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1. Introduction

In [1], we defined fake surfaces to study 3-manifolds with boundary from
their spines. Let £F(s, t) denote the set of all the acyclic closed fake surfaces
P with #@2(P)= s a n d ^s(P) — t (# means the number of the connected
components). In this paper, we consider about the subset <S(s, i) of ΞF(s, t) each
of whose elements can be embedded in some 3-manifόld.

A connected closecd fake surface P is called a normal spine, if P can be
embedded in a 3-manifold. That is, taking the regular neighborhood, we can
regard P as a spine of a 3-manifold, when P is a normal spine. Of course, every
element of 6(s, t) is a normal spine.

We use the following notations. For a polyhedron P, P means the boundary
of P, that is, P is the union of the free faces of P, and P means the interior of
P defined by P=P— P. P means the closure of P, and / is the closed unit
interval [0, 1]. For the other unexplained notations, see [1].

In §2, we prepare some lemmas for acylic normal spines by defining the
connected sum of closed fake surfaces and the r-th complement. In §3, we obtain
the sufficient condition that <5(s, t) is empty, that is, Theorem 1 states that <S(s,
t) is empty if s^2ty (and, in the last section, we show that this is also the
necessary condition). In §4, two types of elementary deformation of normal
spines in the respective 3-manifolds are introduced and two invariants a(P) and
β(P) are defined for a closed fake surface P. And, in Theorem 2, we prove

a(P)=zr = β(P) when P is a r-th complement. In §5, all the elements of the set
<S(s, 2) are characterized geometrically using the concept of the union of closed
fake surfaces, from which the Zeeman's conjecture is shown to be true for any
element of £(s, 2), easily.

Zeeman's conjecture [2] : If P is a contractίble 2-polyhedron, then Pxl is
collapsible where 1= [0, 1] is the closed unit interval.

In the last section, we obtain the geometrical characterizations of the
elements of 6{2t-\y t) and β(2t-.2, i) for all integers t^ 1 and t^2, respectively.
And, as the consequences, the Zeeman's conjecture for them follows.
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Furthermore, in Theorem 6, we show that 6(s, t) contains a spine of a 3—ball
for any pair (s, t) with 1-^s^lt— 1. Combining this with Theorem 1, we
obtain the following.

Theorem. 6(s> t) is empty if and only if s7>2t.

On the other hand, it is easily seen that ΞF(s, t) is empty if and only if t=0.

The sufficiency follows from Theorem 1 [1]. To show the necessity, replace a

2-ball B in $[(P) of an element P of 6{2t— 1, t) by the element 3Ίs_2t+1 so that

6=Jls_2t+1 (for the definition of Jls_2t+1, see Definition 6, §6, [1]).

Note that 6(1, 1) consists of a unique element Fln by Theorem 4 [1] which

is named "Abalone" by H. Noguchi and the realization of an abalone in the

Euclidean 3-sρace R3 is written in Figure 0 which is shown by Y. Tsukui.

Fig. 0

The author thanks to Professors H. Noguchi, T. Homma, F. Hosokawa
and all the members of their seminer All Japan Combinatorial Topology Study
Group for their kind advices, suggestions and useful discussions.
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2. Lemmas
o

DEFINITION 1. Let P f be a closed fake surface with a 2-ball B{ in M(P)>
i= 1, 2, and/ a homeomorphism from 2^ to B2. We define the connected sum
P1oP2 oiP1 and P 2 with respect to Blf B2 and/by P 1 o P 2 = ( ( P 1 - O J U (P2-62))/f.

DEFINITION 2. First, define the O-th complement to be an acyclic normal
spine. A connected closed fake surface X is said to be a τ-th complement if
there exists an acyclic fake surface P such that XoP is a (r— l)-th complement.

DEFINITION 3. Let P be a fake surface. We say that a connected
component £7 of U(P) is isolated if @3(C/) is empty. And let v(P) denote the
number of the isolated components of U(P).

Lemma 1. Let P be a closed fake surface. If U(P) is embeddable in an
orientable 3-manifold, P is a normal spine.

Proof. Let W be an orientable 3-manifold in which U(P) is embedded,

and let M b e an element of M(P) with boundary M=b1 U ••• \Jbj. Let us

consider Mxl and ^4ι = &ι X/ where / denote the closed unit interval [0, 1] and

M=Mx 1/2, and the 2-nd derived neighborhood iV, of b{ in the boundary of

the regular neighborhood JV of U(P) in Wmod U(P), i= l, ,y. Since N is a

disjoint union of orientable closed 2-manifolds, there is a homeomorphism /,-

from Aι onto N4 which is the identity on b{. Then, we obtain a homeomor-

phism hM from [jAf — MxI onto U ΛΓ, defined by /,. on each A{. Define the

3-manifold

V= U(( iVU(Mx/))/U
M

that is, V is the 3-manifold obtained from N and M(P) XI by identifying A{

and Λ̂ , by/ t for all t=l, •••, j and for all elements M of M(P). Obviously,

P is embedded in the 3-manifold V, completing the proof.

