ON REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE SOLVABLE GROUPS

MICHITAKA HIKARI

(Received January 28, 1971)

Let K be a field and π a finite group. We denote by $G_0(K\pi)$ the Grothendieck ring of $K\pi$. Let π_i be a finite group and M_i be finitely generated $K\pi_i$ -module, i=1, 2. Let us denote by $M_1 \sharp M_2$ the outer tensor product of M_1 and M_2 . We can define the natural ring homomorphism $\varphi \colon G_0(K\pi_1) \otimes G_0(K\pi_2) \to G_0(K(\pi_1 \times \pi_2))$ by putting $\varphi([M_1] \otimes [M_2]) = [M_1 \sharp M_2]$. In this paper we study the kernel and cokernel of φ .

1. Let π be a finite group, E a finite normal separable extension of K which is a splitting field of π , and $\mathcal{Q}(E/K)$ the Galois group of E over K. Let N be an $E\pi$ -module with character X and $\sigma \in \mathcal{Q}(E/K)$. Then we define an $E\pi$ -module σN , the conjugate of N, as usual and denote it's character by σX . We denote the Schur index of N over K by $m_K(N)$.

Now, let π be the direct product of finite groups π_1 and π_2 , $\pi = \pi_1 \times \pi_2$. Let M_i be an irreducible $K\pi_i$ -module, i = 1, 2, and denote an irreducible $E\pi_i$ -component of $M_i^E = M_i \otimes_K E$ by N_i , the character of N_i by ψ_i and the Galois group E over $K(\psi_i)$ by $\mathcal{H}_i = \mathcal{G}(E/K(\psi_i))$. Then, the following results can be found in [3].

- (1) If σ , $\tau \in \mathcal{G}(E/K)$, then $\sigma N_1 \sharp \tau N_2$ is an irreducible $E[\pi_1 \times \pi_2]$ -module also and $m_K(N_1 \sharp N_2) = m_K(\sigma N_1 \sharp \tau N_2)$.
- (2) $M_1 \sharp M_2$ is completely reducible. $M_1 \sharp M_2 = k(T_1 \oplus \cdots \oplus T_r)$, where the $\{T_i\}$ are nonisomorphic irreducible $K\pi$ -modules and $k = m_K(N_1)m_K(N_2)/m_K(N_1 \sharp N_2)$. The $\{T_i\}$ have common K-dimension s, where $s = m_K(N_1 \sharp N_2)(K(\psi_1, \psi_2); K)(N_1 \sharp N_2; E)$.
- (3) $M_1 \# M_2$ is an irreducible $K\pi$ -module if and only if the following conditions are satisfied:
 - (a) $m_K(N_1)m_K(N_2)=m_K(N_1 \# N_2)$.
 - (b) $\mathcal{G}(E/K) = \mathcal{H}_1 \mathcal{H}_2$.
 - (c) $(K(\psi_1): K)(K(\psi_2): K) = (K(\psi_1, \psi_2): K)$.
- (4) Let $\pi_1 = \pi_2$, $\pi = \pi_1 \times \pi_1$. Let M_1 be an irreducible $K\pi_1$ -module. Then $M_1 \sharp M_1$ is irreducible if and only if M_1 is an absolutely irreducible $K\pi_1$ -module.

Since for any irreducible $K[\pi_1 \times \pi_2]$ -module M we can find a unique irreducible $K\pi_i$ -module M_i , i=1, 2, satisfying $M_1 \# M_2 \oplus > M$, the following is an immediate corollary to (3).

300 M. Hikari

(5) We denote the order of a group π by $|\pi|$. Let Q be the field of rational numbers. If $(|\pi_1|, |\pi_2|)=1$, then

$$\varphi: G_0(Q\pi_1) \otimes G_0(Q\pi_2) \xrightarrow{\sim} G_0(Q[\pi_1 \times \pi_2])$$
.

One aim of this paper is to study the converse to (5).

2. Hereafter we assume char. K=0.

Lemma 1. If π_1 and π_2 are finite abelian groups, then $Ker \varphi = 0$ and $Coker \varphi$ is torsion free.

