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We denote by M a connected homogeneous Kahler manifold of complex
dimension n on which a connected Lie group G acts effectively as a group of
holomorphic isometries, and by K an isotropy subgroup of G at a point o of M.
Let v be the G-invariant volume element corresponding to the Kahler metric.
In a local coordinate system {z19 •••,#„}, v has an expression v=inFdz1Λ Ά

. . . . g2 log- F
dznΛd21Λ"-Λd2n. The G-invaπant hermitian form h= 2 —dz4dSj is

called the canonical hermitian form of M=G/K. It is known that the Ricci
tensor of the Kahler manifold M is equal to — h. The purpose of this paper is
to prove the following:

Theorem 1. Let M=G/K be a simply connected homogeneous Kahler mani-
fold with non-degenerate canonical hermitian form h of signature (2, 2(n— 1)). Then,
if either G is semi-simple or G contains a one parameter normal subgroup, M=GjK
is a holomorphic fibre bundle whose base space is the unit disk { ^ G C ; | Z | < 1}, and
whose fibre is a homogeneous Kahler manifold of a compact sime-simple Lie group.

In the case of dimc GjK=2, the assumption of Theorem 1 is fulfilled and
we have

Theorem 2. Let M— GjK be a complex two dimensional homogeneous Kahler
manifold with non-degenerate canonical hermitian form h of signature (2, 2). Then
G is semi-simple or G contains a one parameter normal subgroup.

As an application of these Theorems, we obtain a classification of complex
two dimensional homogeneous Kahler manifolds with non-degenerate canonical
hermitian form.

1. Let (7, g) be the G-invariant Kahler structure on M, i.e., / is the G-
invariant complex structure tensor on M and g is the G-invariant Kahler metric
on M. Let g be the Lie algebraof all left invariant vector fields on G and let I be
the subalgebra of g corresponding to K. We denote by π the canonical projection
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from G onto M=GjK and denote by πe the differential of n at the identity e of
G. Let Xey Io and g0 be the values of X> I and g at e and τr(^)=o respectively.
Then there exist a linear endomorphism / of g and a skew symmetric bilinear
form p on g such that

πJJX). = /0(;rβXe) , p(X, Y) = ^ Λ * β F β ) ,

for X, F e g . Then (g, I, /, p) satisfies the following properties [2], [3].

(1.1) / f c ϊ , J2X=-X (modi),

(1.2) [W,JX]=J[W,X] (modi),

(1.3) [JX,JY]=J[JX, Y]+J[X,JY\+[X, Y] (modi),

(1.4) p(W,X) = 0,

(1.5) / >(/^/ ί 7 ) =

(1.6) p(/Z, X)>0,

(1.7) p([X, Y], Z)+P([Y, Z], X)+P([Z, X], Y) = 0,

where X, Y, ZGQ, Wet.

Then (g, I, /, p) will be called the Kahler algebra of M=G/K.
Koszul proved that the canonical hermitian form h of a homogeneous Kahler

manifold G\K has the following expression [3]. Put

V(X, Y) = ho(πeXe,πeYe), and

(1.8) ψ(X) = 7Vβ/f(ad (JX)-Jad (X)),

it follows then

(1-9) v(X,Y)

for Xy yGΞg. The form ψ satisfies the following properties:

(1.10) Ψ([W, -ϊ]) = 0 ,

(1.11) ψ([/Y, /y]) = ψ([X9 Y]), for X, Yeg,

Since G acts effectively on GfK> I contains no non-zero ideal of g and there
exists an ad (ϊ)-invariant inner product ( , ) on g. Henceforth, we assume that
the canonical hermitian form h of G\K is non-degenerate, which is equivalent
to the following condition:

Let Z e g . Ifv(X, Y)=0for all y<Ξg, then X<EΞt.

2. We shall now prepare a few lemmas for later use. The following
lemma is due to [2].
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Lemma 2.1. For Ey Xy Yeg,

— p(exp tad(JE)Xy exp tzd(JE)Y)
dt

= p(JE,cxptad(JE)[X,Y]).

