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In the potential theory, we have two theorems called the existence theorem
concerning the potential taken with respect to real-valued and symmetric
kernels. They are stated as follows. Let K(X, Y) be a real-valued function
defined in a locally compact Hausdorff space ), lower semi-continuous for any
points X and Y, may be+ co for X =Y, always finite for X+ Y and bounded
from above for X and Y belonging to disjoint compact sets of Q respectively.
For a given positive measure y, the potential is defined by

Ku(X) = | K(X, V)du(Y),

and the K-energy of u is defined by S Ku(X)du(X). A subset of Qis said to

be of positive K-transfinite diameter, when it charges a positive measure u of
finite K-energy with compact support, otherwise said to be of K-transfinite
diameter zero. Let K(X, Y) be symmetric : K(X, Y)=K(Y, X) for any points
X and Y. Then we have two following theorems.

Theorem A. Let F be a compact subset of positive K-transfinite diameter,
and f(X) be a real-valued upper semi-continuous function with lower bound on F.
Then, given any positive number a, there exist a positive measure p supported by F
and a real constant v such that
1) wF)=a,
(2) Ku(X)=f(X)+v on F with a possible exception of a set of K-transfinite
diameter zero, and

3) Ku(X)=f(X)+v on the support of .

Theorem B. In the above theorem, suppose the further. conditions : K(X,
Y)>O0 and inf f(X)>0 for any points X and Y of F. Then, given any compact
subset F of positive K-transfinite diameter, there exists a positive measure u supported
by F such that
(1) Ku(X)= f(X) on F with a possible exception of a set of K-transfinite diameter

zero, and
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(2) Ku(X)=f(X) on the support of .

Recently, N. Ninomiya ([5]) proved the existence theorems for the
potential taken with respect to complex-valued and symmetric kernels and to
complex-valued measures, which are the extension of the above theorems in
the case of the real-valued kernels. We state them as follows. Let K(X, Y)be
a complex-valued function defined in a locally compact Hausdorff space Q. Let
k(X, YV)=RK(X, Y) be a function lower semi-continuous, symmetric, may be
+ oo for X =Y, always finite for X ¥ and bounded from above for X and Y
belonging to disjoint compact sets of Q respectively, and n(X, Y)=JK(X, Y)
be a finite continuous function satisfying that n(X, Y)=—n(Y, X) for any
points X and Y of Q. For any compact subset F and any positive numbers a
and b, denote by M(a, F, b) the family of all the complex-valued measures
supported by F whose real parts and imaginary parts are positive measures with
total mass @ and b respectively, by M(a, F) the family of all the complex-valued
measures supported by F whose real parts are positive measures with total mass
a and imaginary parts are any positive measures, by I(F, b) the family of all
the complex-valued measures supported by F whose real parts are any positive
measures and imaginary parts are positive measures with total mass b, and by
M(F) the family of all the complex-valued measures supported by F whose real
parts and imaginary parts are any positive measures. For any such measure o,
the potential is defined by

Ka(X) = S K(X, Y)da(Y).
Then we have two following theorems.

Theorem A’. Let F be a compact subset of positive k-transfinite diameter,
and f(X) be a complex-valued function whose real part Rf(X) and imaginary part
Sf(X) are upper semi-continuous functions with lower bound on F. Then, given
any positive numbers a and b, there exist a measure o of W(a, F, b) and a complex
constant <y such that
(1) RKa(X)=R{f(X)+v} on F with a possible exception of a set of k-transfinite

diameter zero,

(2) RKa(X)=R{f(X)+v} on the support of Ra,
3) IKa(X)=J{f(X)+ v} on F with a possible exception of a set of k-transfinite
diameter zero, and

4) SKa(X)=J{f(X)+v} on the support of Ja.

Theorem B’. In the above theorem, suppose the further conditions : k(X,
Y)>0, inf Rf(X)>0 and inf Jf(X)>0 for any points X and Y of F. Then,
given any positive number a such that a|n(X, Y)| <Jf(X) for points X and Y of
F, there exist a measure o of WM(a, F) and a real constant <y such that
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(1) RKa(X)=R{f(X)+9} on F with a possible exception of a set of k-transfinite
diameter zero,

(2) RKa(X)=R{f(X)+7} on the support of Ra,

(3) JIKa(X)=Jf(X) on F with a possible exception of a set of k-transfinite
diameter zero, and

4) IJKa(X)<If(X) on the support of Ja.