Proof. Since the Schur index of abelian groups is 1, then φ is a split map by (2). Q.E.D. Let $j: \pi' \to \pi$ be a group homomorphism. Then we have the induction and restriction functors

$$\operatorname{mod} - K\pi' \xrightarrow{j^* = (\cdot \otimes_{K\pi'} K\pi)} \operatorname{mod} - K\pi ,$$
 $j_* = \operatorname{res}$

and these functors induce the additive homomorphisms of Grothendieck rings, $G_0(K\pi') \xrightarrow{j*} G_0(K\pi)$. Let π'_i be a subgroup of π_i . Then the following diagram is commutative.

$$\operatorname{Ker} \varphi \longrightarrow G_0(K\pi_1) \otimes G_0(K\pi_2) \xrightarrow{\varphi} G_0(K[\pi_1 \times \pi_2]) \longrightarrow \operatorname{Coker} \varphi$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Proposition 2. For any finite groups π_1 , π_2 , we have $Ker \varphi = 0$.

Proof. Since Ker $\psi=0$ for cyclic groups π'_1 and π'_2 , by the commutativity of the above diagram and the Artin's induction theorem, Ker $\varphi=0$. Q.E.D. (But we can prove this proposition without the induction theorem.)

Now let π'_i be a normal subgroup of π_i . Then we have the exact sequence $1 \longrightarrow \pi'_i \xrightarrow{j} \pi_i \xrightarrow{p} \pi'_i \longrightarrow 1$, i=1, 2. From this we obtain the following commutative diagram.

$$G_{0}(K\pi'_{1}')\otimes G_{0}(K\pi'_{2}') \xrightarrow{\varphi_{1}} G_{0}(K[\pi'_{1}'\times\pi'_{2}']) \xrightarrow{\varphi'_{1}} \operatorname{Coker} \varphi_{1}$$

$$p^{*} \downarrow p_{*} \qquad p^{*} \downarrow p_{*} \qquad p^{*} \downarrow p_{*}$$

$$G_{0}(K\pi_{1}) \otimes G_{0}(K\pi_{2}) \xrightarrow{\varphi_{2}} G_{0}(K[\pi_{1}\times\pi_{2}]) \xrightarrow{\varphi'_{2}} \operatorname{Coker} \varphi_{2}$$

$$j^{*} \downarrow j_{*} \qquad j^{*} \downarrow j_{*} \qquad j^{*} \downarrow j^{*}$$

$$G_{0}(K\pi'_{1}) \otimes G_{0}(K\pi'_{2}) \xrightarrow{\varphi_{3}} G_{0}(K[\pi'_{1}\times\pi'_{2}]) \xrightarrow{\varphi'_{3}} \operatorname{Coker} \varphi_{3}.$$

Let M be an irreducible $K[\pi'_1 \times \pi'_2]$ -module, E a finite normal separable extension of K which is a splitting field of $\pi'_1 \times \pi'_2$ and $N_1 \sharp N_2$ an $E[\pi'_1 \times \pi'_2]$ -irreducible component of M^E , where N_i is the $E\pi'_i$ -irreducible module, i=1, 2. Denote the characters of M, N_i by \mathcal{X} , ψ_i respectively and put $m=|\pi'_1 \times \pi'_2|$.

Lemma 3. (a) If there exists an irreducible $K[\pi'_1 \times \pi'_2]$ -module M such that $\varphi'_3([M]) \neq 0$ and

$$m_K(N_1)m_K(N_2)(K(\psi_1)\colon K)(K(\psi_2)\colon K)/m_K(N_1\sharp N_2)(K(\psi_1,\ \psi_2)\colon K)\not\mid m$$
, then Coker $\varphi_2 \neq 0$.

