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Let K be a field and = a finite group. We denote by Go(Krz) the Grothen-
dieck ring of Kz. Let z; be a finite group and M; be finitely generated
Kr;-module, i=1, 2. Let us denote by M, # M, the outer tensor product of M,
and M,. We can define the natural ring homomorphism ¢: G(K7,)QG\(Kr,)
— Gy(K(m, X m,)) by putting o([M,]Q[M,])=[M,#M,]. In this paper we study
the kernel and cokernel of .

1. Let = be a finite group, E a finite normal separable extension of K which
is a splitting field of #, and G(E/K) the Galois group of E over K. Let N be
an Ez-module with character X and o = G(E/K). Then we define an Ez-module
oN, the conjugate of N, as usual and denote it’s character by oX. We denote
the Schur index of NV over K by my(N).

Now, let = be the direct product of finite groups =, and z,, 7=, X7,
Let M, be an irreducible Kz, -module, =1, 2, and denote an irreducible
Er.-component of MF=M,QxE by N,, the character of N, by +; and the
Galois group E over K(v,) by H,=G(E[K(y;)). Then, the following results
can be found in [3]. |
(1) If o, 7€ GE/K), then oN,§7N, is an irreducible E [z, X z,]-module also
and my (N, §N,)=mg(cN,§7N,). '

(2) M, M, is completely reducible. M, $M,=k(T,D---DT,), where the {T;}
are nonisomorphic irreducible Kz-modules and k=myg (N,)my(N,)[mg(N,#N,).
The {T,} have common K-dimension s, where s=myg(N,#N,)(K(Yr, ¥r,): K)
(N,#N,: E).
(3) M,#M,is an irreducible Kz-module if and only if the following conditions
are satisfied:

(a) mg(N,)mg(N,)=mg(N,§N,).

(b) GEIK)=H A,

() (K(n): K)K(): K)=(K (s v2): K).

(4) Let m,=m,, w=m,X=m,. Let M, be an irreducible Kz,-module. Then
M. # M, is irreducible if and only if M, is an absolutely irreducible Kz,-module.

Since for any irreducible K{[z,Xz,]-module M we can find a unique
irreducible Kz;-module M,, i=1, 2, satisfying M, % M,P > M, the following is
an immediate corollary to (3).
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(5) We denote the order of a group = by |z|. Let O be the field of rational
numbers. If (|=,|, |=,|)=1, then

P ‘GO(Q”1)® Gy(Qm,) = Gy Q[ X 75]) -
One aim of this paper is to study the converse to (5).
2. Hereafter we assume char. K=0.

Lemma 1. If =, and =, are finite abelian groups, then Ker p =0 and
Coker @ is torsion free.

Proof. Since the Schur index of abelian groups is 1, then @ is a split
map by (2). : : Q.E.D.
Let j: ’ —m= be a group homomorphism. Then we have the induction and
restriction functors

- J*=( Qg Kr)
mod— Kz’ .————>mod—Kn,

Jx=1¢€s

and these functors induce the additive homomorphisms of Grothendieck rings,
j*

Gy(Kn') &= Go(Kx)... Let z; be a subgroup of z;. Then the following diagram
J*

is commutative,

Ker @ —— Gy(Km,)®Go(Krs) —o Gy(K [, X ,]) ——> Coker ¢

Ker Y — G(K7])Q G(Kr?}) —\lf—> G(K[r} X m}]) — Coker yr
Proposition 2. For any finite groups =,, #2, we have Ker p=0.