Lemma 2.2. The adjoint representation of g is faithful.

Proof. Put α= {Xeg; ad(.X)=0}, then α is an ideal of g. We have for
l e a

0, for all

Since h is non-degenerate, we have X^t, and hence αcf. By the effectiveness,
wehaveα={0}. Q.E.D.

Lemma 2.3. Lei xbe a commutative ideal of g. Then, ϊ Π ϊ = {0}, ϊ Γi Jx=
{0}.

Proof. Let ̂ 4el Πϊ. Since r is a commutative ideal, we have ad(^4)2=0.
By the effectiveness, it follows that

(ad(A)2X, X)+(*d(A)X9 *ά(A)X) = 0 ,

for J e g , with respect to the ad(ϊ)-invariant inner product ( , ) on g. Hence
ad(^4)Z=0 for all i G g , and A=0 by Lemma 2.2, which proves ϊΠr={0}.
ϊ n / r = {0} follows from ϊ (Ίr= {0}. Q.E.D.

Lemma 2.4. Let x be a non-zero commutative ideal of g. Then ψ^= 0 on x.

Proof, Assume ^ = 0 on r. For I G Ϊ , we have 2η(X, Y)= - Ψ([JY, X])=
0 for all Yeg. Sinceh is non-degenerate, we have Z G I and hence r e ϊ , which
contradicts to Lemma 2.3. Q.E.D.

Lemma 2.5. TrQιtad(W)=0, for W<=1.

Proof. Using (1.4), (1.7), we have

p(W, [X, Y])+P(X, [Y, W])+P(Yy [W, X]) = 0,

for Xy Yeg. Hence it follows that

p(JX, [W, Y])+p{[W, JX], Y) = 0 ,

p(JX, [W, Y])+P(J[W, XI Y) = 0 ,

for X, Yeg. This implies that the endomorphism of g/ϊ which is induced by
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ad(W) is skew symmetric with respect to the inner product which is defined by
p(JXy Y). Therefore 7Vβ/rad(ϊF)=0. Q.E.D.

Lemma 2.6. Let {E} be a one dimensional ideal of g. Then [Ey W]—0y

for W^t. Moreover, there exists an endomorphism J of g such that JX=
JX(modl\ [jEy W]=0JorX(ΞQ,

Proof. Put [E, W]=\Ey λ G Λ . Using (1.10), we have 0=ψ([Ey W])=
\ψ(E). Since ylr(E) + 0 by Lemma 2.4, it follows λ = 0 and hence [E, W]=0.
Put ί ) = ϊ + {JE}>tnen P> 5]c!j. Let {L} be the orthogonal complement of ϊ
in r) with respect to the ad (ϊ)-invariant inner product on g. Then [ϊ, {L} ] c {L}.
We may assume that L=W0+JE where WQ^t. Therefore we can choose a
linear endomorphism / on g such that JE=L, JX=JX{mod ΐ) for ZGg. Then
it follows

] = [ L , l ] c { L } ,

This implies [JE, W]=0 for W<=t. Q.E.D

Therefore, for any one dimensional ideal {E} of g, we may assume that
\JE, f] = {0}.

3. We shall prove the following theorem.

Theorem V. Let (g, ϊ, /, p) be the Kdhler algebra of a homogeneous Kdhler
manifold GjK with non-degenerate canonical hermitian form h of signature
(2, 2(n—1)). If there exists a one dimensional ideal x of g, then we have the
following.

1) With suitable choice of £ φ θ e r , we have [JE, E]=E.
2) Put p= {Peg; [P, E]=[JP, E]=0}. Then we have the decomposition

g= {JE} + {E} +p o/g into the direct sum of vector spaces. We know also that p
is a compact semi-simple J-invariant ideal of g and that the real parts of the eigen-
values of ad (JE) on p are equal to 0.

The first part of the proof of Theorem Y is nearly the same as the previous
one [6]. But, for the sake of completeness we carry out the proof.