- (b) If there exists an irreducible $K[\pi'_1 \times \pi'_2]$ -module M such that $\varphi'_3([M]) \neq 0$ and the inertial group of X, $I(X) = \{g \mid g \in \pi_1 \times \pi_2 X^g = X\}$, coincides with $\pi_1 \times \pi_2$ and if Coker φ_3 is torsion free, then Coker $\varphi_2 \neq 0$.
- (c) Let K=Q. Let π'_i be an elementary abelian p-group and $|\pi'_i|=p^{n_i}$, i=1, 2, where p is an odd prime. Denoting by c_i the centralizer of π'_i in π_i , then we can regard π_i/c_i as a group of morphisms of the module π'_i . This identification induces the natural map

$$\psi : \pi_1 \times \pi_2 \longrightarrow \pi_1/\mathfrak{c}_1 \times \pi_2/\mathfrak{c}_2 \longrightarrow PGL(n_1 + n_2, p)$$
.

Then $j_* j^*$ Coker $\varphi_3=0$ if and only if

$$\psi(\pi_1 \times \pi_2)$$
 contains
$$\sigma = \begin{pmatrix} 1 & & \\ \ddots & & \\ & 1 & \\ & & r \\ & & \ddots \\ & & & r \end{pmatrix},$$

where r is a primitive root modulo p and the order of σ is p-1.

(d) If Coker $\varphi_1 \neq 0$, then Coker $\varphi_2 \neq 0$.

Proof. (a) Assume
$$j_*j^*[M] = [M \otimes_{K[\pi_1' \times \pi_2']} K[\pi_1 \times \pi_2]] \in Im \ \varphi_3$$
. Then
$$M \otimes_{K[\pi_1' \times \pi_2']} K[\pi_1 \times \pi_2] = M_{11} \sharp M_{21} \oplus M_{12} \sharp M_{22} \oplus \cdots \oplus M_{1s} \sharp M_{2s}$$

where each M_{ij} is a $K\pi'_i$ -irreducible module, $i=1, 2, j=1, 2, \dots, s$.

 $(*) \qquad M^E \otimes_{E[\pi_1' \times \pi_2']} E[\pi_1 \times \pi_2] = M^E_{11} \sharp M^E_{21} \oplus M^E_{12} \sharp M^E_{22} \oplus \cdots \oplus M^E_{1s} \sharp M^E_{2s} \ .$

Let N_{ij} be an $E\pi'_i$ -irreducible component of M^E_{ij} , $i=1, 2, j=1, 2, \cdots, s$. Since $N_1 \sharp N_2$ is an irreducible component of M^E , there exists an element g_{ij} of π_i and $\sigma_i \in \mathcal{G}(E/K)$ such that $N_{ij} = (\sigma_i N_i)g_{ij}$. Let ψ_{ij} be the character of N_{ij} . Then $m_K(N_{ij}) = m_K((\sigma_i N_i)g_{ij}) = m_K(N_i)$ and $K(\psi_{ij}) = K(\psi_i)$. Comparing the E-dimensions of both sides in (*), we obtain

302 M. HIKARI

$$m_K(N_1 \sharp N_2)(K(\psi_1, \psi_2): K)m(N_1 \sharp N_2: E)$$

$$= {}^{*} {}^{*} m_K(N_1) m_K(N_2)(K(\psi_1): K)(K(\psi_2): K)(N_1 \sharp N_2: E) .$$

Hence

$$m = s \cdot m_K(N_1) m_K(N_2) (K(\psi_1) : K) (K(\psi_2) : K) / m_K(N_1 \# N_2) (K(\psi_1, \psi_2) : K)$$
.

This contradicts the assumption. Therefore Coker φ_2 is not zero.

