ON REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE SOLVABLE GROUPS

Michitaka HIKARI

(Received January 28, 1971)

Let K be a field and π a finite group. We denote by $G_{0}(K \pi)$ the Grothendieck ring of $K \pi$. Let π_{i} be a finite group and M_{i} be finitely generated $K \pi_{i}$-module, $i=1,2$. Let us denote by $M_{1} \# M_{2}$ the outer tensor product of M_{1} and M_{2}. We can define the natural ring homomorphism $\varphi: G_{0}\left(K \pi_{1}\right) \otimes G_{0}\left(K \pi_{2}\right)$ $\rightarrow G_{0}\left(K\left(\pi_{1} \times \pi_{2}\right)\right)$ by putting $\varphi\left(\left[M_{1}\right] \otimes\left[M_{2}\right]\right)=\left[M_{1} \# M_{2}\right]$. In this paper we study the kernel and cokernel of φ.

1. Let π be a finite group, E a finite normal separable extension of K which is a splitting field of π, and $\mathcal{G}(E / K)$ the Galois group of E over K. Let N be an $E \pi$-module with character χ and $\sigma \in \mathcal{G}(E / K)$. Then we define an $E \pi$-module σN, the conjugate of N, as usual and denote it's character by $\sigma \chi$. We denote the Schur index of N over K by $m_{K}(N)$.

Now, let π be the direct product of finite groups π_{1} and $\pi_{2}, \pi=\pi_{1} \times \pi_{2}$. Let M_{i} be an irreducible $K \pi_{i}$-module, $i=1,2$, and denote an irreducible $E_{\pi_{i}}$-component of $M_{i}^{E}=M_{i} \otimes_{K} E$ by N_{i}, the character of N_{i} by ψ_{i} and the Galois group E over $K\left(\psi_{i}\right)$ by $\mathcal{H}_{i}=\mathcal{G}\left(E / K\left(\psi_{i}\right)\right)$. Then, the following results can be found in [3].
(1) If $\sigma, \tau \in \mathcal{G}(E / K)$, then $\sigma N_{1} \# \tau N_{2}$ is an irreducible $E\left[\pi_{1} \times \pi_{2}\right]$-module also and $m_{K}\left(N_{1} \# N_{2}\right)=m_{K}\left(\sigma N_{1} \# \tau N_{2}\right)$.
(2) $M_{1} \# M_{2}$ is completely reducible. $M_{1} \# M_{2}=k\left(T_{1} \oplus \cdots \oplus T_{r}\right)$, where the $\left\{T_{i}\right\}$ are nonisomorphic irreducible $K \pi$-modules and $k=m_{K}\left(N_{1}\right) m_{K}\left(N_{2}\right) / m_{K}\left(N_{1} \# N_{2}\right)$. The $\left\{T_{i}\right\}$ have common K-dimension s, where $s=m_{K}\left(N_{1} \# N_{2}\right)\left(K\left(\psi_{1}, \psi_{2}\right): K\right)$ ($N_{1} \# N_{2}: E$).
(3) $M_{1} \# M_{2}$ is an irreducible $K \pi$-module if and only if the following conditions are satisfied:
(a) $m_{K}\left(N_{1}\right) m_{K}\left(N_{2}\right)=m_{K}\left(N_{1} \# N_{2}\right)$.
(b) $\mathcal{G}(E / K)=\mathcal{H}_{1} \mathcal{H}_{2}$.
(c) $\quad\left(K\left(\psi_{1}\right): K\right)\left(K\left(\psi_{2}\right): K\right)=\left(K\left(\psi_{1}, \psi_{2}\right): K\right)$.
(4) Let $\pi_{1}=\pi_{2}, \pi=\pi_{1} \times \pi_{1}$. Let M_{1} be an irreducible $K \pi_{1}$-module. Then $M_{1} \# M_{1}$ is irreducible if and only if M_{1} is an absolutely irreducible $K \pi_{1}$-module.