Similarly, given any positive number b such that b|n(X, Y)| <Rf(X) for points

X and Y of F, there exist a measure o of W(F, b) and a complex constant <y such

that

(1) RKa(X)=Rf(X) on F with a possible exception of a set of k-transfinite
diameter zero,

(2) RKa(X)<Rf(X) on the support of Ra,

(3) IKa(X)=IJ{f(X)+} on F with a possible exception of a set of k-transfinite
diameter zero, and

4) JKa(X)=J{f(X)+} on the support of Ja.

In this paper we are going to extend these existence theorems to the
potential taken with respect to complex-valued kernels and to complex-valued
measures, under an additional condition of the continuity principle for the
adjoint kernel.

Let K(X, Y) be a complex-valued function, not always symmetric, defined
in a locally compact Hausdorff space Q. Let k(X, Y)=KR(X, Y) be a function
lower semi-continuous, may be+oco for X =Y, always finite for X+Y and
n(X, V)=JK(X, Y) be a finite continuous function. For any positive measure
1, consider the adjoint potential defined by

ku(X) = [ kX, V)au(Y) = [ Y, X)du(Y).

Then, we have two following theorems.

Theorem 1. Let F be a compact subset of positive k-transfinite diameter,
and f(X) be a complex-valued function whose real part Rf(X) and imaginary part
If(X) are upper semi-continuous functions with lower bound on F, and a and b be
two positive numbers. If the adjoint kernel IVe(X , Y)=k(Y, X) satisfies the
continuity principle”, there exist a measure o of M(a, F, b) and a complex constant
o such that
(1) RKa(X)=R{f(X)+ v} on F with a possible exception of a set of k-transfinite

diameter zero,

1) We say that k(X, Y) satisfies the continuity principle when for any positive measure
£ with compact support, the following implication holds: (the restriction of ku(X) to the support
of u is finite and continuous)=(kx(X) is finite and continuous in the whole space £).
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(2) RKa(X)=<R{f(X)+v} on the support of Rax,
3) IKa(X)=IJ{f(X)+ v} on F with a possible exception of a set of k-transfinite
diameter zero, and

4) JKa(X)=J{f(X)+} on the support of Jar.

Theorem 2. In the above theorem, suppose the further conditions : k(X, Y)
>0, inf Rf(X)>0, and inf If(X)>0 for any points X and Y of F. Then, there
exist a measure o of M(F)-and a real constant <y such that
(1) RKa(X)=R{f(X)+v} on F with a possible exception of a set of k-transfinite

diameter zero,

(2) RKa(X)<R{f(X)+v} on the support of Ra.

3) [Ka(X)=Jf(X) on F with a possible exception of a set of k-transfinite
diameter zero, and

4) IKa(X)=<Jf(X) on the support of Ja.

Similarly, there exist a measure o of (F) and a pure imaginary constant v such

that :

(1) RKa(X)=Rf(X) on F with a possible exception of a set of k-transfinite

diameter zero,

(2") RKa(X)=<Rf(X) on the support of Ra,

(3) IKa(X)=J{f(X)+9} on F with a possible exception of a set of k-transfi-
nite diameter zero, and

@) IKa(X)=IJ{f(X)+} on the support of Ja.
Before we prove the theorems, we prepare some lemmas.

Lemma 1. Let p be a positive measure with compact support. If the adjoint
kernel I:z(X , Y) satisfies the continuity principle, the set E={X|ku(X)=+ o} of
Q is of k-transfinite diameter zero.

Lemma 2. Let F be a compact subset, and f(X) be a complex-valued
function whose real part R f(X) and imaginary part J f(X) are upper semi-continuous
functions with lower bound on F respectively, and a and b be two positive numbers.
If the real part (X, Y) of K(X, Y) is a finite continuous function defined in Q,
there exist a measure ot of M(a, F, b) and a complex constant v such that
(1) RKa(X)ZR{f(X)+} on F,

(2) RKa(X)=R{f(X)+v} on the support of Ret,
(3) SKa(X)=3{f(X)+7} on F, and
4) JKa(X)=IJ{f(X)+} on the support of Ja.