- (b) Since $I(X) = \pi_1 \times \pi_2$, $M \otimes_{K[\pi_1' \times \pi_2']} K[\pi_1 \times \pi_2] \cong M^m$ as $K[\pi_1' \times \pi_2']$ -modules. Since Coker φ_3 is torsion free, we have Coker $\varphi_2 \neq 0$.
- (c) First, assume j_*j^* Coker $\varphi_3=0$. We have $Q\pi_1'\cong Q[X_1,\cdots,X_{n_1}]/(X_1^n-1,\cdots,X_{n_1}^n-1)$ and $Q\pi_2'\cong Q[Y_1,\cdots,Y_{n_2}]/(Y_1^n-1,\cdots,Y_{n_2}^n-1)$. Let ζ be a primitive p-th root of unity and put $G=\mathcal{Q}(Q(\zeta)/Q)$. Further put $M_1=Q[X_1,\cdots,X_{n_1}]/(X_1-\zeta,\cdots,X_{n_1}-\zeta)^G$ and $M_2=Q[Y_1,\cdots,Y_{n_2}]/(Y_1-\zeta,\cdots,Y_{n_2}-\zeta)^G$ where () is the set of all G-invariant elements of (). Then each M_i is an irreducible $Q\pi_i'$ -module.

$$\begin{split} M_1 \sharp M_2 &\cong Q[X_1, \, \cdots, \, X_{n_1}, \, Y_1, \, \cdots, \, Y_{n_2}] / (X_1 - \zeta, \, \cdots, \, X_{n_1} - \zeta, \, Y_1 - \zeta, \, \cdots, \, Y_{n_2} - \zeta)^G \\ &\oplus Q[X_1, \, \cdots, \, X_{n_1}, \, Y_1, \, \cdots, \, Y_{n_2}] / (X_1 - \zeta, \, \cdots, \, X_{n_1} - \zeta, \, Y_1 - \zeta^2, \, \cdots, \, Y_{n_2} - \zeta^2)^G \\ &\oplus \cdots \\ &\oplus Q[X_1, \, \cdots, \, X_{n_1}, \, Y_1, \, \cdots, \, Y_{n_2}] / (X_1 - \zeta, \, \cdots, \, X_{n_1} - \zeta, \, Y_1 - \zeta^{\rho-1}, \, \cdots, \, Y_{n_2} - \zeta^{\rho-1})^G \end{split}$$

as $Q[\pi'_1 \times \pi'_2]$ -modules. If we put

$$M = Q[X_{\scriptscriptstyle 1}, \, \cdots, \, X_{\scriptscriptstyle n_1}, \, Y_{\scriptscriptstyle 1}, \, \cdots, \, Y_{\scriptscriptstyle n_2}]/(X_{\scriptscriptstyle 1} - \zeta, \, \cdots, \, X_{\scriptscriptstyle n_1} - \zeta, \, Y_{\scriptscriptstyle 1} - \zeta, \, \cdots, \, Y_{\scriptscriptstyle n_2} - \zeta)^G \,,$$

we have $\varphi'_3([M]) = 0$ and so, by the assumption, $j_*j^*M \oplus > M_1 \sharp M_2$. Therefore we can find an element c of $\pi_1 \times \pi_2$ such that

$$\begin{split} M \otimes c &= Q[X_1, \, \cdots, \, X_{n_1}, \, Y_1, \, \cdots, \, Y_{n_2}] / (X_1 - \zeta, \, \cdots, \, X_{n_1} - \zeta, \, Y_1 - \zeta, \, \cdots, \, Y_{n_2} - \zeta)^G \otimes c \\ &\cong Q[X_1, \, \cdots, \, X_{n_1}, \, Y_1, \, \cdots, \, Y_{n_2}] / (X_1 - \zeta, \, \cdots, \, X_{n_1} - \zeta, \, Y_1 - \zeta^r, \, \cdots, \, Y_{n_2} - \zeta^r)^G. \end{split}$$

Then we have $\psi(c) = \sigma$.