Since for any irreducible $K\left[\pi_{1} \times \pi_{2}\right]$-module M we can find a unique irreducible $K \pi_{i}$-module $M_{i}, i=1,2$, satisfying $M_{1} \# M_{2} \oplus>M$, the following is an immediate corollary to (3).
(5) We denote the order of a group π by $|\pi|$. Let Q be the field of rational numbers. If $\left(\left|\pi_{1}\right|,\left|\pi_{2}\right|\right)=1$, then

$$
\varphi: G_{0}\left(Q \pi_{1}\right) \otimes G_{0}\left(Q \pi_{2}\right) \sim G_{0}\left(Q\left[\pi_{1} \times \pi_{2}\right]\right) .
$$

One aim of this paper is to study the converse to (5).
2. Hereafter we assume char. $K=0$.

Lemma 1. If π_{1} and π_{2} are finite abelian groups, then $\operatorname{Ker} \varphi=0$ and Coker φ is torsion free.

Proof. Since the Schur index of abelian groups is 1 , then φ is a split map by (2).
Q.E.D. Let $j: \pi^{\prime} \rightarrow \pi$ be a group homomorphism. Then we have the induction and restriction functors

$$
\bmod -K \pi^{\prime} \xrightarrow[j_{*}^{*}=\mathrm{res}]{\left.\stackrel{j^{*}}{\leftarrow} \cdot \otimes_{\pi^{\prime}} K \pi\right)} \bmod -K \pi,
$$

and these functors induce the additive homomorphisms of Grothendieck rings, $G_{0}\left(K \pi^{\prime}\right) \underset{j_{*}}{\stackrel{j^{*}}{\rightleftarrows}} G_{0}(K \pi)$. . Let π_{i}^{\prime} be a subgroup of π_{i}. Then the following diagram is commutative.

Proposition 2. For any finite groups π_{1}, π_{2}, we have $\operatorname{Ker} \varphi=0$.
Proof. Since Ker $\psi=0$ for cyclic groups π_{1}^{\prime} and π_{2}^{\prime}, by the commutativity of the above diagram and the Artin's induction theorem, $\operatorname{Ker} \varphi=0$. Q.E.D. (But we can prove this proposition without the induction theorem.)

Now let π_{i}^{\prime} be a normal subgroup of π_{i}. Then we have the exact sequence $1 \longrightarrow \pi_{i}^{\prime} \xrightarrow{j} \pi_{i} \xrightarrow{p} \pi_{i}^{\prime \prime} \longrightarrow 1, i=1,2$. From this we obtain the following commutative diagram.

Let M be an irreducible $K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-module, E a finite normal separable extension of K which is a splitting field of $\pi_{1}^{\prime} \times \pi_{2}^{\prime}$ and $N_{1} \# N_{2}$ an $E\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-irreducible component of M^{E}, where N_{i} is the $E \pi_{i}^{\prime}$-irreducible module, $i=1,2$. Denote the characters of M, N_{i} by χ, ψ_{i} respectively and put $m=\left|\pi_{1}^{\prime \prime} \times \pi_{2}^{\prime \prime}\right|$.

Lemma 3. (a) If there exists an irreducible $K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-module M such that $\varphi_{3}^{\prime}([M]) \neq 0$ and

$$
m_{K}\left(N_{1}\right) m_{K}\left(N_{2}\right)\left(K\left(\psi_{1}\right): K\right)\left(K\left(\psi_{2}\right): K\right) / m_{K}\left(N_{1} \# N_{2}\right)\left(K\left(\psi_{1}, \psi_{2}\right): K\right) \nmid m,
$$

then Coker $\varphi_{2} \neq 0$.
(b) If there exists an irreducible $K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-module M such that $\varphi_{3}^{\prime}([M]) \neq 0$ and the inertial group of $\chi, I(\chi)=\left\{g \mid g \in \pi_{1} \times \pi_{2} \chi^{g}=\chi\right\}$, coincides with $\pi_{1} \times \pi_{2}$ and if Coker φ_{3} is torsion free, then Coker $\varphi_{2} \neq 0$.
(c) Let $K=Q$. Let π_{i}^{\prime} be an elementary abelian p-group and $\left|\pi_{i}^{\prime}\right|=p^{n_{i}}, i=1,2$, where p is an odd prime. Denoting by c_{i} the centralizer of π_{i}^{\prime} in π_{i}, then we can regard π_{i} / c_{i} as a group of morphisms of the module π_{i}^{\prime}. This identification induces the natural map

$$
\psi: \pi_{1} \times \pi_{2} \longrightarrow \pi_{1} / \mathfrak{c}_{1} \times \pi_{2} / \mathfrak{c}_{2} \longrightarrow P G L\left(n_{1}+n_{2}, p\right) .
$$

Then $j_{*} j^{*}$ Coker $\varphi_{3}=0$ if and only if

where r is a primitive root modulo p and the order of σ is $p-1$.
(d) If Coker $\varphi_{1} \neq 0$, then Coker $\varphi_{2} \neq 0$.