Lemma 3. In above Lemma 2, suppose the further conditions : (X, Y)>0,
inf Rf(X)>0, and inf Jf(X)>O0 for any points X and Y of F and both Rf(X)
and Jf(x) are finite and continuous. Then, there exist a measure o of N(F) and
a real constant < such that
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(1) RKa(X)=R{f(X)+} on F,
(2) RKa(X)=R{f(X)+} on the support of Ra,
3) IKa(X)=Jf(X)on F, and

4) JIKa(X)=Jf(X) on the support of Ja.

Lemma 4. In above Theorem 2, suppose the further conditions : both
Rf(X) and Jf(X) are finite and continuous. Then, there exist a measure a of
W(F) and a real constant v such that
(1) RKa(X)=R{f(X)+v} on F with a possible exception of a set of k-transfinite

diameter zero,

(2) RKa(X)<R{f(X)+v} on the support of Re,
3) [YKa(X)=Jf(X) on F with a possible exception of a set of k-transfinite
diameter zero, and

4) SKa(X)<If(X) on the support of Ja.

Proof of Lemma 1. Let the set E be of positive k-transfinite diameter.
l;(X , Y) satisfying the continuity principle, there exists a positive measure o
such that
(a) the compact support of o is contained in the set E, and
(b) Iveo-(X) is finite and continuous in the whole space Q.

Hence we have

Sku(X)da(X)=+ oo, thatis, [Eo(X)du(X)=+ oo, which is a contradic-

tion.

Proof of Lemma 2. For any positive number ¢, denote by m(c, F) the set
of all positive measures supported by F with total mass ¢. We define the
point-to-set mapping @ on the product space m(a, F)x m(b, F) into §(m(a, F)
x m(b, F)) which is the family of all closed convex subsets in m(a, F)x m(b, F).
For any a=p+iv, that is, a=(u, v) of m(a, F)xm(b, F), @ is defined as
follows.

(1, v))=A{(N, T)Em(a, F)Xm(b, F)|
Srp(X) —np(X) = Rf(X))ANX) + [ (kv(X) +np(X) — Jf (X))dm(X)
— inf (S (kp(X)—mo(X) — RFX)IEX) + S (ko(X) +nu(X) — Sf(X))dn(X) |
(&, n)em(a, F)x m(b, F))}.
Obviously ¢((r, v))*+¢. For, putting
d = inf (S(kw(X) —no(X) = RICENEX) +/ (o X) + mps(X) ~ I/ (X)dn(X)|
(&, n)em(a, F)x m(b, F)), there exist sequences of

E.m(a, F) and n,=m(b, F) such that
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Skp(X) —nv(X) —Rf(X))ELX) + S (kv(X) +np(X) —IAX))dn(X)—>d. Aswe
have vaguely convergent subnets &, &m(a, F) and 7, &m(b, F) such that
£4,—E, and 7,,,—m,, there holds @((u, v))2(&,, 7). Moreover ¢((u, v)) is upper
semi-continuous in the following sense : if nets {§,|acD, a directed set} and
{¢4| @€ D} converge to 8 and ¢ with respect to the product topology respectively,
and if 5, @({,) for any a =D, then s€@(f). In fact, if we put 8, =N, Ta),
gm:(am 'Yw)) 82(7\'0) To); and §=(¢70) 70)’ we have
Sk o(X) =174 (X) — RECO)IN(X) + S (BY o X) + 10 X) — S F (X)) 7o X)
< Sk u(X) =7 X) = RICOWEC) +/ (ool X)+ 10, X) — JF (X)) dn(X)
for any (&, n)em(a, F)xXm(b, F). By the limit process, we have
S (ko o( X) —ny(X) = Rf(X))dNo(X) + [ (k7o(X) +n0y(X) — I f(X))d7(X)
< [ (ko X)— 7 X) ~ R (X)AEX) + S (ko X) + no X)— S (X))dn(X)

for any (&, n)em(a, F)xXm(b, F). Then we have d&¢({). Consequently, by
the fixed point theorem of Fan and Glicksberg ([1]), there exists an element
a=(u, viem(a, F)Xm(b, F) such that ¢((u, »))2(u, v). Hence we have