Lemma 2. Let P be a closed fake surface with H^P) = 0. Then, P is a

normal spine if and only if U(P) can be embedded in R3, the Euclidean 3-space.

Proof. Sufficiency follows immediately from Lemma 1. So, we prove
Necessity. Let ff be a 3-manifold in which P is embedded. Since W is
orientable and U(P) collapses to the 1-polyhedron @2(P), the regular
neighborhood N of U(P) in W is a disjoint union of solid tori with certain
genus. Then, iV is embeddable in R3, and hence, so is the subpolyhedron U(P).

Lemma 3. ( i ) Let X be a r-th complement. Then, we have H1(X) = 0
= Z+' -+Zofrankr.
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(ii) A r-th complement X is a normal spine,
(iii) Let X=Xλ°X2 be a r-th complement. Then, X{ is a rrth complement

for i=ly 2, andr1 + r2=r+l.

Proof. The proof goes by induction on r. Whenr = 0, there is nothing
to prove (i) and (ii). So, we prove (iii). By Lemma 14 [1], we may assume
that Xλ is acyclic. Then, X2 is a 1-st complement from the definition. Since
X is a normal spine, X1 is also a normal spine, by Lemma 2, because U(X^) is
contained in U(X) and is embeddable in R3. Thus, Xλ is a O-th complement.
Now, we consider the case r ^ 1. That is, there is an acyclic closed fake surface
P such that X°P is a (r— l)-th complement, where the connected sum is taken
with respect to the 2-balls Bx and BP contained in M(X) and M(P) and a
homeomorphism/from Bx to J§P. Define Q = (XoP) \J(BP*v) where v is an
ideal coing point over BP, that is, (BP*v) is the cone from v over BP and
(XoP)[}φp*v) = BP. Using the inductive hypothesis H1(XoP) = 0 and
H2(XoP) = Z+ ~+Z of rank r- 1, we obtain i2\(£) = 0 and H2(Q) = Z+ ••• Λ-Z
of rank r by the Mayer-Vietoris exact sequence. Since Hg(Q) = Hg(X) + Hq(P)
and P is acyclic, we see H1(X) = 0 and H2{X) = ZΛ- — +Z of rank r. This
proves (i). By the inductive hypothesis, U{X°P)= U(X) U U(P) can be
embedded in i?3. ThenU(X) is, of course, embeddable in R3, and hence, by
Lemma 2, X is a normal spine. This proves (ii). Now, we may assume that
the 2-ball Bx is contained in Xly because Bx can be moved away from X2

when Bx Π (^i Π X2) is non-empty by an isotopy of X. Then, we can write
XoP=(X1oP)oX2. Then, by the inductive hypothesis, (X^P) is a r'-th
complement and X2 a r2-th one and r' + r2 = r. Then, X1 is a (r '+l)-th
complement, because P is acyclic. Thus, we have r1 = r / + 1, and hence r1 + r2

= r 4-1. This completes the proof of Lemma 3.

Lemma 4. Lei P fo α normal spine with H^P) = 0 and H2(P) = Z. Then,
@3(P) is empty if and only if P is a 2-sphere.

Proof. Sufficiency is trivial. We prove Necessity. It is clear that a
2-sphere satisfies the required conditions and the other 2-manifolds do not.
Hence Lemma 4 is true if P is a 2-manifold. So, we assume that ®2(P) ίS non-
empty and try to prove that such P does not exist. Let U(P)= U1 U ••• U Un

where £/,- means a connected component of U(P) for / = 1 , , n. Then, each
U{ must be isolated, because @3(P) is empty. And since P is a normal spine
with fl'1(P) = 0, Ui is neither SxτT nor SxσT, by Lemma 24 [1], Lemma 2
and Corollary to Theorem 1[1]. That is, U^SxT for any i= 1, , n. The
proof goes by induction on n. When n= 1, M(P) consists of three 2-balls by
Lemma 12 [1] and Proposition 4 [1], and P is obtained from M(P) by identifying
their boundaries as indicated in Figure 1.
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Fig. 1

Then, we have H2(P) = Z-\-Z which contradicts to our hypothesis H2(P) = Z.
Now, we deal with the case n^>2. Then, there is an element M with # M^>2
in M(P) by Lemma 14 [1], and a boundary component b of M disconnects P
into two fake surfaces Px and P 2 such that &2(Pi) ιs non-empty for both i= 1, 2,
by Lemma 14 of [1]. Let P=P{J (b*v) and P, = Pf. U (b*v), i= 1, 2, where v is
an ideal coning point over b. Then, by the Mayer Vietoris exact sequence, we
obtain H1(P) = 0 and H2(P) = Z + Zy and hence H1(Pi) = 0 for both i= 1, 2, and
H2(P1) + H2(P2) = Z+Z. Suppose H2(P1) = 0. Then, P x is an acyclic closed
fake surface without 3-rd singularity, which is a contradiction to Theorem 1 [1].
Thus, we see H2(Pi) = Z for both /= 1, 2. Since P is a normal spine, P, is also
a normal spine by Lemma 2. And, clearly, l^#ί7(P, )^n—1 holds true,
because @2(P, ) is non-empty. This contradicts to our inductive hypothesis,
competing the proof.