Proof. (a) Assume $j_{*} j^{*}[M]=\left[M \otimes_{K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]} K\left[\pi_{1} \times \pi_{2}\right]\right] \in \operatorname{Im} \varphi_{3}$. Then

$$
M \otimes_{K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]} K\left[\pi_{1} \times \pi_{2}\right]=M_{11} \# M_{21} \oplus M_{12} \# M_{22} \oplus \cdots \oplus M_{1 s} \# M_{2 s}
$$

where each $M_{i j}$ is a $K \pi_{i}^{\prime}$-irreducible module, $i=1,2, j=1,2, \cdots, s$.
$(*) \quad M^{E} \otimes_{E\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]} E\left[\pi_{1} \times \pi_{2}\right]=M_{11}^{E} \# M_{21}^{E} \oplus M_{12}^{E} \# M_{22}^{E} \oplus \cdots \oplus M_{1 s}^{E} \# M_{2 s}^{E}$.
Let $N_{i j}$ be an $E \pi_{i}^{\prime}$-irreducible component of $M_{i j}^{E}, i=1,2, j=1,2, \cdots, s$. Since $N_{1} \# N_{2}$ is an irreducible component of M^{E}, there exists an element $g_{i j}$ of π_{i} and $\sigma_{i} \in \mathcal{G}(E / K)$ such that $N_{i j}=\left(\sigma_{i} N_{i}\right) g_{i j}$. Let $\psi_{i j}$ be the character of $N_{i j}$. Then $m_{K}\left(N_{i j}\right)=m_{K}\left(\left(\sigma_{i} N_{i}\right) g_{i j}\right)=m_{K}\left(N_{i}\right)$ and $K\left(\psi_{i j}\right)=K\left(\psi_{i}\right)$. Comparing the E-dimensions of both sides in $(*)$, we obtain

$$
\begin{aligned}
& m_{K}\left(N_{1} \# N_{2}\right)\left(K\left(\psi_{1}, \psi_{2}\right): K\right) m\left(N_{1} \# N_{2}: E\right) \\
= & \delta \cdot m_{K}\left(N_{1}\right) m_{K}\left(N_{2}\right)\left(K\left(\psi_{1}\right): K\right)\left(K\left(\psi_{2}\right): K\right)\left(N_{1} \# N_{2}: E\right) .
\end{aligned}
$$

Hence

$$
m=s \cdot m_{K}\left(N_{1}\right) m_{K}\left(N_{2}\right)\left(K\left(\psi_{1}\right): K\right)\left(K\left(\psi_{2}\right): K\right) / m_{K}\left(N_{1} \# N_{2}\right)\left(K\left(\psi_{1}, \psi_{2}\right): K\right)
$$

This contradicts the assumption. Therefore $\operatorname{Coker} \varphi_{2}$ is not zero.
(b) Since $I(\chi)=\pi_{1} \times \pi_{2}, M \otimes_{K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]} K\left[\pi_{1} \times \pi_{2}\right] \cong M^{m}$ as $K\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-modules.

Since Coker φ_{3} is torsion free, we have Coker $\varphi_{2} \neq 0$.
(c) First, assume $j_{*} j^{*}$ Coker $\varphi_{3}=0$. We have $Q \pi_{1}^{\prime} \cong Q\left[X_{1}, \cdots, X_{n_{1}}\right] /\left(X_{1}^{n}-1\right.$, $\left.\cdots, X_{n_{1}}^{n}-1\right)$ and $Q \pi_{2}^{\prime} \cong Q\left[Y_{1}, \cdots, Y_{n_{2}}\right] /\left(Y_{1}^{n}-1, \cdots, Y_{n_{2}}^{p}-1\right)$. Let ζ be a primitive p-th root of unity and put $G=\mathcal{G}(Q(\zeta) / Q)$. Further put $M_{1}=Q\left[X_{1}, \cdots, X_{n_{1}}\right] /$ $\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta\right)^{G}$ and $M_{2}=Q\left[Y_{1}, \cdots, Y_{n_{2}}\right] /\left(Y_{1}-\zeta, \cdots, Y_{n_{2}}-\zeta\right)^{G}$ where ()G is the set of all G-invariant elements of (). Then each M_{i} is an irreducible $Q \pi_{i}^{\prime}$-module.