Proof. Since Ker =0 for cyclic groups =1 and =3, by the commutativity
of the above diagram and the Artin’s induction theorem, Ker ¢=0. Q.E.D.
(But we can prove this proposition without the induction theorem.) A
Now let 7z be a normal subgroup of z;. 'Then we have the exact sequence

J .,

1 > ) 7, 4 1, 7=1, 2. From this we obtain the following

commutative diagram.
4

GKrl)QGKry) 2> G(K [y X w4/]) ~» Coker @,

p*]| s ) 2] | s ” 2*]| s
Gy(Kr)) @Gy(Km,) —> Gy(K[m, X m,]) —> Coker ¢,
7] |+ el

Gy(Krl) RG(Krp) —22> G(K[rh X w4]) —2» Coker ;.
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Let M be an irreducible K[z X 73]-module, E a finite normal separable extension
of K which is a splitting field of z{X =3 and N,#N, an E[r{X n}]-irreducible
component of M¥%, where N, is the Ex}-irreducible module, =1, 2. Denote
the characters of M, N, by X, 4, respectively and put m= |z}’ X =%’|.

Lemma 3. (a) If there exists an irreducible K [z} X w}]-module M such

that p4([M1)=+0 and )
e (N )y (N)(K(Yr1): K)(K(Yrz): K)[my (N BNYK (s, ¥ro): K) ¥ m,

then Coker @,=+0. _
(b) If there exists an irreducible K [} X r5)-module M such that pi([M])=0 and
the inertial group of X, I(X)={g| gEm, X m, X*=X}, coincides with =, X r, and if
Coker @, is torsion free, then Coker @,=0.
(c) Let K=Q. Letn; be an elementary abelian p-group and |ni| =p™, i=1, 2,
where p is an odd prime. Denoting by c¢; the centralizer of =) in =;, then we can
regard 7;[c; as a group of morphisms of the module =;. This identification induces
the natural map

Y1 7wy X 7wy ——> m,[¢, X m,/c, —> PGL(n,+n,, p).
Then jy j* Coker p,=0 if and only if

yr(m, X ;) contains
n,m,

where r is a primitive root modulo p and the order of o is p—1.
(d) If Coker ¢,=0, then Coker ¢,=+0.

Proof. (a) Assume jxj*[M]=[M® gz, 2,1 K[m, X m,]]EIm @,. Then
M @ gtny xe 1K [m X 7] = My, § My @M 8 M, O M, 4 M,
where each M, is a Kz}-irreducible module, i=1, 2, j=1, 2, .-+, s.
(*)  MPQgiy/xaE [, X 7] = MR MADMEFMED - DMERME, .

Let N,; be an Ex{-irreducible component of M7, i=1, 2, j=1, 2, ---,s. Since
N,#N, is an irreducible component of MF, there exists an element g, ; of z; and
o;€ G(E[K) such that N, ;=(o;N,)g;;. Let +,; be the character of N,,. Then
my (N, ;)=mg((o;N;)g;;)=mg(N;) and K(y;;)=K(;). Comparing the E-di-
mensions of both sides in (%), we obtain
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My (N §N)K (i, ¥r2): K)m(N,#N,: E)
— s omye(N)mu(N)(K(v): KYK(): K)NEN,: E).
Hence
m = semie(Nyme(N)K(v): KYK(): K)mi(NENJK (W, ¥): K).

This contradicts the assumption. Therefore Coker ¢, is not zero.

(b) Since I(X)=m,X7; MQ gpny xa 1K [ X 7;] == M™ as K[z]X 73]-modules.
Since Coker ¢, is torsion free, we have Coker ¢,=0.

(c) First, assume jy j* Coker p,=0. We have Or{=Q[X,, ---, X, ]/(X3—1,
-+, X2 —1)and Qri=Q[Y,, -, Y, ]/(Y3—1, -, Y%, —1). Let{ bea primitive
p-th root of unity and put G=G(Q(¢)/Q). Further put M,=0Q[X,, ---, X, ]/
(X,=¢8, -+, Xp,—8)¢ and M,=Q[Y,, -, Y, J(Y, =&, =+, Yu,— )¢ where ()¢
is the set of all G-invariant elements of ( ). Then each M, is an irreducible
Oni-module.