REMARK. It is easy to see that a 2-sphere S2 is a 1-st complement,
because S2oFln is homeomorphic to Fln.

Lemma 5. Let P=P1°P2 be an element of <5(s, t). Suppose that P1 is not
acyclic. Then, P1 is either a 2-sphere or a 1-st complement with 1 ̂  ^@2(P1) ̂  t — 1.

Proof. By Lemma 14 [1], P 2 is acyclic, and hence #@3(P2)^> 1, by Theorem
1 [1]. Then, Px is a 1-st complement. Suppose ^Z(P^) = 0. Then, by Lemma
4, Px is a 2-sphere. And when \<L%βz(P^, we see ^ ( P J ^ f - l , because #@3

Lemma 6. Le£ P be an element of ΞF(s> t) with an isolated component U=

SxT. Then, just one of the connected components of P—U is acyclic.

Proof. By Lemma 13 [1], P— U is the disjoint union of three connected
fake surfaces P19 P2 and P3. First, we show that at least one of P19 P 2 and P 3

is acyclic. Suppose that P 3 is not acyclic. Then, by Lemmal4 [1], we obtain an
acyclic fake surface P 0 = P 1UC/UP 2 Since U=SxT, we obtain an acyclic
closed fake surface Q from P o by collapsing P o from its boundary Po by the
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natural way. And the 1-sρhere @2(t/) disconnects Q into two fake surfaces
Qx and Q2 so that P, is contained in Qi9 for i=ίy 2. Note that P t is
homeomorphic to Qi9 i= 1, 2. Then, by the Mayer-Vietoris exact sequence, we
obtain H2(Q{) = Q for both i= 1, 2, and H1(Q1) + H1(Q2) = Z. Hence, either Qx

or ζ)2 is acyclic, that is, either P1 or P2 is acyclic. Suppose that there are two
acyclic components Px and P2. Define P0=P1 U C7 l)P2 Then, we easily have

) = 0 and H2(P0) = Z which implies H2(P) Φ 0. This proves Lemma 6.

Lemma 7. Let P be an element of <5(s, t) with v{P)^\. Then, there is an

isolated component U in U(P) such that there exists a connected component Q of

P^U with v(Q) = 0 and #@3(£)Φ0.

Proof. Let t/t be an isolated component of U(P). Then, U—Sx T by
the same reason as in the proof of Lemma 4. And hence P—U{ has three
connected components PιΊL, Pi2 and P f 3. By Lemma 6, we assume that Pi3 is
acyclic. Then, of course, P ί V is not acyclic, for j = 1,2. If we consider Pt>/ =
P%j U (P, y*^y), we see that P t i is acyclic, for j = 1,2, by Lemma 14 [1]. And
#@3(Λ7) = #@s(^y)Φ0, by Theorem 1 [1], for J= 1, 2. Now, it is sufficient to
prove the following statement (*) by induction on v = v(P{1).

(*) Either (1) U£ is a required isolated component U inU(P), or (2) we can find

U in P t l , holds true.

Proof of (*). When z> = 0, there is nothing to prove by taking U=Uj and
Q = Piv So, we assume that (*) is true for p(Pil)^v— 1, and we deal with the
case v^\. Let Uk be an isolated component of U(P) contained in P t l . Then,
either Pkl or P^2 is contained in P t l , say Pkl. Then, (*) is true for Pkl, by the
inductive hypothesis, because

Then, clearly, U is contained in P t l , completing the proof.

3. The sufficient condition that <?(s, t) be empty

Proposition 1. Let P be an element of 6(s, t). Then, we obtain s^>2v(P)

+ 1.

Proof. The proof goes by induction on s. We see s^l by Theorem 1
[1], and when s=l, there is nothing to prove, because v(P) = 0 by Theorem 1
[1] again. We deal with the case s ̂ 2 . If U(P) contains no isolated component,
that is, v(P) = 0, Proposition 1 is trivially ture for P. Thus, we may assume
that there exist an isolted component U and a connected component Q of P— U
with v(Q) = 0 and #@3((?)φ0 obtained in Lemma 7. Let us consider X=P— Qy

Y=X{j{X*v) and W=Q\j\Q*v) where v is an ideal coning point over the
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1-sphere X=Q. Then, we can write P= WoYy by identifying the 2-balls
(X*v) and (Q*v). And, by Lemma 3, there are following two cases.