Lemma 3.1. Let {E} be a one dimensional ideal of g and put p=
[P, E]=[JP, E]=0}. Then we have

1) i c f c
2) jpap, *d(JE)papy

3) ad(JE)J=Jad(JE)(modt)onp.

Proof. 1) follows from Lemma 2.6. For P^py we have
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[JE, JP] = J[JE, P]+J[E, JP]+[E, P]+Wo

for some W0^.t, and hence 3) is proved. For P^p, it follows that

[[JE, P], E] = [[JE, E], P]+[JE, [P, E]] = 0,

[J[JE, P], E] = [[JE, JP]-W0, E] = 0,

where Woet. Therefore ad(JE)Pep for all P e p , which proves 2).

Lemma 3.2. Let {E} be a one dimensional ideal of g. Then [JE, £ ] Φ θ ,
therefore with suitable choice of 2?=t=0, we have [JE, E]=E.

Proof. Assume that [JE, £]=0. For l e g , we have J[JE, X]=
[JE,JX]-J[E,JX]-[E, X]+W0=[JEJX]-XjE-μE+Wo, where λ,
Woeϊ. We have

[[JE, X], E] = [[JE, E], X]+[JE, [X, E]] = 0,

[J[JE, X], E] = [[JE,JX], E]-X[JE, E]-μ[E, E]

+[W0, E] = 0,

which implies that [JE, X]^p, and hence we have

(3.1) ad(/E)βCΪ>

Let PGp. We have

p(JE,[JE,P]) = P(-E,J[JE,P])

= -p(E,[JE,JP])

= p{JE,[JP,E])+p(JP,[E,JE])

= 0,

and it follows that for

(3.2)

Applying Lemma 2.1, (3.2), we have for X,

^ p ( e x p tzd(JE)X, exp tad{JE)Y)

= p{JE, ad(/£)2 exp tzd{JE) [X, Y])

= 0.

Hence we may put
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(3.3) P(exp tad(JE)X, exp Ud(JE)Y)

= at2+bt+c

where ay b and c are real numbers not depending on t. Since ad(JE)pdp,
ad(JE)t= {0} by Lemma 2.6, (3.1), ad(JE) induces a linear endomorphism
ad(JE) on p/ϊ. Let a + iβ(a, β^R) be an eigenvalue of ad(JE). As
ad(JE)J=Jad(JE) (mod I) on p, there exists an element P e p , P<£ I such that
[JE, P] ==(a+βJ)P(mod I), and hence exp t ad(/E)P=exp t(a+βJ)P(mod ϊ).
Therefore we have by Lemma 3.1,

p(exp tad(JE)JP, exp tzd(JE)P)

= p(/exp *ad(/£)P, exp tad(JE)P)

= p(/exp t{a+βJ)P, exp t(a+βJ)P)

= p(exp t(a+βJ)JP, exp t(a+βJ)P)

From this and (3.3), we have

e2*'p(Jp> P)=at2+bt+c.

Since P φ ϊ , p(/P, P ) > 0 and hence α = 0 . This fact and a d ( / E ) l = {0} show
that the real parts of the eigenvalues of ad(/£) on p are equal to 0. Therefore
we have

= TrQ*d(JE)-TrQJad(E)

= Trpad(JE)-TrumJad(E)

= 0.

However this contradicts to ψφO on {E} by Lemma 2.4. Q.E.D.

Lemma 3.3 Let {E} be a one dimensional ideal of g. Then we get the
decomposition

of g into the direct sum of vector spaces with the following properties:

1) UE,E]=E.
2) The factors of the decomposition are mutually orthogonal with respect to

the form η, and η is positive definite on {JE} + {E}.
3) The real parts of the eigenvalues of ad(JE) on p are equal to 0 or 1/2.
4) 9{JE, P ) = 0 for P e p .
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Proof. By lemma 3.2, we may assume that E satisfies the condition
[JE, E]=E. Since {E} is a one dimensional ideal of g, we get [Xy E]=a(X)Ey

[JX, E]=β(X)E, for X^Q, where ay β are linear functions on g. It is easily
seen that P=X—a(X)JE—β(X)E belongs to p for any l e g . Therefore we
have the decomposition g = {JE} +*{£"} +ί> Now, by Lemma 2.1, we have for

p(exp tad(JE)E, exp tzd(JE)P)
dt

= p(JE,cxptad(JE)[E,P])

= 0.