Ml#Mng[Xn '")Xn]’ Yn T Y,,z]/(X,—{, ) an_g: Y1”“§y ) Ynz_g)c .
@Q[Xn "'»Xn,y Yn ) Y,,z]/(Xl—é‘, ) an—t; Yl—gzr ] Y”Z__é-z)c
@...
@Q[X” ey X"I, Y“ ey Y”Z]/(Xl_g’ ...’X”‘_g’ Yl__cp—l’ e, Y”Z__giz—l)c

as Q[ X m3]-modules. If we put
M= Q[XI) Tty any Yu Tty Ynz]/(Xl—gi R an_gy Yl_C) Y Ynz_t)cs

we have @4([M])=0 and so, by the assumption, jx j* MP >M, # M, Therefore
we can find an element ¢ of 7z, X 7, such that

M@c= Q[Xn Tty any Yu "ty Ynz]/(X1'—§) RS Xn1—§> Yl—g) "ty Ynz—g)(;@c
= Q[Xu EAEY an Yl) °tty Ynz]/(Xl'_gy R anﬁg’ Yl_Cr$ Y Ynz_gf)c.

Then we have Jr(c)=o0.

Conversely, assume (7, X7,)=>0. Let ¢ be a representative of o in
X 185 £iC, 86, £:€°, -+, g:¢?7 %} representatives of zi’ X z3’ in 7, X7, and
M an irreducible Q[z{ X z3]-module. (We can find representatives of above type.)
Then jx *M=2¥(MR g, PMQg;cP--PM ®g;c?"*) and there exist integers

LETIAARY 90 TN tnz such that M®g3gQ[Xn °tty any Yl) %y Yna]/(Xl——~§’l, A

p-2

X, —t™ Y, —th, -, Y, — g'™)6. By the assumption, >\ M ® g;¢/ =

:‘,E.@Q[Xl: "')any Yl) ) Ynz]/(Xl_grla _._’X”I_c"nl’ Yl—gjtly RS Ynz_gf‘nz)c

j=1

= [Q[Xl’ B} an]/(Xl - grl’ Sty an - grﬁl)GﬁQ[Yu "ty Ynz]/( Yl - ‘:tl) R
Y,,2—~§"‘2)G]“ where u is a positive integer. Therefore [jxj*M]<Im @, and



Direct ProbucTs oF FINITE SoLvaBLE GROUPS 303

@3(jx j¥[M])=0.

(d) Since p*py=1, it is trivial. Q.E.D.
Denote by e(7) the exponent of a group = and by ¢, a primitive n-th root of
unity for any integer n.

Lemma 4. Let =, be an abelian group, i=1, 2, and G.C.D.(e(x,), (r,))
=11 p*. Letsy=max{s|{,sK} for each prime p. If there exists at least one
prime p such that hy>>s,, then @: Go(Kn,)QGy(Kn,) Gy (K[m, X m,)).

Proof. K(¢ p"ﬁ) is an irreducible Kr;-module. Let us ‘consider the
underlying abelian group of K(¢,.,)#K(¢ 4,). There exists an integer 7 such
that K(§ ,,)® x K(€ ) =K(E )" Since (K(§,u,): K)#+ 1, we have n+1 and
so Coker p=0. Q.E.D.

3. (I) We can determine Coker ¢ when 7, and =, are abelian groups.
Let 7, be an abelian group with invariants /, --+, /, and 7, an abelian group with
invariants /,,,, +-+, /,+,,. Then

rank Coker @ :d%"- [2(d)) X +++ X 7(d g1 ) X {(K(é‘;é;g;.“f;ﬁd‘)): K)™!
—(K(rcmwp): K) (K roma,, ) K)7'}
1<ign 1<j<m

where 7 is the Euler’s function.
(II) We denote the center of a group = by Z(=).
Theoram 5. Let L.C.M.(e(Z(r\|=1)))=11p™, L.C.M.(e(Z(n,|n3)))=11p"
7,/4m,y !

7['2’47!.'2
and s,=max {s|{ ,sEK}. If there exists a prime p such that min(m,, ny)>s,,

then GoKn)@Go(Kry) > Gy(K [z X 7).

