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Let K be a field and π a finite group. We denote by G0(Kπ) the Grothen-
dieck ring of Kπ. Let π{ be a finite group and M£ be finitely generated
Kπ -module, ί"=l, 2. Let us denote by M^M2 the outer tensor product of Mx

and M2. We can define the natural ring homomorphism φ: G0{Kπ^)®G0{Kπ2)
->G0{K(πιX7Γ2)) by putting φ([M1]®[M2])=[M1j/fM2], In this paper we study
the kernel and cokernel of φ.

1. Let π be a finite group, E a finite normal separable extension of K which
is a splitting field of TΓ, and Q(Έ\K) the Galois group of E over K. Let N be
an ϋ^r-module with character % and σ^<2(E/K). Then we define an EW-module
σ JV, the conjugate of iV, as usual and denote it's character by σX. We denote
the Schur index of N over K by mκ(N).

Now, let π be the direct product of finite groups πx and π2y π= π1 X π2.
Let M t be an irreducible Kn -module, z"= 1, 2, and denote an irreducible
Eπ-component of Mf=Mi®κE by Ni9 the character of N4 by Λ/Γ,. and the
Galois group J? over ϋΓ(ψ,.) by Mi=3{EjK{ψt)y Then, the following results
can be foun'd in [3].
(1) If σ, r^.Q{EIK), then σN^rN2 is an irreducible .BfTΓiXTrJ-module also

(2) Λίiίf Λί2 is completely reducible. M 1 #M 2 =ft(Γ 1 0 — 0 Γ r ) , where the {Tt}
are nonisomorphic irreducible i^τr-modules and k=mκ(N1)mκ(λτ

2)lmκ(N1#N2).
The {J1,.} have common if-dimension s> where s=mκ(N1#N2)(K(ψ1, ψ2): K)

(3) M^M2 is an irreducible Kπ-tnod\ύe if and only if the following conditions
are satisfied:

(a) »Λ:(JV1)« jr(iVt)=«
(b) Ω{EjK)=M1M2.
(c) (/ί:(ψ1):«)(^(^):

(4) Let π1=π2y π=πiXπL, Let Mx be an irreducible î TΓi-module. Then
M1^M1 is irreducible if and only if M1 is an absolutely irreducible i^-module.

Since for any irreducible K [π1Xπ2]-module M we can find a unique
irreducible i&rΓmodule Miy t = l , 2, satisfying M^M&yM, the following is
an immediate corollary to (3).
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(5) We denote the order of a group π by \π\. Let Q be the field of rational

numbers. If (17ΓX | , | π2 \ )= 1, then

) - ^ > G0(Q[πx X τr2]).

One aim of this paper is to study the converse to (5).

2. Hereafter we assume char. K=0.

L e m m a 1. If πλ and π2 are finite abelian groups, then Kerφ = 0 and

Coker φ is torsion free.

Proof. Since the Schur index of abelian groups is 1, then φ is a split

map by (2). Q.E.D.

Let j: r'—>;r be a group homomorphism. Then we have the induction and

restriction functors

j ( κ )
m.oά — Kπf ^ ί: mod — Kπ ,

y*=res

and these functors induce the additive homomorphisms of Grothendieck rings,

j*
G0(Kπ') ( ' G0(Kπ). Let π'( be a subgroup of τr, . Then the following diagram

j*
is commutative.

Ker φ —^ G0(Kπi)®G,(Kπ2) - ^ G^Kfa X π2]) * Coker φ

\\ \\ Ψ ίl tl
K e r <ψ > GQ{Kπ[)®GlKπ'2) -^-> G0(K[π[ X π'2]) > Coker ψ

Proposition 2. For any finite groups πl9 π2y we have Ker φ=0.

Proof. Since K e r ψ = 0 for cyclic groups π{ and π'2, by the comrriutativity

of the above diagram and the Art in ' s induction theorem, K e r φ=0. Q . E . D .