Since exp t&ά(JE)E=e?E, we have

p(E, exp tad(JE)P) = u'e'*

where a' is a constant determined by P and independent of t. We have then

p(JE, exp tzd(JE)P) = -P(EJexp tzd(JE)P)

where a is a constant determined by JP. Let X=\JE-\-μE-\-P^Q, where
λ, μ^R, P^p. Then we have

p(JE, exp tad(JE)X) = P(JE, \JE+μe'E+txp tzd(JE)P)

= Mp(7^, E)e<+p(JE, exp ΐad(JE)P)

= ae-'+be*

where ay b are constants independent of t. This fact and Lemma 2.1 show that
for^Γ, Yeg

^-p(exp tad(JE)X, exp

= ae-f+bef.

Hence we obtain

p(exp t*d(JE)X, exp

= ae-'+bef+c,

where α, ό and c are constants independent of t. Let a + ίβ be an eigenvalue

of ad(/Z?) on p/1. As ad(JE)J = Jzd(JE) (mod!) on J), there exists an

element P e p , P<£ί such that ad(JE)P=(a+βJ)P (mod !). Hence we have



484 H. SHIMA

p(exp tad(JE)JP, exp tad(JE)P)

= P(Jexp tzd{JE)P, exp tad(JE)P)

= p(/exp t(a+βf)P, exp t(a+βJ)P)

= p(exp t(a+βJ)JP, exp t(a+βJ)P)

>, P ) .

Therefore

(3.4)

Since P φ f and p(JP, P ) > 0 , we have a=0 or 1/2 or -1/2. Let / be the
linear endomorphism of f)=ψ/ί which is induced by J and put for α,

Then we have

ί> = Σί><.
<*+iβ

where α = 0 or 1/2 or —1/2.
Let PφO^^CΛ+ίβ) a n d let P e p be a representation of P. Then there exists a

positive integer m such that (ad(JE)—(a-{-βJ))mP=O. Therefore we have

= exp t{

/βo / J

This shows that

exp Uά{JE)P ΞΞ e*'{cos £f Σ — (a
7=0 /I

m-1 + /

Σ ±-(&d(JE)-(a+βJ)YJP} (mod ϊ)

Hence we have

P(JEy exp t*d(JE)P)

+sin βt^Λ-p{JE, (ad(JE)-(a+βJ))'JP)t'} .
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Put

= Έ^-P(JE, (zd(JE)-(a+βJ))'P)t>,

(*dUE)-(a+βJ))>JP)t>.

Then h(t) and k{t) are polynomials of degree ^m— 1. We have then

h(t) cos βt+k(t) sin βt = ae~a+** ,

*&*»&+*& mat
r

Assume that <z=t=O. Since l + α > 0 and since h(t) and k(t) are polynomials of
degree ^ m— 1, the left side of the above formula approaches to 0 and the right
side to oo, when £-»— oo. This is a contradiction, and we get α=0, which
implies that

p(7£,expίad(/£)P) = 0

where P is a representative of P&$CΛ+iβ). Thus we have

p(JE, exp*ad(/£)P) = 0, for all

and hence

p(JE9P) = 0, for all P<=ί>.

Therefore 4) is proved. Moreover the formula (3.4) is reduced to

(3.4)'

This implies that α = 0 or 1/2. Therefore we know that the real parts of the
eigenvalues of ΛA(JE) on p are equal to 0 or 1/2. Thus the assertion 3) is
proved. Now we shall show 2). The assertion that the decomposition g =
{JE} + {E}+p is an orthogonal decomposition is clear. Put f=zd(JE)—

Jad(E). Then we have/(W)=0 for W(=l,f(JE)=JE,f(E)=E and f(P)=
[JE, P] for Pep. Hence it follows that

= ϊrβ(ad(/Z?)-/ad(£))

= 2+Trpad(JE)

Therefore 2η(JE, JE)=2V(E, E) = ψ(E)>0. Q.E.D.