Case 1. W is a O-th complement and Y is a 1-st one.
By Lemma 14 [1], X must be acyclic, and hence we can collapse X to an

acyclic closed fake surface X' from Xby the natural way, because U=SxT.
Then, X' is also a normal spine by Lemma 2, and we easily have 1 <^#(&2(X') = s'
^s—ly because X' is acyclic and does not contain?/. Hence, we have s'^i2v{X')
+ 1 , by the inductive hypothesis. Put s" = #&2(W). Then, we see s =

Hence,

s-2v(P) = (/-/' + \)-2{v(X') + \.)

because #@3( W) = #@3(£?) Φ 0 means s" φ 0. Therefore, we obtain* ^ 2 v(P) •+• 1.
Case 2. W is a 1-st complement and Y is a 0-th one.
In this case, we see l^#®2(Y) = s1^s— 1, by the condition / ' φ θ . Then,

by the inductive hypothesis, we obtain s1^2v(Y)+l, because Y is an acyclic
normal spine by Lemma 2. And, in this case, we see s = s1-\-s" and v(P) = v(Y)
from which s^2v(P)-\-l follows by a similar calculation to Case 1. Thus,
Proposition 1 is established.

Theorem 1. β(s, t) is empty if s^2t.

Proof. Suppose that <S(s, t) is non-empty. And let P be an element of
6(s, t). Then, we have

from Proposition 1. Hence s^2t— 1. This proves Theorem 1.

4. Elementary deformations of normal spines in the 3-manifolds

Let P be a normal spine in a 3-manifold V with nonempty 2-nd singularity,
i. e. @2(P)Φφ. Suppose that there is a 1—ball A in P satisfying the following
conditions (1) and (2).

( 1 ) AΠ@2(P) = A= a^a,.
( 2 ) ax and a2 are vertices of @2(P) — @3(P).

Taking the 2-nd derived neighborhood N of A in V, N — (NΓ\P) consists
of four open 2-balls each of whose closures is a 2-ball J5t , i= 1, , 4. Let Bx

be the 2-ball contained in st (a19 V). Note that such a 2-ball is uniquely
determined (see Figure 2). Then, we may regard the 3—ball N=B1xI and
hence we can collapse N to N — B1 from the free face B1 = B1x 0.
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Fig. 2

DEFINITION 4. Define the normal spine P(l) by

and we say that P(l) is obtained from P by an elementary deformation in V {with
respect to A). Inductively, we can define P(r) as a normal spine obtained from
P(r— 1) by an elementary deformation in V, and we say that P(>) is obtained
from P by r times of elementary deformation in V.

DEFINITION 5. An elementary deformation is said to be of type /, if the
boundary A is contained in a connected component of @2(P), and of type II
otherwise.

DEFINITION 6. Let P be a closed fake surface. We define the invariants
a(P) and β(P) by

a(P) = #M(P)-#@2(P)-#@3(P), and

β(P) =

L e m m a 8. Let P be a normal spine of a Z-manifold V and P(r) a normal

spine obtained from P by r times of elementary deformation in V. Then, P(r)

is also a spine of V.

Proof. From the definition of P(r)y it is sufficient to prove that P and P(l)
are simple homotopy equivalent in V. Let N be the 2-nd derived neigh
neighborhood of A in V in the above definition. Then, P expands to P U N
and P\JN collapses to P(l) in F, and hence P and P(l) are simple homotopy
equivalent in F\
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The following two lemmas are immediate from Figure 2.

Lemma 9. Let P be a normal spine in a 3-manifold V and P (r) a normal
spine obtained from P by r times of elementary deformation of type I in V. Then,
we have;

( 1 ) !PJίP(r)) = #@2(P), and
( 2 ) #®3(P(r)) = m(P) + 2r.

Lemma 10. Let P be a normal spine in a ^-manifold V and P(r) a normal
spine obtained from P by r times of elementary deformation of type II in V. Then,
we have;

( 1 ) #@2(P(r)) =

( 2 )
( 3 )

( 4 )

Proposition 2. Let P be an element of 8{s, t). Then, we obtain α(P) = 0 =
β{P).

Proof. The proof is done by induction on s. When ί = l , Proposition
4 and Proposition 5 [1] give the answer. Suppose s^2. Since P is connected,
we can apply an elementary deformation of type 77 to P in some 3-manifold,
and we obtain P(l) which belongs to <5(s— 1, ί + 2) by Lemma 10. Then, by
the inductive hypothesis and Lemma 10, we have

a(P) =

= 0.

And, by the same way, we can prove β(P) = 0.

Theorem 2. Let X be an r-th complement. Then, we obtain a(X) — r

=β(X).

Proof. The proof is done by induction on r. When r=0, Proposition 2
gives the answer. We assume r ^ l . Let P be an acyclic fake surface (closed)
such that XoP becomes an (r— l)-th complement. Note that P is necessarily a
0-th complement. Clearly, the followings hold true.
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Then, we have a(XoP) = a(X) + a(P)-1 and β(XoP) = β(X) + β(P)-1. Thus,
by the inductive hypothesis and Proposition 1 which means a(P) = 0 = β(P)> we
easily obtain a(X) = r=β(X).