$$
\begin{aligned}
& M_{1} \# M_{2} \cong Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta, Y_{1}-\zeta, \cdots, Y_{n_{2}}-\zeta\right)^{G} \\
& \oplus Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta, Y_{1}-\zeta^{2}, \cdots, Y_{n_{2}}-\zeta^{2}\right)^{G} \\
& \oplus \cdots \\
& \oplus Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta, Y_{1}-\zeta^{p-1}, \cdots, Y_{n_{2}}-\zeta^{p-1}\right)^{G}
\end{aligned}
$$

as $Q\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-modules. If we put

$$
M=Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta, Y_{1}-\zeta, \cdots, Y_{n_{2}}-\zeta\right)^{G}
$$

we have $\varphi_{3}^{\prime}([M]) \neq 0$ and so, by the assumption, $j_{*} j^{*} M \oplus>M_{1} \# M_{2}$. Therefore we can find an element c of $\pi_{1} \times \pi_{2}$ such that

$$
\begin{aligned}
M \otimes c & =Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta, Y_{1}-\zeta, \cdots, Y_{n_{2}}-\zeta\right)^{G} \otimes c \\
& \cong Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta, \cdots, X_{n_{1}}-\zeta, Y_{1}-\zeta^{r}, \cdots, Y_{n_{2}}-\zeta^{r}\right)^{G} .
\end{aligned}
$$

Then we have $\psi(c)=\sigma$.
Conversely, assume $\psi\left(\pi_{1} \times \pi_{2}\right) \ni \sigma$. Let c be a representative of σ in $\pi_{1} \times \pi_{2},\left\{g_{i}, g_{i} c, g_{i} c^{2}, g_{i} c^{3}, \cdots, g_{i} c^{p-2}\right\}$ representatives of $\pi_{1}^{\prime \prime} \times \pi_{2}^{\prime \prime}$ in $\pi_{1} \times \pi_{2}$ and M an irreducible $Q\left[\pi_{1}^{\prime} \times \pi_{2}^{\prime}\right]$-module. (We can find representatives of above type.) Then $j_{*} j^{*} M=\sum_{i}^{\oplus}\left(M \otimes g_{i} \oplus M \otimes g_{i} c \oplus \cdots \oplus M \otimes g_{i} c^{p-2}\right)$ and there exist integers $r_{1}, \cdots, r_{n_{1}}, t_{1}, \cdots, t_{n_{2}}$ such that $M \otimes g_{i} \cong Q\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta^{r}, \cdots\right.$, $\left.X_{n_{1}}-\zeta^{r_{n_{1}}}, Y_{1}-\zeta^{t_{1}}, \cdots, Y_{n_{2}}-\zeta^{t_{n_{2}}}\right)^{G}$. By the assumption, $\sum_{j=0}^{p-2} M \otimes g_{i} c^{j} \cong$ $\sum_{j=1}^{p-1} \oplus\left[X_{1}, \cdots, X_{n_{1}}, Y_{1}, \cdots, Y_{n_{2}}\right] /\left(X_{1}-\zeta^{r}, \cdots, X_{n_{1}}-\zeta^{r_{n_{1}}}, Y_{1}-\zeta^{j t_{1}}, \cdots, Y_{n_{2}}-\zeta^{j t_{n_{2}}}\right)^{G}$ $\cong\left[Q\left[X_{1}, \cdots, X_{n_{1}}\right] /\left(X_{1}-\zeta^{r_{1}}, \cdots, X_{n_{1}}-\zeta^{r_{n_{1}}}\right)^{G} \# Q\left[Y_{1}, \cdots, Y_{n_{2}}\right] /\left(Y_{1}-\zeta^{t_{1}}, \cdots\right.\right.$, $\left.\left.Y_{n_{2}}-\zeta^{\boldsymbol{n}_{2}}\right)^{G}\right]^{u}$ where u is a positive integer. Therefore $\left[j_{*} j^{*} M\right] \in \operatorname{Im} \varphi_{3}$ and
$\varphi_{3}^{\prime}\left(j_{*} j^{*}[M]\right)=0$.
(d) Since $p^{*} p_{*}=1$, it is trivial.
Q.E.D.