For a, β(ΞR, put
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*-+«> = {P^P; (ad(JE)-(a+iβ))mP=O} ,
Pa = Σ Pca+iβ) y

and let πf be the canonical projection from g onto g/ϊ. Then we have

P =

Lemma 3.4. The form η is positive definite on p$.

Proof. We shall first prove that the decomposition p^= 5 J Pcϊ+tβ) ιs a n

β

orthogonal decomposition with respect to η. Let P=t=O€&*+«•<»>
and assume βΦβ'. Then we have

Σexp ίad(/2?)P = expί (1/2+/?/) Σ ^(ad(/£)-( l/2+/3/)) 'P (mod ϊ) ,

exp tzά{JE)Q = exp (l/2+iS'/)g-jί-(ad(y£)-(l/2+y8'/)yρ (mod I).

By Lemma 2.1, we have

(3.5) -^p(cxpUd(JE)JP, exp

= p(/£,expίad(/i?)[./P,ρ]).

The left side of this equation is equal to

= -j-p(J exp ί(l/2+/S/)Σ-|-

exp t(l/2+β'J)'-g-£-(

Σ

exp

4-«'p({cos /8ί+(βin βt)J}u{t) , {cos /3'<+(sin /S'ί)/}^ (ί))
at
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= jLe'{(cos βt cos β't+ύn βt sin β't)ρ{u(t)y v(ή)
dt

-f(sin βt cos β't—cos βt sin β't)p{Ju{t\ v(t))}

= -^-ef{h(t) cos (β-β')t+k(t) sin (β-β')t}
dt

= β*{β(ί) cos (β-β')t+b(t) sin (/3-/

where

= P(u(t) , v(t)), k(t) = p(Ju(t), v(t)) ,

a(t) = h(t)+h'(t)+(β-β')k(t),

= k(t)+k'(t)-(β-β')h(t).

Hence a(t) and b(t) are polynomials. Since [JP, Q]e [t+Pi, pj
we put [JP, Q] = \E+P', where λeΛ.P'epj . Using Lemma 3.3; 4), the
right side of the equation (3.5) is equal to

P(JE, exp tzd(JE)[JP, Q\)

= P(JE, exp tad(JE)(\E+P'))

, E)+p(JE, exp tad(JE)P')

Therefore we have

a(t) cos (β—β')t+b(t) sin {β—β')t = Xp(JE, E) .

Since a(t)—\ρ(JE, E) is a polynomial and since a(tn)—Xρ(JE, E)=0 for £„=

, where /ί integer, it follows that a(i) is a constant #. Similarly b(t) is a

constant i. Hence we have

a cos (β-β;)t+b sin (β-β')t =

By this formula, we have (β-β')2Xp{JE, E)=0. Since β—β'φO and
(̂/iE1, ί )>0,we get λ=0. Moreover ad(JE) is non-singular on ft and so there

exists an element P"ef t such that P'^lJE, P"]m Thus we have



488 H. SHIMA

, P"\)

= 0 .

This shows that fti+ίfs; and pci+.p'j are mutually orthogonal with respect to
Now, let P φ 0 e f t i + < w . Then we have

exp tad(JE)P = exp t(lβ+βj)u(t) (mod I),

where «(*)="§ ^(ad(J£')-(l/2+ / β/)) / P. By Lemma 2.1, it follows that
/=*o / |

(3.6) p(exp tad(JE)JP, exp

= p(JE9 exp tad(JE)[JPy P])

The left side of the equation (3.6) is equal to

p(/exp tad(JE)P, exp tad(JE)P)
dt

(/ exp Hlβ+βJW), exp

= A p(eχp t{lβ+βj)ju(t), exp t{\β+βj)u{t))
at

= jLett+wtf+WpίJuit), u(ή)
dt

= -j-e>p(Ju(t), u(t))

where h(t)=ρ(Ju(t)9 u(t))} and A(ί) is a polynomial of degree ^2m—2. Since
[/P, P]=\E+P', where XGJR, P 7 e ^ , the right side of the equation (3.6) is
equal to

p{JE, exp tzd(JE)(XE+P'))

= e'\p(JE, E)+P(JE, exp tad(JE)P')

= e'\p(JE, E).