Sr(X) —m(X) = Rf(X))d (X)) + S (kr(X) +np(X) —Ff(X))dv(X)
= S k(X)) —mo(X) =R (X))AE(X) + S (kr(X) +npu(X) = Ff(X))dn(X)
for any (&, n)em(a, F)Xm(b, F). If we put

72 = - | ul20) = mo((X) - RAX (),
and
7 = - | (o (X) +mis(X) = $£(X))dv(X), we have

[ (30— 100 = RAX) — 7)) + | () +1s(X) ~ 3 (X) —)dn(X) 20

for any (€, n)em(a, F)xm(b, F). The existence of a positive measure &,
m(a, F) with f(ku(X)—nv(X)—RfAX)—7,)dE,(X) <O leads us to a contradiction
as follows. For any signed measure 7, supported by F with total mass zero such
that =wv+ &7, is a positive measure for any positive number £( <1), we have

S X) —nv(X) = RAX) —v,)dE(X)
+ES(h(X) +npu(X) —If(X) —7:)d7(X) 2O0.
Making €é—0, we have a contradiction. So we have
S(Rp(X) —nv(X)—Rf(X)—7v,)dE(X)=0 for any Ecm(a, F).

By the same way as above, we have
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Skv(X)+nu(X)—Jf(X)—7,)dn(X)=0 for any nem(b, F).

By these inequalities, we have
(1) ku(X)—nm(X)=Rf(X)+v, on F,
(2) Eku(X)—nv(X)=Rf(X)+v, on the support of u,
3) kv(X)+nu(X)=IJf(X)+v,on F, and
4) Ekv(X)+nu(X)=]f(X)+v,on the support of ».
Consequently for a complex-valued measure aa=p+iv of M (a, F, b) and a
complex constant y =1, +147,, we have
(1) RKa(X)=R{f(X)+v} on F,
(2) RKa(X)=R{f(X)+v} on the support of Ra,
(3) IKa(X)ZI{f(X)+7} on F, and
4) IJKa(X)=J{f(X)+v} on the support of Ja.
Thus the proof is completed.

Proof of Lemma 3. Putting (X, Y)=k(X, Y)/Jf(X) and #/(X, V)=
n(X, V)IJf(X), F(X, Y) snd #/(X, Y) are finite continuous functions, and
K(X, Y)>0 for any points X and Y of F. Taking a positive number a which
is less than

min{k(X, V)| XeF, YeF}-min{Jf(X)| X F}
max{|n(X, Y)||XeF, YeF} -max{Jf(X)| XeF}
we have [(F'v(X)+n'u(X))dv(X)>0 for any (u, v)em(a, F)xm(l, F). For
this positive number a we consider the point-to-set mapping @ defined on m(a, F)
xm(1, F) into F(m(a, F)X m(1, F)) which is the family of all closed convex
subsets in m(a, F)xm(1, F). For any (p, v)em(a, F)xm(1, F), ¢ is defined
as follows.

o((u, ) = {(\, )Em(a, F)xm(1, F)|
Se(X) —no(X)— [(kv(X) +n/ w(X))du(X)- RAK)ANX) +
S VX) +nl w(X))dr(X) = inf (S (fps(X)—mo(X) -
SO H(X) -+ w(X))do(X)- RF(X))AEX) +
SR (X w(X))dn(X) | (5, n)& m(a, F)xm(1, F))}

Obviously @((u, v)) is a non-empty closed convex subset and @ is upper semi-
continuous as in Lemma 2. Hence, by the fixed point theorem of Fan and
Glicksberg, there exists an element (u,, v,)Em(a, F)Xm(1, F) such that ¢((x,,
v,))2(po» v,). Then we have

Sk X) =m0 X) = [(K'vo( X) + 7 1o X))o o(X) - RAX))d 1o (X) +
SEv(X)+1 p( X))dv(X) = S (kpo( X) —nvi(X) —
SEvo(X) +7 po( X))dv(X)- Rf (X))AE(X) + S (K v X) + 1 o X))dn(X)
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for any (&, n)em(a, F)xm(1, F). Putting

V.= %-f (kuf(X) —nvy(X) — S(R'v(X) + 1 p( X)) dv(X) - Rf(X))dp(X) ,
and

72 = SR vy(X)+7 u(X))dv(X), we have
JS(kpo(X)—nv(X)— [(R'vy(X) +7 po(X))dvy(X) - Rf(X) —7,)dE(X) +
JEv(X) +7 p(X)—v.)dn(X) =0

for any (&, n)em(a, F)xm(1, F). By the same way as Lemma 2, we have two

following inequalities.