(But we can prove this proposit ion without the induction theorem.)

N o w let 7r{ be a normal subgroup of 7Γ, . T h e n we have the exact sequence
j p

1 • 7τJ > π£ > π" > 1, i=ίy 2. F r o m this we obtain the following

commutative diagram.

G0(Kπ[')® G0(Kπ'2') - ^ G0(K[πί' X π'2'}) -^+ Coker Ψl

\[ .P*\\P* / P*\\P*
[ J) ^ Ckπi) ®G0{Kπ2) -^G0(K[πι X W J) - ^ Coker φt

G0(Kπ[) ®G0(Kπ'2) ~^-> G0(K[^ X πξ\) -^* Coker <p3.
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Let M be an irreducible K[π[ x Tr^module, E a finite normal separable extension

of if which is a splitting field of πΊxπί and N^N2 an Z?[7rίX7Γ2]-irreducible

component of ME> where N{ is the Έπ[-irreducible module, i = l , 2. Denote

the characters of M, N4 by X, ψ{ respectively and put m= \ π" X π" | .

L e m m a 3. (a) If there exists an irreducible K[π[Xπ^-module M such

that 9>5([M])ΦO and

then Coker φ^O.

(b) If there exists an irreducible K[π[x πQ-module M such that φ'z([M])^Q and

the inertialgroup of X, I(X)={g\g^π1Xπ2 Xg=X}, coincides with πxXπ2 and if

Coker φ3 is torsion free, then Coker <£>2Φθ.

(c) Let K=Q. Let π'i be an elementary abelίan p-group and \π't | =pni> i=l, 2,

where p is an odd prime. Denoting by ct the centralizer of π't in πiy then we can

regard n^i as a group of morphisms of the module π[. This identification induces

the natural map

ψ: πλx7r2 >πx\txXτr2/c2 • PGL(nx+n2>p).

Thenj* y* Coker <p3=0 if and only if

ty(nxXn2) contains
nΛ

Ί
r

\

where r is a primitive root modulo p and the order of σ is p—\.

(d) // Coker φx Φ 0, then Coker φ2 Φ 0.

Proof, (a) Assume j^^\M\ = \M®κUχf^ΛK\πxXπ2]]<=Im φ3. Then

M®κi^x^K[π,Xπ2] = Mn#M21®M12#M22® ®Mls#

where each M{j is a i&r£-irreducible module, i=ί9 2 , 7 = 1 , 2, •••, s.

Let Nu be an ETrJ-irreducible component of MfJy i=l, 2,j=l, 2, •••, s. Since

is an irreducible component of ME> there exists an element g.. of π{ and

such that NiJ=(σiNi)giJ. Let ψ.j be the character of JVfy. Then

^faiNagi^m^Ni) and K ^ ^ K ^ ) . Comparing the £-di-

mensions of both sides in (*), we obtain
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): K)(K(ψ2): K)(Nt#N2: E).

Hence

m = s mκ{Nλ)mκ{N2)(K(^x): K)(K(ψ2): K)lmκ{N^N2){K{^, ψ2): K).

This contradicts the assumption. Therefore Coker φ2 is not zero.
(b) Since I(X)=π1Xπ2y M®κιIt^x^ιK[πιXπ2^ ^ Mm as K[πΊxπ'2]-modules.
Since Coker φ3 is torsion free, we have Coker <p2φ0.
(c) First, assume;*;* Coker φ3=0. We have Qπ{^Q[Xly •••, XWJ/(X?-1,
- , - X ^ - l ) and Qπi^Q[Y19 - , Y J / ( y ? - l , - , Y^-l). Let ζ be a primitive
p-th root of unity and put G=Q{Q(ζ)IQ). Further put Mί=Q[Xu •• , ^ J /
(Xι-ζ,...,Xnι-ζ)G and M 2 = ρ [ F 1 , . . . , F r t 2 ] / ( y i - r , ,y M 2 -?) G where ( f
is the set of all G-invariant elements of ( ). Then each M is an irreducible

u -,Xni, Yu -, YJIM-ζ, -,Xni-ζ, Yt-ζ, '-, Yn2~ζ)G .