5. £(s,2).

DEFINITION 7. Let P f be a closed fake surface with a 2-ball B{ in M(P,),
i= 1, 2, and let/be a homeomorphism from B1 onto B2. We define the union
Pλ@P2 of P1 and P2 with respect to Bly B2 and/by P 1 0 P 2 = (P1 UP2)//.

Proposition 3. Lei P fo aw element of <£(3, 2). Γλέw, we oitam P = F} !

Proof. First, we obtain v(P) = 1, because

The 2-nd inequality follows from Proposition 1. Let U denote the isolated
component of U(P) and P, the connected component of P—U, i = l , 2, 3.
Since #@3(P) = 2, we may assume that P 2 contains no point of @3(P). We show
that P 2 is acyclic. Suppose not. Then, P 2 = P 2 U (P2*^) *s a acyclic closed fake
surface without 3-rd singularity. This contradicts to Theorem 1 [1]. Putting
Q = P-P2, we define Q=Q\j(Q*v). Then, clearly, we can write P=P2oQ
using the 2-balls (P2*^) and (Q*v). Since P 2 is acyclic, P 2 is not acyclic, by
Lemma 14 [1]. Then, by Lemma 5, P 2 is a 2-sphere, because #@3(P2) = #&3

(P2) = 0. Hence P 2 is a 2-ball. Define Pi = p.\j(p.*υi)9 for i= 1,3. Then,
Pi is an acyclic normal spine by Lemma 14 [1] and Lemma 2, because P f is not
acyclic by Lemma 6 for ί = l , 3. Since P{ is acyclic, we see #©3(^)^1, and
hence #@,(Pί)= 1 by #@3(Λ) + #©3(̂ 3) = #@3(P) = 2. Similarly, we have #©2(Pt )
= 1 for /= 1, 3. Thus, P{ is an element of 5(1, 1), that is, P~Fltl, for ί= 1, 3.
It is clear that P is obtained from P1 and P 2 by identifying the 2-balls (iV^i)
and (P2**>2) to the 2-ball P2, that is, P = P 1 ® P 3 - P ί , 1 θ F ί , 1 .

REMARK. The number of the elements of <?(3, 2) is, clearly, at most 6.

Lemma 11. Let Gbea 1st complement. Suppose that #@2(G) = 1 = %®*{G).
Then, G is uniquely determined as described in Fig. 3.

Proof. We obtain the Homology groups £Γ1(G) = 0 and H2(G) = Z by
Lemma 3. By Theorem 2, we see a(G)=l = β(G) which impies #M(G) = 3.
Then, by Lemma 12 [1] and Proposition 4 [1], it is known that M(G) consists
of three 2-balls M19 M2 and Mz. Then, we check all the possible cases as
explained in the last half part of the proof of Theorem 2[1]. And we obtain
the identification of Mv M2 and M3 as shown in Fig. 3, uniquely.
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1-st complement G.

Fig. 3

REMARK. From now on, let G denote the unique 1-st complement
obtained in Lemma 11.

REMARK. Let BG be a 2-ball in M(G) and P an acyclic closed fake surface
with a 2-ball BP in M{P). Let G<>P be the connected sum with respect to BG

and BP. Then, it is easy to see that G°P is acyclic if and only if BG is contained
in M3 (for M3, see Fig. 3). And, from now on, BG denotes the 2-ball contained
inM 3 .

Proposition 4. Let P be an element of G(2, 2). Then, we obtain P =

Proof. There exists an element M in M(P) with #M=2, because §M{P)
= 4 and §M(P) = 5 by Theorem 2. By cutting P along a boundary component
of M and attaching a 2-ball to the boundary of each connected components,
we can write P=PχoP2 and we have #@3(Pf ) φ 0 for i= 1, 2, because #@2(P,)φ0
is clear and v(P) = 0 implies i/(P,) = 0 for both ί = l , 2. Note that v(P) = 0
follows from Proposition 1, Then, by Lemma 3, We may assume that Px is a.
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1-st complement and P 2 is a 0-th one. Since # @2(P, ) = 1 = # @3(Pf ) for both
i= 1, 2, we have P1=G and P 2 = Fϊ t l, completing the proof.

REMARK. The number of the elements of <?(2, 2) is at most 4.

Proposition 5. <?(1, 2) consists of three elements F\t2, F\>2» tfwrf ̂ 1,2 wAί
αr^ described in Fig, 4.

Proof. By the same way as expained in the last half part of the proof of
Theorem 2 [1], we obtain the elements as shown in Fig. 4.

(Bing's house with two rooms)

q - i P
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REMARK. The element F\2 of <?(1, 2) is well-known as "Bing's House
with two rooms' \

Theorem 3. Zeemarΐs conjecture holds true for any element P of 6{s, 2),
that is, Pxl is collapsible.