Hence we have

The solution of this equation is h(t)=ce~f+Xp(JE, E), where c is an arbitrary
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constant. However, h(t) is a polynomial and so c=0. Hence we have

Kή = \p(JE, E),

and hence it follows that

h(t) _ h(0) _P(JP,P)>0

P(JE,E) p(JE,E) p(JE,E)

Therefore we have

2y(P, P) = ψ([/P, P])

This shows that η is positive definite on pci+tβ) and hence on p±= 2 t>ci+ίβ>

Q.E.D.

Proof of Theorem 1'. Since η is positive definite on {JE} + {Z?} +P^ and
since the signature of h is (2, 2(«—1)), we have p$= {0}, and hence p=p 0 . Let
P, ρ e p . Since [P, £]e[g 0 , go]cgo, where g o -{/^}+P, we put [P, Q]=
XJE+P', where λ G β , P ' e p . It follows that [£, [P, £?]]=[£, λ / ^ + P ' H
~ λ £ and [E, [P, β]]=[[^, P], Q]+[P, [E, Q]]=0. This implies that λ = 0
and [P, ^ ] e p . Therefore p is a subalgebra of g and also an ideal of g. More-
over we see easily that (p, I, /, p) is an effective Kahler algebra. Since the
decomposition g= {JE} + {E} -\-p is orthogonal with respect to η and η is posi-
tive definite on {JE} + {E} and since the signature of h is (2, 2(w—1)), we
know that η(Py P ) < 0 , for P e p , P φ l . Now, for Py Q<=p, put

= 7h,/ϊ(ad(/P)-/ad(P)),

2i/(p, ρ) = ψ'([/p, ρ]).

For P e p , Pφϊ , we have (ad(/P)-yad(P))£=0, (ad(/P)-/ad(P))/JB = O
(mod f) and hence ΛJΓ(P)=Λ//(P). This implies that

2τ/(P, P) = ψ'([JP, P])

= Ψ([JP> P])
= 2v(P,P)<0,

which proves that the canonical hermitian form of (p, I, /, p) is negative definite.
Therefore we know that p is a compact semi-simple subalgebra of g [5].

Q.E.D.

Proof of Theorem 1. When G is a semi-simple Lie group, our assertion
follows from the results of Borel [1] and Koszul [3]. We shall show the case
where G contains a one parameter normal subgroup of G. Let {E} be the ideal
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of g corresponding to the one parameter subgroup. With appropriate choice of
/, we may assume that J2E=—E. Put Q'= {JE} + {E}. Then (g', /, p) is a
Kahler algebra of the unit disk { ^ G C ; \Z\ < 1}. Now, for Xy Yeg, we define

p(X, Y) = p(X'y Y')

where Xr

 y Yr iare the g'-components of Xy Y with respect to the decomposition
9 = 9 / + P respectively. Then (g, p,Jy p) is a Kahler algebra. We denote by G'
(resp. P) the connected subgroup of G corresponding to g' (resp. p). Since
(9> P> Jy P) is a Kahler algebra, GjP admits an invariant Kahler structure and
is holomorphically isomorphic to the G'-orbit passing through the origin
o. We know by Theorem V that G/K is a holomorphic fibre bundle whose
base space is G/P^ {z<=C | z | < 1}, and whose fibre is P/K. Q.E.D.