(1) Sk X) = mo(X) — [k X) 7 i X)dwo X)- RFX) —7)dEX) 20 for
any £€m(a, F), and

(2) S(Ev(X)+n' u(X)—7,)dn(X)=0 for any n&m(l, F).

From these inequalities we have

(1) kpy(X)—nvy(X)—7,-Rf(X)=v, on F,

(2) ku(X)—nv(X)—7v,-Rf(X)=1, on the support of u,,

(3) Ev(X)+n u(X)=v,on F, and

(4) Rv(X)+n'u(X)=r, on the support of v,.

By the property of the number a, v, is strictly positive. Putting p=*°, »="0
Y V2
and 'y=ﬁ, we have
Ve

(1) ku(X)—n(X)ZRf(X)+v on F,

(2) ku(X)—nv(X)=Rf(X)+v on the support of x,

3) Ev(X)+nu(X)=If(X) on F, and

4) Av(X)+nu(X)=Jf(X) on the support of ».

Thus, the measure o = +7v, and the real constant v are what Lemma 3 needs.

Proof of Lemma 4. As k(X, Y) is a lower semi-continuous function
such that inf {k(X, Y)|(X, Y)eFx F}=2p>0, there exists an increasing net
{k.(X, Y)|me D, a directed set} of finite continuous functions such that li’rnn k,,
(X, Y)=k(X, Y) and %,,(X, Y)>p for any points X and Y of F. Taking a
positive number a which is less than

p-min{J f(X)| X F}
max{Jf(X)| X F} -max{|n(X, V)| |(X, Y)eFxF}

by Lemma 3, there exist measures a,, = pp+ v, M(a, F, 1) and real constants
Ym and &, such that

(1) kppm(X) —n0p(X) — Y- Rf(X) =7, on F,

(2)  Rppto(X)—10,(X) — Vi Rf(X)=",, on the support of p,,,
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) K uwvm(X)+7 um(X)=vh on F, and

4 Eknv(X)+n' p,(X)=7n on the support of »,,.

In the first place, we are going to see the boundedness of the net {y,|meD}.
Obviously v,>0 for any m. Supposing that Hmrify,’.. =400, we can take a

subnet {v;, [m;e D, a directed set} such that v,, —>v, u,,—>p, ¥Ym~—>+, and
k. (X, Y) 1 k(X, Y) along D for any points X and Y of F. K/(X, Y) satisfying
the continuity principle, we have, by the above inequality (3),

Kv(X)+n p(X)=lim K, v, (X)+1im 7, (X) = lim vh, = + oo

on F with a possible exception of a set of k-transfinite diameter zero. Then

we have that kv(X)= + oo on F with a possible exception of a set of k-transfinite

diameter zero, which is a contradiction by Lemma 1. Using the boundedness

of the net {y},|me& D}, we can see the boundedness of the net {v,,|meD} by

the same way as above. Consequently, considering an adequate directed set E,

we have that v, —v,, ¥;,—>7y py, 1o v, v, and k; (X, Y) 1 k(X, Y) along

E. Hence we have, by the same way as M. Kishi ([2] and [3])

(1) ku(X)—n v(X)—v,+Rf(X)=7, on F with a possible exception of a set
of k-transfinite diameter zero,

(2) ku(X)—nvy(X)—7,-Rf(X)=<v, on the support of u,,

(3) Rv(X)+n u,(X)=v, on F with a possible exception of a set of k-transfinite
diameter zero, and

4) Fv(X)+n uy(X)=<v, on the support of v,.

By the property of the number a, v, is strictly positive. Putting p="*°, p="0,

2 2

and fy=(ZL, we have

(1) k,u,(?%)—nv(X )=Rf(X)+v on F with a possible exception of a set of k-
transfinite diameter zero, ‘

(2) ku(X)—m(X)=Rf(X)+v on the support of u,

() k(X)) +nu(X)=Jf(X) on F with a possible exception of a set of k-transfin-
ite diameter zero, and

4) kv(X)+nu(X)=Jf(X) on the support of ».