U ...,XMχ, Ylt ..-, Y^KX.-ζ, -,Xn-ζ, Y,-ζ\ -, YΛ2-ζψ

θ

®Q[xlt -,xnΛ, γu -.,

as Q[π{ X zr^-modules. If we put

M=Q[χlt -,χnι, γu....

we have φ's([M]) + 0 and so, by the assumption, _/'*/* Λίφ >M1#M2. Therefore
we can find an element c of πt X τr2 such that

Then we have ψ(c)=σ.
Conversely, assume ψ(π1Xπ2)^σ. Let c be a representative of σ in

7ΓiXτr2> {giJ gic> gic2> gic3> '">gicP~2} representatives of π"Xπί' in πxXπ2 and

M an irreducible ^[7τί X ̂ -module. (We can find representatives of above type.)
Ύhenj*j*M-ΣΘ(M®gi(BM®gic(B-' ζBM®gic

p~2) and there exist integers

r» -,rnι, * „ . - , - * * such that M®gi^Q[Xly -,Xni, F l f - , y j / ^ - Γ s - ,

XB l - ^"i, Yt-ζ\ •-, YH2-ζ'"ήG. By the assumption, | j M ® gscJ st

where w is a positive integer. Therefore [j*j*M]^Imφ3 and
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(d) Sincep*p*=l, it is trivial. Q.E.D.

Denote by e(π) the exponent of a group π and by ζn a primitive rc-th root of

unity for any integer n.

Lemma 4. Let π{ be an abelian group, i=\, 2, and G.C.D.(e{πτ), e(π2))

=Hphρ. Let Sp=mzx {s\ζps^K} for each prime p. If there exists at least one

primep such that hp>sp> then φ\ G0{Kπ^®G0{Kπ2) —^> GQ{K[πλXπ2]).

Proof. K(ζphp) is an irreducible J^7rrmodule. Let us consider the

underlying abelian group of K(ζphp)#K(ζphp). There exists an integer n such

that K{ζphp)®κK(ζphp)^K(ζphy. Since (K(ζphp): K) Φ 1, we have «Φ 1 and

so Coker <pφθ. Q.E.D.

3. (I) We can determine Coker<p when nx and π2 are abelian groups.

Let nλ be an abelian group with invariants lly •••, ln and π2 an abelian group with

invariants /w+1, •••, ln+m. Then

rank Coker φ = Σ WJx ••• Xv(dn+m)x {(K(ζ^CMXd.,)ι

where η is the Euler^s function.

(II) We denote the center of a group π by Z{π).

Theoram 5. Let L.C.M. W Z ( ^ / ^ 0 ) ) = ί I ^

and sp=max {s\ζps<=K\. If there exists a prime p such that min(mP9 np)>sp,

then GlKπ,)®GlKπ2) ^+ G0(K[πiXπ2]).

Proof. By assumption, there exists a normal subgroup π't of n{ such that

pmρ\e{Z{π1jπι)) andpnρ\e(Z(π2jπ'2)). Put π/

i

/=πilπi and consider the following

commutative diagram;

GoiKπ,) ® G0(Kπ2) ^ — + G0(K[πi X π2]) -> Coker Ψl

ίJ Λ II tl
^ G ^ K i ' ) ^ ^ G { K [ ' ' ' ' D C o k e r φ2

^G^Kπi') ^ ^ ^ G0{K[π'Ύ'xπ'2'D * Coker

II Ψ, \\ II
®GlK\Z{^)-\) ^ G ί ^ t Z ^ Γ ^ ) ] ) C k

II
Coker

Let G.C.D. (e(Z(πί% e(Z(π'2'))=J\php. Since hp>sp, Coker ^ 3 φ 0 by Lemma

4 and since Coker φ3 is torsion free by Lemma 1, then Coker <p2Φθ by Lemma

3 (b), and terefore Coker <p^0 by Lemma 3 (d). Q.E.D.
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Corollary 6. Let L.C.M. {e{Z(πjπ')))=VLpmp=h. Then any splitting field
π'<π

of π contains the primitive h-th root of unity.