4. Proof of Theorem 2

Let (g, ϊ, Jy p) be the Kahler algebra of GjK. We show that, if g is not
semi-simple, then there exists a one dimensional ideal of g. Assume that g is
not semi-simple. Then there exists a non-zero commutative ideal t of g. Con-
sider a/-invariant subalgebra Q'=1-{-JX-{-T. Then we have

Lemma 4.1. dimc g'/ϊ= l

Since ϊ Π x= {0} by Lemma 2.3 and dim cg/ϊ=2, d i m c g 7 ϊ = l or 2. Sup-
pose that dimc g7/!—2. Then dimc g/ί=dim c g'/ϊ, dim g=dim Q' and hence
g = f + Jτ+x. Since dim g7f=4 and ϊ Π r = {0}, we have 2^dim r ^ 4 . Let πr

be the projection from g onto g/ϊ. Then it follows that

dim τr'(/r) Π π'(τ) = dim π'(Jx)+dim T r ^ - d i m π'(a)

= 2 dim r—4 .

First, we shall show dimtφ3, 4. Suppose dimr = 3 or 4. Then ά\mπ\Jx) Π
π'(x)>0, and so there exist AφO, 5 φ θ G t and W^t such that JA=B+W.
Therefore we have 2η(A, C)=ψ([JA, C])=ψ([B+W. C])=0 and 2v(A, JC)=
ψ([JAyJC]) = φ([A,C]) = 0 for all C G Ϊ . Since g = I + / r + r , we know
η(A, X)=0 for all Z e g . This implies A^ΐ, which is a contradiction to Lemma
2.3. Next, we shall prove dim t φ 2 . Suppose dim r = 2 . Then dim π'(Jt) Π
7r/(t)=0, and hence g=f-f jΓr+r is a direct sum as vector spaces. Let A be an
element in r such that η(A, B)=0 for all BGX. Since g = ί - f / r + t and
2y(AyJB)=ψ([JAyJB])=ψ([A,B])=0, we have v(Ay X)=0 for any l e g ,
which implies A^l, and hence A=0 by Lemma 2.3. This shows that η is non-
degenerate on r. Therefore there exists a unique non-zero element E&x such
that 2η(Ef A)=ψ(A) for all i e r . We have then
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(4.1)

Indeed, for A^τ we have

= -ψ([[JE,E],JA])

=ψ([[E, JA], JE])+ψ([[JA, JE], E])

= -φ([E,JA])+ψ([J[JA, E]+J[A,JE], E])

, JE])

This shows that [JE, E]=E. Let F be an element in X independent of E. Put
[JE,F]=XE+μF, where λ, μ<=R. Then ψ(E)=Trβn(ad(JE)-Jad(E))=
2(l+μ). We shall show ψ(£)φθ. Suppose ψ(E) = 0. Then μ= — 1 and
ψ(F)=2η(E, F)=ψ([JE, F])=\ψ(E)-y}r(F)=-y}r(F). Therefore Ψ{F)=0,
and hence ψ=0 on r, which is a contradiction to Lemma 2.4.

(4.2) There exists an element F in r independent of E such that

where a, β<=R.

[JE,

[JF,
ψ(F]

E]

E]

= E,
= βί

0,

[JE,
?, [JF

F]

F]
= aF,
= -E

Proof. By 2v(E, E)=ψ (E)*0, there exists FφO such that 2η(E, F)=
ψ(F) = 0. Since v is non-degenerate on r and the signature is (1,1), we have
v(E, E)v(F, F)<0. Put [JE, P]=αF+α'E, where α, α'^R. We have then
0=ψ(F) = 2v(E, P)=ψ([JE, F])=αψ(F)+α'ψ(E)=α'ψ(E), and hence α'=0,
and [JE, F]=αF. Similarly we have [JF, E]=βF. Now, we put [JF, F]=
γE+δF, where γ, δ<ΞR. Then we have 0=-ψ (F)= 7Vg/ϊ(ad(/F)—/ad(F)) = 2δ
and so [/F, F]=<γE. Since 2^(F, F)=Λ|Λ([/F, F])=γψ(£)=27τ?(£', E), it

follows 7=V@,P) < 0 P u t t i n g p,,, 1 = F ; w e h a v e

v(E, E) V—y
Q.E.D.

(4.3) f = {0} .