Proof. Case 1. When s=3, we see P=F\A(BFltl by Proposition 3, and
hence, Pxl is collapsible by Proposition 8 of [1].

Case 2. When s = 2, we obtain P=G°P, from Proposition 4. Then, by
the same way as Case 2 in the proof of Theorem 3 [1], Pxl is collapsible,
because G—6G is collapsible.

Case 3. When s= 1, Px I is collapsible by the same way as Case 1 in the
proof of Theorem 3 [1], by attaching a 3-ball to M1 (for Mly see Fig. 4).

6. S(sy t) with l^s^lt-1.

In this section, we characterize, geometrically, the elements of the sets
G(2t— 1, t) and (2t—2, t) and prove the converse of Theorem 1.

Theorem 4. Let P be an element of <S(s, i) with s=2t—\ and t^2. Then,
we can write P=P1φP2 where P{ belongs to 6{siy tt) with si = 2ti— 1, t1-\-t2=t and
* , ^ l , ί = l , 2 .

Proof. The proof goes by induction on t. When £ = 2, Proposition 3 gives
the answer. So, we assume t^ 3. Since s = 2t — 1, we obtain v{P) = t — 1, because

s-1)/2 = t-1.

by Proposition 1. Hence v{P)^\. Let U and Q be the isolated component of
U(P) and the connected component of P— U obtained in Lemma 7. Now, we
show that Q is not acyclic. Suppose not. Then, Λ=A U(^4*^) must be acyclic
by Lemma 14 [1], where^4 = P-£>. And we have v(Ά) = v(P) and # @ 2 ( A ) ^ - 1,
because, by Lemma 7, v(Q) = 0 and #@3(£))φ0 implies #g)2(£))φ0. Then, we
obtain

^s-\ = 2t-2 = 2v{A)

which contradicts to Proposition 1, because A is a normal spine by Lemma 2.
Thus, Q is not acyclic and hence A is acyclic. Then, A collapses naturally to an
acyclic normal spine Ax from A Note that U=Sx T. And v(A1) = v(P)— 1 is
trivial. Then, we have $£>2{A^) = s— 2, because

= 2ί-3

-ί-2.
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And we see #©3(^0 Ξ>f — 1, because

t-2 = v{P)-\ = ^ 1 ) ^ * - 2 -

Since #@3(0φO by Lemma 7, we obtain #&3(A1) = t-l. Therefore, ^ is an

element of £(ίί, t[) with

*ί = ί - 2 - 2f-3 = 2(ί—1) —1 = 2ίί—1.

And consequently, we see #@2(C?) = 1 = #@3(£)). Let *S denote the base space of

the Γ-bundle U=SxT.

Case 1. Suppose that S bounds a 2-ball in M(At). Let Q=£> \J(0*v).

Then, 0 belongs to £(1, 1). And it is easy to write P = A1(BQ by identifying

the 2-balls B and (Q*v). Putting Pt = A 1 and P2=Q, the required conditions

in Theorem 4 are satisfied.

Case 2. Suppose that S does not bound a 2-ball in M(A1). By the

inductive hypothesis, we can write A 1 = A2φAs with respect to the 2-balls B2

and B3 contained in M(A2) and M(A3), respectively, where Ag belongs to 6{s'u
t't) with jj = 2ί{—1, t'2 + t'% = t{ and ί f.^l, £=1,2. Since S does not bounds

a 2-ball in M(A1)9 S is contained in either A2—B2 or A3—B3y say A2—B2. Let

us define P ^ Λ U E/ U Q and P 2 = ̂ f3. Then, using the 2-balls B2 and 5 3, we

can write P=P1®P2. And it is clear that Pλ belongs to £(J£ + 2, ίj +1). And

hence, s'2 + 2 = (2t'2— 1) + 2 = 2(^ + 1)— 1. Thus, the reaquired conditions in

Theorem 4 are satisfied. And Theorem 4 is now established.

Corollary to Theorem 4. For any element P of β(2t- 1, t) with t^ 1, the

Zeeman's conjecture holds true, that is, Pxl is collapsible.

Proof. By Theorem 4, S(2t- 1, t) is contained in Ct defined in §9 [1], for

any integer t^: 1. Then, Pxl is collapsible by Proposition 8 [1].

In order to characterize the elements of G(s, t) in the case s = 2t—2, we

extend the definition of the union of closed fake surfaces as follows.

DEFINITION 8. Let P, be a closed fake surface with an acyclic fake surface

A{ such that the boundary A{ is a 1-sphere contained in M{P{) and A{ is a

connected component of P disconnected by A, , £= 1, 2. Suppose that there is

a homeomorphism/from A1 onto A2. Define the union PλQ)P2 of Px and P2

with respect to A = A1 = A9 and/by P1®P2 = (P1 LJP2)//.

Then, in general, we obtain the following.