Denote by $e(\pi)$ the exponent of a group π and by ζ_{n} a primitive n-th root of unity for any integer n.

Lemma 4. Let π_{i} be an abelian group, $i=1,2$, and G.C.D. $\left(e\left(\pi_{1}\right), e\left(\pi_{2}\right)\right)$ $=\Pi p^{h_{p}} . L$ Let $s_{p}=\max \left\{s \mid \zeta_{p} s \in K\right\}$ for each prime p. If there exists at least one prime p such that $h_{p}>s_{p}$, then $\varphi: G_{0}\left(K \pi_{1}\right) \otimes G_{0}\left(K_{\pi_{2}}\right) \xrightarrow{\not} G_{0}\left(K\left[\pi_{1} \times \pi_{2}\right]\right)$.

Proof. $K\left(\zeta_{p^{h_{p}}}\right)$ is an irreducible $K \pi_{i}$-module. Let us consider the underlying abelian group of $K\left(\zeta_{p^{k_{p}}}\right) \# K\left(\zeta_{p^{h_{p}}}\right)$. There exists an integer n such that $K\left(\zeta_{\left.p^{h_{p}}\right)}\right) \otimes_{K} K\left(\zeta_{p^{h_{p}}}\right) \cong K\left(\zeta_{p^{h_{p}}}\right)^{n}$. Since $\left(K\left(\zeta_{p^{h_{p}}}\right): K\right) \neq 1$, we have $n \neq 1$ and so Coker $\varphi \neq 0$.
Q.E.D.
3. (I) We can determine Coker φ when π_{1} and π_{2} are abelian groups. Let π_{1} be an abelian group with invariants l_{1}, \cdots, l_{n} and π_{2} an abelian group with invariants l_{n+1}, \cdots, l_{n+m}. Then

$$
\begin{aligned}
& \left.-\left(K\left(\zeta_{\text {L.C.M. }}^{1 \leqslant i \leqslant n}\left(d_{i}\right)\right): K\right)^{-1}\left(K\left(\zeta_{\substack{\text { L.C.M.M. } \\
1 \leqslant j_{n+j}^{m}}}\right): K\right)^{-1}\right\}
\end{aligned}
$$

where η is the Euler's function.
(II) We denote the center of a group π by $Z(\pi)$.

Theoram 5. Let $\underset{\pi_{1}^{\prime} \triangleleft \pi_{1}}{L . C . M .}\left(e\left(Z\left(\pi_{1} / \pi_{1}^{\prime}\right)\right)\right)=\Pi p^{m_{p}}, \underset{\pi_{2} \cup \pi_{2}}{L . C . M .}\left(e\left(Z\left(\pi_{2} / \pi_{2}^{\prime}\right)\right)\right)=\Pi p^{n_{p}}$ and $s_{p}=\max \left\{s \mid \zeta_{p} s \in K\right\}$. If there exists a prime p such that $\min \left(m_{p}, n_{p}\right)>s_{p}$, then $G_{0}\left(K \pi_{1}\right) \otimes G_{v}\left(K \pi_{2}\right) \nrightarrow G_{0}\left(K\left[\pi_{1} \times \pi_{2}\right]\right)$.

Proof. By assumption, there exists a normal subgroup π_{i}^{\prime} of π_{i} such that $p^{m} p \mid e\left(Z\left(\pi_{1} / \pi_{1}^{\prime}\right)\right)$ and $p^{n} p \mid e\left(Z\left(\pi_{2} / \pi_{2}^{\prime}\right)\right)$. Put $\pi_{i}^{\prime \prime}=\pi_{i} / \pi_{i}^{\prime}$ and consider the following commutative diagram;

Let G.C.D. $\left(e\left(Z\left(\pi_{1}^{\prime \prime}\right)\right), e\left(Z\left(\pi_{2}^{\prime \prime}\right)\right)=\Pi p^{h_{p}}\right.$. Since $h_{p}>s_{p}$, Coker $\varphi_{3} \neq 0$ by Lemma 4 and since Coker φ_{3} is torsion free by Lemma 1, then Coker $\varphi_{2} \neq 0$ by Lemma 3 (b), and terefore Coker $\varphi_{1} \neq 0$ by Lemma 3 (d).
Q.E.D.