Conversely, assume $\psi(\pi_1 \times \pi_2) \ni \sigma$. Let c be a representative of σ in $\pi_1 \times \pi_2$, $\{g_i, g_i c, g_i c^2, g_i c^3, \cdots, g_i c^{p-2}\}$ representatives of $\pi_1'' \times \pi_2''$ in $\pi_1 \times \pi_2$ and M an irreducible $Q[\pi_1' \times \pi_2']$ -module. (We can find representatives of above type.) Then $j_*j^*M = \sum_i \oplus (M \otimes g_i \oplus M \otimes g_i c \oplus \cdots \oplus M \otimes g_i c^{p-2})$ and there exist integers $r_1, \dots, r_{n_1}, t_1, \dots, t_{n_2}$ such that $M \otimes g_i \cong Q[X_1, \dots, X_{n_1}, Y_1, \dots, Y_{n_2}]/(X_1 - \zeta^{r_1}, \dots, X_{n_1} - \zeta^{r_{n_1}}, Y_1 - \zeta^{t_1}, \dots, Y_{n_2} - \zeta^{t_{n_2}})^G$. By the assumption, $\sum_{j=0}^{p-2} M \otimes g_i c^j \cong \sum_{j=1}^{p-1} \bigoplus Q[X_1, \dots, X_{n_1}, Y_1, \dots, Y_{n_2}]/(X_1 - \zeta^{r_1}, \dots, X_{n_1} - \zeta^{r_{n_1}}, Y_1 - \zeta^{jt_1}, \dots, Y_{n_2} - \zeta^{jt_{n_2}})^G \cong [Q[X_1, \dots, X_{n_1}]/(X_1 - \zeta^{r_1}, \dots, X_{n_1} - \zeta^{r_{n_1}})^G \not \oplus Q[Y_1, \dots, Y_{n_2}]/(Y_1 - \zeta^{t_1}, \dots, Y_{n_2} - \zeta^{t_{n_2}})^G]^u$ where u is a positive integer. Therefore $[j_*j^*M] \in \text{Im } \varphi_3$ and

 $\varphi_3'(j_*j^*[M])=0.$

(d) Since $p*p_*=1$, it is trivial.

Q.E.D.

Denote by $e(\pi)$ the exponent of a group π and by ζ_n a primitive *n*-th root of unity for any integer n.

Lemma 4. Let π_i be an abelian group, i=1, 2, and $G.C.D.(e(\pi_1), e(\pi_2))$ = $\prod p^{h_p}$. Let $s_p = \max \{s \mid \zeta_p s \in K\}$ for each prime p. If there exists at least one prime p such that $h_p > s_p$, then $\varphi: G_0(K\pi_1) \otimes G_0(K\pi_2) \xrightarrow{} G_0(K[\pi_1 \times \pi_2])$.

- Proof. $K(\zeta_{p^{h_p}})$ is an irreducible $K\pi_i$ -module. Let us consider the underlying abelian group of $K(\zeta_{p^{h_p}}) \sharp K(\zeta_{p^{h_p}})$. There exists an integer n such that $K(\zeta_{p^{h_p}}) \otimes_K K(\zeta_{p^{h_p}}) \cong K(\zeta_{p^{h_p}})^n$. Since $(K(\zeta_{p^{h_p}}): K) \neq 1$, we have $n \neq 1$ and so Coker $\varphi \neq 0$. Q.E.D.
- 3. (I) We can determine Coker φ when π_1 and π_2 are abelian groups. Let π_1 be an abelian group with invariants l_1, \dots, l_n and π_2 an abelian group with invariants l_{n+1}, \dots, l_{n+m} . Then

$$\begin{array}{ll} \text{rank} & \text{Coker } \varphi = \sum\limits_{\substack{d_i \mid I_i}} \left[\eta(d_1) \times \cdots \times \eta(d_{n+m}) \times \{ (K(\zeta_{\underset{1 \leqslant i \leqslant m}{\text{L.C.M.}},(d_i)}) \colon K)^{-1} \\ & - (K(\zeta_{\underset{1 \leqslant i \leqslant m}{\text{L.C.M.}},(d_i)}) \colon K)^{-1} (K(\zeta_{\underset{1 \leqslant j \leqslant m}{\text{L.C.M.}},(d_{n+j})}) \colon K)^{-1} \} \end{array}$$

where η is the Euler's function.

(II) We denote the center of a group π by $Z(\pi)$.