Proof. By (4) G0(Kπ)®G0(Kπ) ^+ G0(K[πXπ]) if and only if K is a
splitting field of π. So this corollary is trivial. Q.E.D.

(Ill) Theorem 7. Let π{ be a group of odd order. Assume that there exists
an odd prime p such that p | (| π1 |, | π2 \) and 21 (K(ζp): K) where ζp is a primitive
p-th root of unity. Then φ GQ(Kπλ)®G0{Kπ2) ^> G0(K[πλ X τr2]).

Proof. Since π£ is a group of odd order, each π- is solvable. We can con-
sider a principal series π^π^ZDπ^H - ZDπT'^ --'^(l) and find integers
«,., r{ such that \π?S: τr(Λ+1Ί =pr*> ^ >0, for each ί = l , 2. And consider the
following commutative diagram

G0{Knx)®G0{Kn2)

II

])
<Ps

G0(K[π1 X πλ) * Coker φ1

ίl tl
T ^ J ( ^ ] ) C o k e r ^

ίl IJ
π?ι+1> X π?*ηπ?2+»]) ^ Coker

By Lemma 4, Coker <p3φ0. Since

(K(ξp): K)(K(ζp): K)l(K(ξp): K)X Π \πt:π?i>\ ,
t = l , 2

from Lemma 3 (a) it follows that Coker <p2φ0 and so by Lemma 3 (d) we have
Coker ^ Φ O . Q.E.D.

In case 2)( \π^ |ττ2 |, we can prove the converse to (5) by putting K=Q
in Theorem 7.

Corollary. 8 Assume 2J(\π1\ \π2\. Then

φ: G o ( £ θ ® G0(Qπ2) ^ * G0(Q[πi X π2]) if and only if (| ^ |, k a |) = 1 .

Corollary 9. P?/ί |7τ| ^Π^? 1 ' and suppose that p.)(p. —I for any indices

1 <ί, j^m. Then any splitting field of π contains the primitive pi- mpm-th root of
unity.
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Proof. We can show this corollary by the same method as in Theorem 7.

Q.E.D.

REMARK. If π is a nilpotent group, this result has been seen. For a

given integer n=p"i ---pmm all of groups of order n are nilpotent if and only if

Pjk$iΓt — 1 for all t such that /*,->*>0 and all i,j.

(IV) Here we consider 2-groups. In this case the groups with a cyclic sub-

group of index 2 are important. For any character of 2-grouρs is induced by the

character of such groups. (See [4] p. 73 (14.3).) Such groups can be classified

as follows. Put \π\=2n+\

π = <φ2»+ 1 = 1> .

π = <J, t\s2" = 1, ί2 = 1, tsr1 = s>

7r = <J, 11 s2" = 1, f = s2"~\ tsΓ1 = O

7r = O, /1 s2" = 1, f = 1, tsr1 = s~1>,

7r = <β91 \s2" = l, f = l, for1 = s^-'

I

II

III

IV

V

VI

Theorem 10. Let πλ and π2 be arbitrary two groups of the above types'.•

Then <p:G0(Q^)®G0(Q^) -:=^> G(s{Q[π1 X TΓJ) if and only if

(a) πx is a group of type (I, M=0), (II, n= 1) or (IV, n=2) and π2 is any,

(b) nx is of type (I, n=ί), (II, n=2), (III, n=2), (V, n=3) or (VI, n=3)

7t2 is of type IV,

(c) π1 is of type (I, n—1), (II, w=2) or (V, w=3) awd τr2 is of type VI.