Corollary 6. Let L. $\underset{\pi^{\prime} \triangleleft \pi}{\text { C.M. }}\left(e\left(Z\left(\pi / \pi^{\prime}\right)\right)\right)=\Pi p^{m_{p}}=h$. Then any splitting field of π contains the primitive h-th root of unity.

Proof. By (4) $G_{0}(K \pi) \otimes G_{0}(K \pi) \simeq G_{0}(K[\pi \times \pi])$ if and only if K is a splitting field of π. So this corollary is trivial.
Q.E.D.
(III) Theorem 7. Let π_{i} be a group of odd order. Assume that there exists an odd prime p such that $p \mid\left(\left|\pi_{1}\right|,\left|\pi_{2}\right|\right)$ and $2 \mid\left(K\left(\zeta_{p}\right): K\right)$ where ζ_{p} is a primitive p-th root of unity. Then $\varphi ; G_{0}\left(K \pi_{1}\right) \otimes G_{0}\left(K \pi_{2}\right) \nmid G_{0}\left(K\left[\pi_{1} \times \pi_{2}\right]\right)$.

Proof. Since π_{i} is a group of odd order, each π_{i} is solvable. We can consider a principal series $\pi_{i}=\pi_{i}^{(0)} \supset \pi_{i}^{(1)} \supset \cdots \supset \pi_{i}^{\left(n_{i}\right)} \supset \cdots \supset(1)$ and find integers n_{i}, r_{i} such that $\left|\pi_{i}^{\left(n_{i}\right)}: \pi_{i}^{\left(n_{i}+1\right)}\right|=p^{r_{i}, r_{i}>0 \text {, for each } i=1,2 \text {. And consider the }}$ following commutative diagram;

By Lemma 4, Coker $\varphi_{3} \neq 0$. Since

$$
\left(K\left(\zeta_{p}\right): K\right)\left(K\left(\zeta_{p}\right): K\right) /\left(K\left(\zeta_{p}\right): K\right) \nmid \prod_{i=1,2}\left|\pi_{i}: \pi_{i}^{\left(n_{i}\right)}\right|
$$

from Lemma 3 (a) it follows that Coker $\varphi_{2} \neq 0$ and so by Lemma 3 (d) we have Coker $\varphi_{1} \neq 0$.
Q.E.D.

In case $2 \nmid\left|\pi_{1}\right| \cdot\left|\pi_{2}\right|$, we can prove the converse to (5) by putting $K=Q$ in Theorem 7.

Corollary. 8 Assume $2 \nmid\left|\pi_{1}\right| \cdot\left|\pi_{2}\right|$. Then
$\varphi: G_{0}\left(Q \pi_{1}\right) \otimes G_{0}\left(Q \pi_{2}\right) \longrightarrow G_{0}\left(Q\left[\pi_{1} \times \pi_{2}\right]\right)$ if and only if $\left(\left|\pi_{1}\right|,\left|\pi_{2}\right|\right)=1$.
Corollary 9. Put $|\pi|=\prod_{i=1}^{m} p_{i}^{e}{ }_{i}$ and suppose that $p_{i} \nmid p_{j}-1$ for any indices $1 \leqslant i, j \leqslant m$. Then any splitting field of π contains the primitive $p_{1} \cdots p_{m}$-th root of unity.

Proof. We can show this corollary by the same method as in Theorem 7. Q.E.D.