Theoram 5. Let L.C.M. $(e(Z(\pi_1/\pi'_1))) = \prod p^{m_p}$, L.C.M. $(e(Z(\pi_2/\pi'_2))) = \prod p^{n_p}$ and $s_p = max \{s \mid \zeta_p s \in K\}$. If there exists a prime p such that $min(m_p, n_p) > s_p$, then $G_0(K\pi_1) \otimes G_0(K\pi_2) \xrightarrow{} G_0(K[\pi_1 \times \pi_2])$.

Proof. By assumption, there exists a normal subgroup π'_i of π_i such that $p^{m_p} | e(Z(\pi_1/\pi'_1))$ and $p^{n_p} | e(Z(\pi_2/\pi'_2))$. Put $\pi'_i' = \pi_i/\pi'_i$ and consider the following commutative diagram;

$$G_{0}(K\pi_{1}) \otimes G_{0}(K\pi_{2}) \xrightarrow{\varphi_{1}} G_{0}(K[\pi_{1} \times \pi_{2}]) \xrightarrow{} \operatorname{Coker} \varphi_{1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Let G.C.D. $(e(Z(\pi_1'')), e(Z(\pi_2'')) = \prod p^{h_p}$. Since $h_p > s_p$, Coker $\varphi_3 \neq 0$ by Lemma 4 and since Coker φ_3 is torsion free by Lemma 1, then Coker $\varphi_2 \neq 0$ by Lemma 3 (b), and terefore Coker $\varphi_1 \neq 0$ by Lemma 3 (d). Q.E.D.

304 M. Hikari

Corollary 6. Let L.C.M. $(e(Z(\pi/\pi'))) = \prod p^{m_p} = h$. Then any splitting field of π contains the primitive h-th root of unity.

Proof. By (4) $G_0(K\pi) \otimes G_0(K\pi) \xrightarrow{} G_0(K[\pi \times \pi])$ if and only if K is a splitting field of π . So this corollary is trivial. Q.E.D.

(III) **Theorem 7.** Let π_i be a group of odd order. Assume that there exists an odd prime p such that $p|(|\pi_1|, |\pi_2|)$ and $2|(K(\zeta_p): K)$ where ζ_p is a primitive p-th root of unity. Then φ ; $G_0(K\pi_1) \otimes G_0(K\pi_2) \xrightarrow{} G_0(K[\pi_1 \times \pi_2])$.

Proof. Since π_i is a group of odd order, each π_i is solvable. We can consider a principal series $\pi_i = \pi_i^{(0)} \supset \pi_i^{(1)} \supset \cdots \supset \pi_i^{(n_i)} \supset \cdots \supset (1)$ and find integers n_i , r_i such that $|\pi_i^{(n_i)}: \pi_i^{(n_i+1)}| = p^{r_i}$, $r_i > 0$, for each i = 1, 2. And consider the following commutative diagram;

By Lemma 4, Coker $\varphi_3 \neq 0$. Since

$$(K(\zeta_p):K)(K(\zeta_p):K)/(K(\zeta_p):K) \nmid \prod_{i=1,2} |\pi_i:\pi_i^{(n_i)}|$$
,

from Lemma 3 (a) it follows that Coker $\varphi_2 \pm 0$ and so by Lemma 3 (d) we have Coker $\varphi_1 \pm 0$. Q.E.D.

In case $2 \nmid |\pi_1| \cdot |\pi_2|$, we can prove the converse to (5) by putting K=Q in Theorem 7.

Corollary. 8 Assume $2 \not\mid |\pi_1| \cdot |\pi_2|$. Then $\varphi \colon G_0(Q\pi_1) \otimes G_0(Q\pi_2) \xrightarrow{} G_0(Q[\pi_1 \times \pi_2])$ if and only if $(|\pi_1|, |\pi_2|) = 1$.

Corollary 9. Put $|\pi| = \prod_{i=1}^{m} p_i^e i$ and suppose that $p_i \not\mid p_j - 1$ for any indices $1 \leqslant i, j \leqslant m$. Then any splitting field of π contains the primitive $p_1 \cdots p_m$ -th root of unity.

Proof. We can show this corollary by the same method as in Theorem 7.

O.E.D.