Let Qk— Q(cos τrβk~ 1-\-i sin π/2k~x),

Rk=Q(cosπl2k~1) and Sk=Q{iύτiτtj2k~1).

R2—R1=S1=Q1 S2=Q2

First, we shall write out the division algebras which are contained within

Qπ. (See, Feit [4] p. 63-p. 66.)

If π is of type I, {£),.} ί<i<n+i a r e all °f Λe division algebras of QTΓ. When π is

of type II, {£?f }i<t <» are all of the division algebras. If π is of type III, then

{D, i?, }i<t <n_i are all of the division algebras where D is the division algebra of

a faithful irreducible representation of π. Hence the center of D is Rn. If π
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is of type IV, {/?,.} 1<i<M are all of the division algebras. When π is of type V
and n=3> then' Q1 and Q2 are only division algebras of π. If n>3, Q3 is one
of the division algebras of π. And if π is of type VI, {Sn, i?t}1<t<rt_i are all of
the division algebras.

Lemma 11. Let X be a faithful irreducible character of the group of type III.
Then mSk(X)= \ for A > 2.

In case k=2, we can see the proof of Lemma 11, for example, in Feit [4].
In case k>2> we can prove it similarly.

Proof of Theorem 10. a) When πx is of type (I, n=0), (II, n= 1) or (IV,
n=2)y Q is a splitting field of πλ. Therefore φ is an isomorphism.
(b) If τr, is of type I, II or V, Q2 is one of the division algebras of πh ι = l , 2.
Then Coker <pΦθ, because Q2®QQ2~Q2®Q2.
(c) If π1 is of type I, II or V and π2 of type III, then Coker <pΦθ because

(d) If πx is of type (I, n=l), (II, n=2) or (V, n=3) and π2 is of type IV,
the division algebra of πx is Qx or Q2 and the division algebra of π2 is one of
{R-i}κi<n Since Q2®QR.^Q. for 3 < / < w and £)2®Qi?t = £)2 for * < 3 , we
obtain Coker 99=0. If πx is of type (I, //>1), (II, n>2) or (V, n>3) and τr2 of
type IV, Coker ̂ Φ θ , because Q3 is one of the division algebras of πx and

(e) If nx is of type (I, n=ί), (II, w=2) or (V, n=3) and τr2 is of type VI,
Cokerφ = 0. For the division algebra of zr2 is one of {Sn, Ri}i^i<n-i> w > 3
and Q2®QSn~Qn for /z>3, Q2®QRi~Qi for 3<z'<rc-l and Q2®QRi~Q2 for
z<3. If zΓj is of type (I, n > l ) , (II, w>2) or (V, n>3) and τr2 is of type VI,
then Coker £>Φθ because Q3®QS3^Q3®Q3 and 53®Qi?3^£>3 0 ^ 3 .
(f) If πx is of type (III, n—2), the division algebra of 7̂  is Q1 or D with center
Q. Since D®QR{ is a division algebra also for all ί, we have Coker ̂ ?=0 if τr2

is of type IV. If w>2, there exists a division algebra of πx with center R3.
From the fact that R3®QR3^R3®R3y it follows that Coker <pΦθ for the group
π2 of type IV.
(g) Assume that πx is of type III and π2 of type VI. Since D®QSn^(Sn)2 by
Lemma 11, we obtain Coker φ Φθ.
(h) Suppose that πx is of type IV. If π2 is of type (VI, n—3), the division
algebra of n2 is (^ or S3. Since Ri®QS3^Q{ for 3<£<n or S3 for /<3,
Coker φ=0. If τr2 is of type (VI, n=4)y then 1̂4 is a division algebra of π2 and
if 7Γ2 is of type (VI, /z>4), i?4 is a division algebra of π2. Since i?300^4^54054
and R3®QR4~RtθR4, in both cases Coker <pΦθ. Q.E.D.
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