Proof. For Wef, put [1^, E]=\E+μF. Since 0=ψ([W/, FD=λi/r(£)+
) = \ψ(E), λ=0 and hence [W, E] = /iF. We have ψ ([/F, [PF, £"]])= -

and ψ([/F, [PF, F]])=^([[/F, W], E])+ψ([W, [JF, E]])=
W], E]) = ψ{[JE, [F, W)])=ψ([F, W])=0. Thus μ=0 and [W, E]=0.

Now, put [W, F]=\E+μF. By 0=ψ([W, F]) = Xψ{E)+μy!r(F)=\y]r(E),
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we have λ=0 and [W, F]=μF. Hence it follows -ψ ([JF, [W, F]])= —
On the other hand we have Ψ(\JF, [W, F]])=ψ([[JF, W], F])+ψ([W,
[JF, F]])=ψ([J[F, W], F])=-μψ([JF, F])=μψ(E). Therefore 2μψ(E)=0,
and hence μ=0, [W, F]=0. Thus [I, t] = 0. Since [ϊ,/r]cί, [I, ί ] c ί and
g=ί-|-/t-)-r., we know that f is an ideal of g. By the effectiveness, we have ϊ = {0}.

Q.E.D.

(4.4)

Proof. Using Jacobi identity and (1.3), we have

0 = [[JE, JF], F]+[[JF, F], JE]+[[F, JE], JF]

= [iJ[JE, F]+J[E, JF], F]+[\JF, F], JE]+[[F, JE], JE]

= (cc-β)[JF, F]-[E, JE]~a[F, JF]

= (-2a+β+l)E.

Hence it follows 2a=β+l. Q.E.D.

By (1.7), (4.2) and (4.4), we have

0 = P([JE, F], JF)+p([F, JF], JE)+P([JF, JE], F)

= aP{F,JF)+p{E,JE)-{a-β)p{JF, F)

= (-2a+β)P(JF, F)-P(JE, E)

= -p{JF,F)-p(JE,E).

This contradicts to p(JE, E)>0, p(JF, F)>0. Therefore dim t φ 2 and hence
dimc g'/ϊφ2. Thus we have proved dimc g'/ϊ = l> this completes the proof of
Lemma 4.1. Q.E.D.

Let tφ{0} be a commutative ideal of g. Since dim g'/ϊ = 2by Lemma
4.1 and ϊ (Ίϊ= {0}, it follows that dim r = 1 or 2. Assume dim r=2. Then we
have

dim π'(Jτ)Γ\π'(x) = dim ;r'(/t)+dim π'(τ)-dim(π'(Jτ)+π'(τ))

= 2 dim r—2

= 2.

This implies π'(Jΐ) = π'(x) and hence/rcf+r. For any A^τ, we have/^4 =
A'+W, where A'&τ, Wet. It follows then

= Trΰιι(ad(JA)-Jad(A))

= Trφ (ad (A')-Ja

+

= 0.
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Hence ψ = 0 on r, which is a contradiction to Lemma 2.4. Thus x is a one
dimensional ideal of g. Therefore Theorem 2 is proved. Q.E.D.

5. We shall classify two dimensional connected simply connected homo-
geneous Kahler manifolds with non-degenerate canonical hermitian form h.
The signature of h is (4, 0) or (2, 2) or (0, 4).

(i) The case (4, 0). Since h is positive definite, G/K is isomorphic to a
homogeneous bounded domain. Hence GjK is either { ^ E C ; | # | < 1 } X
{ ^ C ; | * | < 1 } or {(*„ * 2 )<ΞC 2 ; | * J 2 + | * 2 | 2 < 1 } .

(ii) The case (0, 4). Since h is negative definite, G is a compact semi-
simple Lie group by [5]. By a theorem in [4], GjK is a hermitian symmetric
space. Hence G\K is either Px{C)χPx(C) or P2{C)y where Pn(C) is a complex
/z-dimensional projective space.

(iii) The case (2, 2). Applying Theorem 1 and 2, we obtain that G\K is
a holomorphic fibre bundle whose base space is the unit disk {#eC; \z\ <1},
and whose fibre is PX{C).
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