Remark. If π is a nilpotent group, this result has been seen. For a given integer $n=p_{1}^{n_{1} \cdots} p_{m^{m}}^{n^{m}}$ all of groups of order n are nilpotent if and only if $p_{j} \nmid p_{r^{i}}^{n_{i}-t}-1$ for all t such that $n_{i}>t \geqslant 0$ and all i, j.
(IV) Here we consider 2-groups. In this case the groups with a cyclic subgroup of index 2 are important. For any character of 2 -groups is induced by the character of such groups. (See [4] p. 73 (14.3).) Such groups can be classified as follows. Put $|\pi|=2^{n+1}$,

I $\quad \pi=\left\langle s \mid s^{2^{n+1}}=1\right\rangle$.
II $\pi=\left\langle s, t \mid s^{2^{n}}=1, t^{2}=1, t s t^{-1}=s\right\rangle$
III $\pi=\left\langle s, t \mid s^{2^{n}}=1, t^{2}=s^{2^{n-1}}, t s t^{-1}=s^{-1}\right\rangle, \quad n \geqslant 2$.
IV $\quad \pi=\left\langle s, t \mid s^{2^{n}}=1, t^{2}=1, t s t^{-1}=s^{-1}\right\rangle, \quad n \geqslant 2$.
$\mathrm{V} \quad \pi=\left\langle s, t \mid{s^{n}}^{n}=1, t^{2}=1, t s t^{-1}=s^{1+2^{n-1}}\right\rangle, \quad n \geqslant 3$.
VI $\pi=\left\langle s, t \mid s^{2^{n}}=1, t^{2}=1, t s t^{-1}=s^{-1+2^{n-1}}\right\rangle, \quad n \geqslant 3$.
Theorem 10. Let π_{1} and π_{2} be arbitrary two groups of the above types. Then $\varphi: G_{0}\left(Q \pi_{1}\right) \otimes G_{0}\left(Q \pi_{2}\right) \longrightarrow G_{0}\left(Q\left[\pi_{1} \times \pi_{2}\right]\right)$ if and only if
(a) π_{1} is a group of type (I, $n=0$), (II, $n=1$) or (IV, $\left.n=2\right)$ and π_{2} is any,
(b) π_{1} is of type (I, $n=1$), (II, $n=2$), (III, $n=2$), (V, $n=3$) or (VI, $n=3$) and π_{2} is of type $I V$,
(c) π_{1} is of type $(\mathrm{I}, n=1),(\mathrm{II}, n=2)$ or $(\mathrm{V}, n=3)$ and π_{2} is of type VI.

Let $Q_{k}=Q\left(\cos \pi / 2^{k-1}+i \sin \pi / 2^{k^{-1}}\right)$,
$R_{k}=Q\left(\cos \pi / 2^{k-1}\right)$ and $S_{k}=Q\left(i \sin \pi / 2^{k-1}\right)$.

First, we shall write out the division algebras which are contained within $Q \pi$. (See, Feit [4] p. 63-p. 66.)

If π is of type $\mathrm{I},\left\{Q_{i}\right\}_{1 \leqslant i \leqslant n+1}$ are all of the division algebras of $Q \pi$. When π is of type II, $\left\{Q_{i}\right\}_{1 \leqslant i \leqslant n}$ are all of the division algebras. If π is of type III, then $\left\{D, R_{i}\right\}_{1 \leqslant i \leqslant n-1}$ are all of the division algebras where D is the division algebra of a faithful irreducible representation of π. Hence the center of D is R_{n}. If π
is of type IV, $\left\{R_{i}\right\}_{1<i \leqslant n}$ are all of the division algebras. When π is of type V and $n=3$, then Q_{1} and Q_{2} are only division algebras of π. If $n>3, Q_{3}$ is one of the division algebras of π. And if π is of type VI, $\left\{S_{n}, R_{i}\right\}_{1 \leqslant i \leqslant n-1}$ are all of the division algebras.

Lemma 11. Let χ be a faithful irreducible character of the group of type III. Then $m_{S_{k}}(\chi)=1$ for $k \geqslant 2$.

In case $k=2$, we can see the proof of Lemma 11, for example, in Feit [4]. In case $k>2$, we can prove it similarly.