REMARK. If π is a nilpotent group, this result has been seen. For a given integer $n = p_1^{n_1} \cdots p_m^{n_m}$ all of groups of order n are nilpotent if and only if $p_i \nmid p_i^{n_i-t}-1$ for all t such that $n_i > t > 0$ and all i, j.

(IV) Here we consider 2-groups. In this case the groups with a cyclic subgroup of index 2 are important. For any character of 2-groups is induced by the character of such groups. (See [4] p. 73 (14.3).) Such groups can be classified as follows. Put $|\pi| = 2^{n+1}$,

$$\begin{split} & \mathrm{I} \qquad \pi = \langle s \, | \, s^{2^{n+1}} = 1 \rangle \, . \\ & \mathrm{II} \qquad \pi = \langle s, \, t \, | \, s^{2^n} = 1, \, t^2 = 1, \, tst^{-1} = s \rangle \\ & \mathrm{III} \qquad \pi = \langle s, \, t \, | \, s^{2^n} = 1, \, t^2 = s^{2^{n-1}}, \, tst^{-1} = s^{-1} \rangle \, , \qquad n \geqslant 2 \, . \\ & \mathrm{IV} \qquad \pi = \langle s, \, t \, | \, s^{2^n} = 1, \, t^2 = 1, \, tst^{-1} = s^{-1} \rangle \, , \qquad n \geqslant 2 \, . \\ & \mathrm{V} \qquad \pi = \langle s, \, t \, | \, s^{2^n} = 1, \, t^2 = 1, \, tst^{-1} = s^{1+2^{n-1}} \rangle \, , \qquad n \geqslant 3 \, . \\ & \mathrm{VI} \qquad \pi = \langle s, \, t \, | \, s^{2^n} = 1, \, t^2 = 1, \, tst^{-1} = s^{-1+2^{n-1}} \rangle \, , \qquad n \geqslant 3 \, . \end{split}$$

Theorem 10. Let π_1 and π_2 be arbitrary two groups of the above types. Then $\varphi: G_0(Q\pi_1) \otimes G_0(Q\pi_2) \xrightarrow{} G_0(Q[\pi_1 \times \pi_2])$ if and only if

- (a) π_1 is a group of type (I, n=0), (II, n=1) or (IV, n=2) and π_2 is any,
- (b) π_1 is of type (I, n=1), (II, n=2), (III, n=2), (V, n=3) or (VI, n=3) and π_2 is of type IV,
- (c) π_1 is of type (I, n=1), (II, n=2) or (V, n=3) and π_2 is of type VI.

Let
$$Q_k = Q(\cos \pi/2^{k-1} + i \sin \pi/2^{k-1})$$
, $R_k = Q(\cos \pi/2^{k-1})$ and $S_k = Q(i \sin \pi/2^{k-1})$.

First, we shall write out the division algebras which are contained within $Q\pi$. (See, Feit [4] p. 63-p. 66.)

If π is of type I, $\{Q_i\}_{1 \le i \le n+1}$ are all of the division algebras of $Q\pi$. When π is of type II, $\{Q_i\}_{1 \le i \le n}$ are all of the division algebras. If π is of type III, then $\{D, R_i\}_{1 \le i \le n-1}$ are all of the division algebras where D is the division algebra of a faithful irreducible representation of π . Hence the center of D is R_n . If π

M. Hikari

is of type IV, $\{R_i\}_{1 \le i \le n}$ are all of the division algebras. When π is of type V and n=3, then Q_1 and Q_2 are only division algebras of π . If n>3, Q_3 is one of the division algebras of π . And if π is of type VI, $\{S_n, R_i\}_{1 \le i \le n-1}$ are all of the division algebras.

Lemma 11. Let χ be a faithful irreducible character of the group of type III. Then $m_{Sk}(\chi)=1$ for $k\geqslant 2$.

In case k=2, we can see the proof of Lemma 11, for example, in Feit [4]. In case k>2, we can prove it similarly.

Proof of Theorem 10. a) When π_1 is of type (I, n=0), (II, n=1) or (IV, n=2), Q is a splitting field of π_1 . Therefore φ is an isomorphism.