Proof. By assumption, there exists a normal subgroup 7/ of =, such that
pr|e(Z(r,[77)) and p*s|e(Z(7,j73)). Put z;’=m;/x; and consider the following
commutative diagram;

Gy(Kr) ® Go(Kmy) — > G(K[m: X m]) —— Coker g,

Gy Kt )RGo(Kny) — 2% > GyK[nd! xn4]) » Coker @,
Co K[ Z(z4 NS Co K[ Z(x4)]) 2> G K [Z(y’ X w4!)]) —> Coker g, .

Let G.C.D. (e(Z(=1')), e(Z(=%))=IIp"». Since h,>s,, Coker ,+0 by Lemma
4 and since Coker ¢, is torsion free by Lemma 1, then Coker ¢,#+0 by Lemma
3 (b), and terefore Coker @,#0 by Lemma 3 (d). Q.E.D.
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Corollary 6. Let L.C.M. (e(Z(z|7')))=I1p"+=h. Then any splitting field
n'}Aw
of m contains the primitive h-th root of unity.

Proof. By (4) Gy(Kn)QG(Kn) = Gy(K[zx=]) if and only if K is a
splitting field of #. So this corollary is trivial. Q.E.D.

(IIT) Theorem 7. Let =, be a group of odd order. Assume that there exists
an odd prime p such that p|(|m,|, |7,|) and 2|(K(E,): K) where &, is a primitive
p-th root of unity. Then @; Gy(Kr,)RGy(Kn,) TF= G(K[r,X m;)).

Proof. Since 7z, is a group of odd order, each 7, is solvable. We can con-
sider a principal series 7;=#z{” Dz’ D+ Dz D-..D(1) and find integers
n;, r; such that |z : z{*|=p":, r,>0, for each i=1, 2. And consider the
following commutative diagram;

Gy(Kn)@Go(Kr,) P
Gu(K[m w0 D@ G Ko fms's]) ——
Go K[|+ P )@ Go K2 s V]) —
Gy(K[m, X 7,)) Coker ¢,
I
Gy K[,/ X 2+ P]) — > Coker g,
Gy(K [ |2+ X 2 |2+ P]) > Coker o, .

By Lemma 4, Coker @,+0. Since
(K(E2): K)K(E): K)K(ED): K) b TL | o]

from Lemma 3 (a) it follows that Coker @,#0 and so by Lemma 3 (d) we have
Coker ¢, =+0. Q.E.D.

In case 2 ¥ |m,| - |=,|, we can prove the converse to (5) by putting K=0
in Theorem 7.

Corollary. 8 Assume 2 ) IEARNE AP S hen
@: Go(Qn,)®Go(Qn2) — G|(Q[r, X 7,)) if and only if (|7,|, |7,|)=1.
Corollary 9. Put |z| =f[ pii and suppose that p, ¥ p;—1 for any indices

1<s, j<m. Then any splitting field of = contains the primitive p,---p,,-th root of
unity.
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Proof. We can show this corollary by the same method as in Theorem 7.
Q.E.D.

REMARK. If 7 is a nilpotent group, this result has been seen. For a

given integer n=p71 ---pam all of groups of order n are nilpotent if and only if
p,; 4 Pt °—1 forall £ such that n,>¢>0 and all 7, 5.
(IV) Here we consider 2-groups. In this case the groups with a cyclic sub-
group of index 2 are important. For any character of 2-groups is induced by the
character of such groups. (See [4] p. 73 (14.3).) Such groups can be classified
as follows. Put |z |=2"+,

I 7= =1,
II =<5t =1¢=1tt"'=5s>

I 7= t]s" =1,8=s"" tst7? = s, n>2.
IV z=<{st|s"=1Lt=1tt =5, n>=2.
V z=<{st|s&=1L=1tt"=s""", n=3.

VI z=<st|s""=1,8=1tt =51, n>3.