Proposition 6. (1) Let P be an element of β(s, t) with v(P)^\. Then,

there exists an acyclic fake surface A in P such that we can write P=P1(BP2-
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(2) If we can write P—P1φP2 for an element P of 6(s, t), we obtain the

following conditions.

( i ) P, belongs to β{Si, <f), i = 1, 2.

( i i ) s{^

(Hi) ti^

(iv) s1+s2-

( v ) tl + t2-

Proof. Since z>(P)^>l, there exists an isolated component U in £/(P).

And we see U= SxT, because P belongs to <S(sy t). Then, by Lemma 6, there

exists an acyclic component A in P— U, uniquely, and the other components

than A of P—U are denoted by Qλ and Q2. Note that #@3(ρ, ) φ 0 for i= 1, 2,

because Qt = ζ)t U (Q,*^t) is an acyclic normal spine and hence if@3(j2, ) = :$©:$

(Qt.)φ0, by Theorem 1 [1]. Now, unpasting P at A, we obtain two closed fake

surfaces Pλ and P 2 , and it is clear that P can be written P = P x φ P 2 . This

proves (1). And it is also clear that P t is an acyclic normal spine for i= 1, 2,

that is, P, belongs to 6(sg> £,), because both P and 4̂ are acyclic. We may

assume P£ZDQiy for z = l , 2. Then, the conditions (ii) and (iii) are proved by

@/(0ί)U@/(-4) = @/(-Pί), for i = l , 2, a n d ; = 2,3. The condition (iv) follows

from the facts © 2 (p j U U U @2(P2) = @2(P) and @2(^)c@2(P, ), for both ί— 1, 2.

The last condition (v) is also satisfied by @3(P1) U@3(P2) = ©3(g1) U@3(£>2) U@3

@8(P) and @3(^)c@3(P l) for both i = l , 2.

REMARK. Let G be the 1-st complement obtained in Lemma 11 and BG

the 2-ball in M3 of G (see Remark to Lemma 11). From now on, G—BG is

denoted by Go.

Theorem 5. Let P be an element of 6(s, t) with s=2t-2andt^3. Then,

we can write P=P1φP2 so that A is either a 2-ball or Go and P t belongs to <S(siy

*,), i= 1, 2. And if A is a 2-ball, we obtain sx = 2tx- 1 and s2 = 2t2-2. If A is

Go, we obtain si = 2ti — 2,for both /= 1, 2.

Proof. This theorem is also proved by induction on t by the similar

argument to the proof of Theorem 4. However, the preparation is more

complicated. In this case, we obtain v(P) = t—2, because

t-2 = s

We can find an isolated component U in U(P) and a connected component Q in

F ^ T / with v(Q) = 0 and #@3(£>)4=0, by Lemma 7.
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Step 1. In this step, we study about Q.
Case 1. Suppose that Q is acyclic.

In this case, we show #@2(£?)==1==#@3(£?) which implies Q = G0> because
Q = Q Ό(Q*v) is a 1-st complement.

Since Q is acylic and v(Q) = Oy we obtain F = F\J(F*v) is a acyclic normal

spine with v(F) = v{P), where F=P-Q. Then, we see #@2(F) = s - 1 and #@3

(F) = t— 1. because

= 2 ί — 3

and * - 1

by Proposition 1 and Theorem 1. Hence, we obtain the required condition
, because

is true for j = 2, 3.
Case 2. Suppose that ζ) is not acyclic.
In this case, F is acyclic and hence we obtain an acyclic normal spine Fλ

from F by a natural collapsing. And we have v(F1) = v(P)— l = t— 3. Then,
by the similar arargument to the proof of Theorem 4 and Case 1 in this step,
we can prove that the pair {^2(FX\ #@3(ί\)) is either ( ί - 2 , t- 1) or (s-3, t-
2). Thus, we obtain the following statement (*).

(*) («®.(0), #®.(0)) = (*> *) if and only if (#@2(^), β@a(F1)) = (*- 1-*,
ί~ft), forΛ=l, 2.

Step 2. Suppose t=3 (the 1-st step of induction).
Then, v{P) = t-2=\. Then, by Proposition 6, we can write P=P1®P2.

Since ^(P)^ 1 implies v{P{) = Q for both /= 1, 2, we obtain the two possibility.
That is, if #@3(̂ 4) = 0, then A is a 2-ball by Lemma 4 or Lemma 5. And hence
P{ belongs to β(i, ϊ) for i= 1, 2. And if #@3(^4)φ0, we see 4̂ = G0 by Step 1
(Case 1), because v(A) = 0. Hence, we can write P = P 1 φ P 2 , and P, belongs

to 6(2, 2) for both /= 1, 2, by Proposition 6.
Step 3. We deal with the case ί^4.
Case 1. Suppose that Q is acyclic.
In this case, take A = Q. Then, Q = G0 by Case 1 of Step 1, and hence,

P=P1φP2 and Px belongs to £{siy ί, ), / = 1 , 2. By Proposition 6, we obtain s1

+ s2 = s and ί ^ 2 and t1-\-t2=t^rl and ^ 2 . Put si = 2ti — ui) / = 1 , 2. Then,
we obtain ^ + #2 = 4, because
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2t-(ux + u2-2) = (2t1-u1) + (2t2-u2)

= ^ + s2

= s

= 2t-2.