- (b) If π_i is of type I, II or V, Q_2 is one of the division algebras of π_i , i=1, 2. Then Coker $\varphi \neq 0$, because $Q_2 \otimes_Q Q_2 \cong Q_2 \oplus Q_2$.
- (c) If π_1 is of type I, II or V and π_2 of type III, then Coker $\varphi \neq 0$ because $Q_2 \otimes_Q D \cong (Q_2)_2$.
- (d) If π_1 is of type (I, n=1), (II, n=2) or (V, n=3) and π_2 is of type IV, the division algebra of π_1 is Q_1 or Q_2 and the division algebra of π_2 is one of $\{R_i\}_{1 \le i \le n}$. Since $Q_2 \otimes_Q R_i \cong Q_i$ for $3 \le i \le n$ and $Q_2 \otimes_Q R_i \cong Q_2$ for i < 3, we obtain Coker $\varphi = 0$. If π_1 is of type (I, n > 1), (II, n > 2) or (V, n > 3) and π_2 of type IV, Coker $\varphi = 0$, because Q_3 is one of the division algebras of π_1 and $Q_3 \otimes_Q R_3 \cong Q_3 \oplus Q_3$.
- (e) If π_1 is of type (I, n=1), (II, n=2) or (V, n=3) and π_2 is of type VI, Coker $\varphi = 0$. For the division algebra of π_2 is one of $\{S_n, R_i\}_{1 \le i \le n-1}, n \ge 3$ and $Q_2 \otimes_Q S_n \cong Q_n$ for $n \ge 3$, $Q_2 \otimes_Q R_i \cong Q_i$ for $3 \le i \le n-1$ and $Q_2 \otimes_Q R_i \cong Q_2$ for i < 3. If π_1 is of type (I, n > 1), (II, n > 2) or (V, n > 3) and π_2 is of type VI, then Coker $\varphi \neq 0$ because $Q_3 \otimes_Q S_3 \cong Q_3 \oplus Q_3$ and $Q_3 \otimes_Q R_3 \cong Q_3 \oplus Q_3$.
- (f) If π_1 is of type (III, n=2), the division algebra of π_1 is Q_1 or D with center Q. Since $D \otimes_Q R_i$ is a division algebra also for all i, we have Coker $\varphi = 0$ if π_2 is of type IV. If n>2, there exists a division algebra of π_1 with center R_3 . From the fact that $R_3 \otimes_Q R_3 \cong R_3 \oplus R_3$, it follows that Coker $\varphi \neq 0$ for the group π_2 of type IV.
- (g) Assume that π_1 is of type III and π_2 of type VI. Since $D \otimes_Q S_n \cong (S_n)_2$ by Lemma 11, we obtain Coker $\varphi \neq 0$.
- (h) Suppose that π_1 is of type IV. If π_2 is of type (VI, n=3), the division algebra of π_2 is Q_1 or S_3 . Since $R_i \otimes_Q S_3 \cong Q_i$ for $3 \leqslant i \leqslant n$ or S_3 for i < 3, Coker $\varphi = 0$. If π_2 is of type (VI, n=4), then S_4 is a division algebra of π_2 and if π_2 is of type (VI, n>4), R_4 is a division algebra of π_2 . Since $R_3 \otimes_Q S_4 \cong S_4 \oplus S_4$ and $R_3 \otimes_Q R_4 \cong R_4 \oplus R_4$, in both cases Coker $\varphi = 0$. Q.E.D.

TOKYO UNIVERSITY OF EDUCATION

References

- [1] H. Bass: Algebraic K-Theory, Benjamin, 1968.
- [2] C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, 1962.
- [3] B. Fein: Representations of direct products of finite groups, Pacific J. Math. 20 (1967), 45-58.
- [4] W. Feit: Characters of Finite Groups, Benjamin, 1967.
- [5] W. Feit and J. G. Thompson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
- [6] L. Solomon: The representation of finite groups in algebraic number fields, J. Math. Soc. Japan 13 (1961), 144-164.