Thus, the measure @ = u +1v, and the real constant y are what Lemma 4 needs.

Finally, we prove the theorems.

Proof of Theorem 1. As k(X, Y) is a lower semi-continuous function such
that — co <k(X, Y)=< + oo, there exists an increasing net {,,(X, Y)|meD, a
directed set} of finite continuous functions such that lim %,(X, Y)=k(X, Y)

for any points X and Y of F. Then, by Lemma 2, there exist measures a,,=
tom+1v,, of M(a, F, b) and complex constants vy,,=yn+iv4 such that
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(1) Rppten(X) =10, (X)=Rf(X)+ 5 on F,

(2)  Rumppra( X)— 10, (X) =R f(X)+ v on the support of £,

B) (X)) +1up(X)=If(X)+ 4 on F, and

4)  kpvm(X) +1u,(X)=Jf(X)+ s on the support of v,

By the same way as Lemma 4, there exist a measure a=u+iv of M(a, F, b)

and a complex constant y =, 41y, such that

(1) RKa(X)=R{f(X)+v} on F with a possible exception of a set of k-transfi
nite diameter zero,

(2) RKa(X)=R{f(X)+v} on the support of Re,

3) JIKa(X)=J{f(X)+v} on F with a possible exception of a set of k-trans-
finite diameter zero, and

4) JYKa(X)=J{f(X)+v} on the support of Ja.

Proof of Theorem 2. Let {f,,(X)|meD} and {g,,(X)|meD} be decrea-
sing nets of positive finite continuous functions on F such that f,(X) | Rf(X)
and g,,(X) | Jf(X). Taking an adequate positive number a, by Lemma 4,
there exist measures o,, = y,, +v,, of M(a, F, 1) and real constants y,, and v,/
such that
(1) Rpp(X)—n10,(X)— 71« fm(X)=1 on F with a possible exception of a set

of k-transfinite diameter zero,

(2)  kpm(X)—nv,,(X)— v - fu(X)= 77 on the support of p,,,

(B) kvp(X)+num(X)=vr -ga(X) on F with a possible exception of a set of
k-transfinite diameter zero, and

4) kv (X)+nu(X)<v - g2.(X) on the support of v,,.

By the same way as Lemma 4, there exist a measure o =y +iv of M(F) and a

real constant v such that

(1) ku(X)—nv(X)=Rf(X)+v on F with a possible exception of a set of k-
transfinite diameter zero,

(2) Ru(X)—n v(X)<Rf(X)+v on the support of u.

3) Av(X)+nu(X)= Jf(X) on F with a possible exception of a set of k-trans-
finite diameter zero, and

4) Av(X)+nu(X)<Jf(X) on the support of ».

Thus, the measure o = p +1v, and the real constant y are what Theorem 2 needs.

The analogous arguments will give us the latter part of Theorem 2.

Corollary. Let F be a compact subset of positive k-transfinite diameter, and
f(X) be a real-valued upper semi-continuous function with lower bound on F, and a
be a positive number. If the adjoint kernel l;(X , Y) satisfies the continuity principle,
then there exist a measure p of m(a, F) and a real constant vy such that
(1) kRu(X)=f(X)+v on F with a possible exception of a set of k-transfinite

diameter zero, and

) ku(X)< f(X)+ on the support of p.
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ReEMARK. In above Theorem 2, we can not always reduce the constant vy
to zero. We may consider the following example : let Q be a finite space
consisting of two points X, and X,, and RK(X, V) and JK(X, Y) be given

by the matrices ({ %) and (_(1) (1)) respectively, and R f(X) and I f(X) be equal

to 1 everywhere. Then, for the compact set F =(), we have no measure o such
that

(1) RKa(X)=Rf(X) onfF,

(2) RKa(X)=Rf(X) on the support of Re,

3) JIKa(X)=Jf(X) on F, and

4) JYKa(X)=Jf(X) on the support of Ja.

Remark. Putting (X, ¥V)=JK(X, Y)=0, we can assert that our Theorem
2 contains the existence theorem obtained by M. Kishi and M. Nakai ([2], [3]
and [4]).
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