
and whose fibre is P,(C).
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