Proof of Theorem 10. a) When π_{1} is of type (I, $n=0$), (II, $n=1$) or (IV, $n=2$), Q is a splitting field of π_{1}. Therefore φ is an isomorphism.
(b) If π_{i} is of type I, II or V, Q_{2} is one of the division algebras of $\pi_{i}, i=1,2$. Then Coker $\varphi \neq 0$, because $Q_{2} \otimes_{Q} Q_{2} \cong Q_{2} \oplus Q_{2}$.
(c) If π_{1} is of type I, II or V and π_{2} of type III, then Coker $\varphi \neq 0$ because $Q_{2} \otimes_{Q} D \cong\left(Q_{2}\right)_{2}$.
(d) If π_{1} is of type (I, $n=1$), (II, $n=2$) or (V, $n=3$) and π_{2} is of type IV, the division algebra of π_{1} is Q_{1} or Q_{2} and the division algebra of π_{2} is one of $\left\{R_{i}\right\}_{1 \leqslant i \leqslant n}$. Since $Q_{2} \otimes_{Q} R_{i} \cong Q_{i}$ for $3 \leqslant i \leqslant n$ and $Q_{2} \otimes_{Q} R_{i} \cong Q_{2}$ for $i<3$, we obtain Coker $\varphi=0$. If π_{1} is of type (I, $n>1$), (II, $n>2$) or (V, $n>3$) and π_{2} of type IV, Coker $\varphi \neq 0$, because Q_{3} is one of the division algebras of π_{1} and $Q_{3} \otimes_{Q} R_{3} \cong Q_{3} \oplus Q_{3}$.
(e) If π_{1} is of type (I, $n=1$), (II, $n=2$) or (V, $n=3$) and π_{2} is of type VI, Coker $\varphi=0$. For the division algebra of π_{2} is one of $\left\{S_{n}, R_{i}\right\}_{1 \leqslant i \leqslant n-1}, n \geqslant 3$ and $Q_{2} \otimes_{Q} S_{n} \cong Q_{n}$ for $n \geqslant 3, Q_{2} \otimes_{Q} R_{i} \cong Q_{i}$ for $3 \leqslant i \leqslant n-1$ and $Q_{2} \otimes_{Q} R_{i} \cong Q_{2}$ for $i<3$. If π_{1} is of type (I, $n>1$), (II, $n>2$) or (V, $n>3$) and π_{2} is of type VI, then Coker $\varphi \neq 0$ because $Q_{3} \otimes_{Q} S_{3} \cong Q_{3} \oplus Q_{3}$ and $Q_{3} \otimes_{Q} R_{3} \cong Q_{3} \oplus Q_{3}$.
(f) If π_{1} is of type (III, $n=2$), the division algebra of π_{1} is Q_{1} or D with center
Q. Since $D \otimes_{Q} R_{i}$ is a division algebra also for all i, we have $\operatorname{Coker} \varphi=0$ if π_{2} is of type IV. If $n>2$, there exists a division algebra of π_{1} with center R_{3}. From the fact that $R_{3} \otimes_{Q} R_{3} \cong R_{3} \oplus R_{3}$, it follows that Coker $\varphi \neq 0$ for the group π_{2} of type IV.
(g) Assume that π_{1} is of type III and π_{2} of type VI. Since $D \otimes_{Q} S_{n} \cong\left(S_{n}\right)_{2}$ by Lemma 11, we obtain Coker $\varphi \neq 0$.
(h) Suppose that π_{1} is of type IV. If π_{2} is of type (VI, $n=3$), the division algebra of π_{2} is Q_{1} or S_{3}. Since $R_{i} \otimes_{Q} S_{3} \cong Q_{i}$ for $3 \leqslant i \leqslant n$ or S_{3} for $i<3$, Coker $\varphi=0$. If π_{2} is of type (VI, $n=4$), then S_{4} is a division algebra of π_{2} and if π_{2} is of type (VI, $n>4$), R_{4} is a division algebra of π_{2}. Since $R_{3} \otimes_{Q} S_{4} \cong S_{4} \oplus S_{4}$ and $R_{3} \otimes_{Q} R_{4} \simeq R_{4} \oplus R_{4}$, in both cases Coker $\varphi \neq 0$.
Q.E.D.

Tokyo University of Education

References

[1] H. Bass: Algebraic K-Theory, Benjamin, 1968.
[2] C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, 1962.
[3] B. Fein: Representations of direct products of finite groups, Pacific J. Math. 20 (1967), 45-58.
[4] W. Feit: Characters of Finite Groups, Benjamin, 1967.
[5] W. Feit and J. G. Thompson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
[6] L. Solomon: The representation of finite groups in algebraic number fields, J. Math. Soc. Japan 13 (1961), 144-164.