Since u{^\ by Theorem 1, for both i= 1, 2, we see that the pair (uly u2) is either
(1, 3) or (2, 2). Suppose ux= 1. Then, Px must be an element of <S(2t1— 1, tj.
But, for any integer t^l, it is clear, from Theorem 4, that no element of 6(2t1

— 1, £j contains Go as a subpolyhedron. Thus, ' (u19 u2) must be (2, 2), and
hence si = 2ti — 2 for both /= 1, 2. This completes the proof of this case.

Case 2. Suppose that Q is not acyclic.
In this case, the construction of Px and P2 highly resembles to the last Case

2 in the proof of Theorem 4. We use the statement (*) in Case 2 in Step 1.
When k= 1, we can write F1 = F2®F3 by the inductive hypothesis. And if k = 2,

we can write F1 = F2Q)F3 by Theorem 4. And we obtain Pλ and P2 as required
in Theorem 5.

Thus, Theorem 5 is established.
When we define the set C of acyclic normal spines obtained from 6(1, 1)

and 6(2, 2) using P1®P2 and PX@P2 as the set Ct defined in §9 in [1], we have

the following proposition by the similar reason to that of Proposition 8 [1],

Proposition 7. Let P be an element of C. Then, Pxl is collapsible.

And we have the following as a corollary to Theorem 5, because 6(2t—2y t)
is contained in C by Theorem 5.

Corollary to Theorem 5. For any element P of 6(2t—2, t) with t^2, the
Zeeman's conjecture is true, that is, Pxl is collapsible.

We prepare the following lemmas to prove Theorem 6.

Lemma 12. 6(1, t) contains a spine of a 3-ball, for any integer t7> 1.

Proof. Suppose that t is odd, that is, t = 2r+l. When r = 0, there is

nothing to prove, because the unique element JPίfl (abalone) of 6(1, 1) is a spine

of a 3-ball by Theorems 3 and 4 [1]. We construct a normal spine of a 3-ball

in 6(1, t) inductively. Let P be an element of 6(1, 2(r—1) + 1) which is a

spine of a 3-ball V. Then, we can apply an elementary deformation of type

/ to P in V, and we obtain a normal spine P(l) of V, by Lemma 8. Then, by

Lemma 9, it is clear that P(l) belongs to 6(1, t). When t is even, we obtain a

spine of a 3-ball in 6(1, t) by the same way as above from an element of 6(1, 2)

which is non-empty by Proposition 5 and it is known, by Theorem 3, that any
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element of 6(1, 2) is a spine of a 3-ball.

Lemma 13. Suppose that Go is embedded in a 3-ball V properly, that is,
Go Γl V= Go. Then, V collapses to Go.

Proof. Let N be the regular neighborhood of Go in V meeting the boundary

regularly, that is, NΓϊV is a regular neighborhood of Go in Ϋ. Since Go is

collapsible and Go is a 1-sρhere, N is a 3-ball and NΓi V is an annulus. Then,

V—N is the disjoint union of two 3-balls V1 and V2. And, clearly, iVΠ V~

iVΠ F ^ F is a 2-ball for /= 1, 2. Then, F collapses to iV by collapsing each V{

to Fj and iV collapses to Go. Thus, F collapses to Go.

Lemma 14. Le£ P be a normal spine of a 3-manifold W, that is, W
collapses to P. Then, GoP is also a spine of W, where the connected sum is taken
with respect to BG.

Proof. Let BP be the 2-ball of P used in the connected sum GoP, and let
N be the 2-nd derived neighborhood of BP in W mod BP. Note that we can
expand P to P U N in W. It is possible to replace BP by Go in N to satisfy
G0f]N=G0=J3P, because N is a 3-ball and Go and 23P are 1-spheres. Then,
by Lemma 13, iV collapses to Go, and hence P{JN collapses to (P—BP){JGO

which is clearly GoP. Thus, GoP is a spine of W.

Theorem 6. 8(s, t) contains a spine of a 3-ball for any pair (s, t) with 1 ^

Proof. By Lemma 12 and Corollary to Theorem 4, each of G(\, t) and
G(2t— 1, t) contains a spine of a 3-ball for any integer ί ^ l . So, assuming 2 ^
s^2t—2, we construct a spine Q of a 3-ball in <S(s, t) inductively. Suppose
that P i s a spine of a 3-ball in 6{s-\, t-1). Define Q = GoP. Then, by
Lemma 14, Q is also a spine of a 3-ball and clearly Q belongs to G(s, t).
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