Theorem 10. Let =, and =, be arbitrary two groups of the above types.
Then @: Gy(Qm,)RGo(On,) — Go(Q[m, X ,]) if and only if
(a) =, is a group of type (I, n=0), (1L, n=1) or (IV, n=2) and =, is any,
(b) =, is of type (I, n=1), (11, n=2), (11, n=2), (V, n=3) or (VI, n=3) and
7, is of type IV,
(c) =, s of type (I, n=1), (I1, n=2) or (V, n=3) and =, is of type VI.

Let Q,=0(cos /2% 4-i sin z[2+77),
R,=0(cos z[2*7*) and S,=Q(i sin z[2*7").

3 0,
S

R2=R1;S12914 S2= Qz

First, we shall write out the division algebras which are contained within
Oz. (See, Feit [4] p. 63-p. 66.)

If 7 is of type I, {Q;}ici<n+: are all of the division algebras of Q=. When 7 is
of type II, {Q;}.ci;<s are all of the division algebras. If z is of type III, then
{D, R;} ;<. are all of the division algebras where D is the division algebra of
a faithful irreducible representation of =. Hence the center of Dis R,. If »
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is of type IV, {R.},c.<. are all of the division algebras. When 7 is of type V
and n=3, then Q, and Q, are only division algebras of =. If >3, Q, is one
of the division algebras of . And if = is of type VI, {S,, R;}.c;<s are all of
the division algebras.

Lemma 11. Let X be a faithful irreducible character of the group of type I11.
Then mgy(X)=1 for k>2.

In case k=2, we can see the proof of Lemma 11, for example, in Feit [4].
In case £>2, we can prove it similarly.

Proof of Theorem 10. a) When 7, is of type (I, n=0), (II, n=1) or (IV,
n=2), O is a splitting field of z,. Therefore  is an isomorphism.
(b) If =; is of type I, IT or V, Q, is one of the division algebras of =;, i=1, 2.
Then Coker =0, because 0,800,=0,P0.,.
(¢) If =, is of type I, II or V and =z, of type III, then Coker +0 because
0.®eD=(Q,)..
(d) If =, is of type (I, n=1), (II, n=2) or (V, n=3) and =, is of type IV,
the division algebra of z, is O, or Q, and the division algebra of =, is one of
{R:}icicn Since Q,QoR,;=0Q,; for 3<i<n and Q,QoR; =0, for i< 3, we
obtain Coker ¢=0. If =, is of type (I, n>1), (II, n>>2) or (V, n>3) and =, of
type IV, Coker @ % 0, because Q, is one of the division algebras of =, and
Q3®QR3%’93@Q3-
(e) If =, is of type (I, n=1), (II, n=2) or (V, n=3) and =, is of type VI,
Coker p=0. For the division algebra of =, is one of {S,, R;},cicn-1, >3
and 0,8e85,=0, for n>3, 0,QeR,=(), for 3<i<n—1 and Q,QoR,;=0, for
i<3. If =, is of type (I, n>1), (I, n>2) or (V, n>3) and =, is of type VI,
then Coker @40 because O,®S;=0,PQ; and Q;QoR,=0,PO,.
(f) If =, is of type (III, n=2), the division algebra of =, is O, or D with center
Q. Since DQgR, is a division algebra also for all z, we have Coker =0 if =,
is of type IV. If n>2, there exists a division algebra of =, with center R,.
From the fact that R,QqR,=R,PR,, it follows that Coker ¢ =0 for the group
, of type IV.
(g) Assume that 7, is of type IIT and =, of type VI. Since D®¢S,==(S,). by
Lemma 11, we obtain Coker ¢ =0.
(h) Suppose that 7, is of type IV. If =, is of type (VI, n=3), the division
algebra of =, is Q, or S,. Since R;QqS,=0Q; for 3<i<n or S, for i<3,
Coker p=0. If 7, is of type (VI, n=4), then S, is a division algebra of =, and
if 7, is of type (VI, n>>4), R, is a division algebra of z,. Since R,QoS,=S,8B.S,
and R,QoR,=~R,PR,, in both cases Coker p=+0. Q.E.D.
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