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1. Introduction

In [3] we raised the following question:

Let G be a finite group acting properly (as a group of homeomorphisms) on

the ^-sphere. For any (topological) m-manifold M and any map / : Sn-^M let

A(f)= {XEΞ Sn I f(x)=f(xg), all gEΞG}. What can be deduced about dim A(f) ?

In case M=Rm, euclidean m-space, A(f) is the set of solutions of

(I G\ —\)m-\-\ equations in n-\-ί unknowns so one might hope to get

(1.1) d i m , 4 ( / ) > H - ( | G | - l ) m .

If G is cyclic of prime order then (1.1) actually holds even for maps

/ : Sn->Mm provided Mm is compact (for G=Z2 and m=n assume also that

/ * = 0 : Hn(Sn; Z2)->Hn(Mn; Z2)), see [3]. In this note we consider G=Zpa,

cyclic of odd prime power order, and we restrict attention to maps into Rm.

Our results are expressed in two theorems:

Mod pa Borsuk-Ulam theorem: For any proper action of Zpa on S2n~1

y

p an odd prime, and any map f: S2n~1->Rtn one has

dim A(f)>(2n-l)-(pa-ί)m-[m(a-l)pa-(ma+2)pa-1+m+3] .

Mod pa Borsuk-Ulam anti-theorem: Consider the standard linear action

ofZpa on S2n-\ Assume a>\ andpa =t= 9. If2n-l<(pa-l)m+ {2p-3)m-l

then there exists a map f: S2n~1->Rm with A(f)=φ.

Notice that the anti-theorem says that (1.1) fails whenever a>ί and

the theorem gives m(a—l)pa—(maJ

Γ2)pa~1-\-m-\-3 as an upper bound for this

failure. For a=l this upper bound is 1, so for G=Zp we are 1 off our previous

results [3].

REMARKS. 1. dim means covering dimension.

2. For pa=9 and m>\ there is a result similar to the anti-theorem.

We leave that to the interested reader.
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3. In private correspondence with M. Nakaoka I have recently learned

that (1.1) holds for Z^-actions on modp homology spheres Sn and maps

/ : Sn-+Mm without the restriction of niceness of/imposed by me in [3].

2. Proof of theorem

Let μ: SxG-^S be a proper action of the cyclic group G of odd prime

power order ρa=q=2k+l on the {In— 1) sphere S. Denote by η the cor-

responding principal G-bundle S-^S/μ over the orbit space S/μ. For a

complex G-module M let y[M] be the complex vector bundle SxGM-^>Slμ.

The correspondence Mt->η[M] gives rise to a ring homomorphism a: 3lG->

K°(Slμ) where !RG is the complex representation ring for G while K° denotes

complex i£-theory. Denote by L the standard 1-dimensional complex G-

module, i.e. L=C> the field of complex numbers, and, fixing a generator g0 for

G, goc=exp ( 2 τ r ^ " 1

v

/ 3 ϊ ) ^ Then 3iG=Z[p]l(pg— 1) where p is the class

of L. Finally, put \=η[L] and for any map/: S->Rm let Xf be the restriction

of λ to A(f)/μ^S/μ.

Now the mod pa Borsuk-Ulam theorem is essentially contained in

Lemma 1. If d\f has a never vanishing section then d>n—\-\-pa~1

Proof. Assume that d\f has a never vanishing section. We first show

(2. 1) P(p): = (p_i)*[(p_i)(p '_ i) . . . (p*-l)]-e(p-l)-.Z[p]/(p - l ) .

Recall that the ith Atiyah class a^ξ) of an w-dimensional complex vector bundle

ξ is given by ai(ξ)=yi(ξ—n) with γ1 as in [1]. Then we have the usual

Whitney duality, namely ai(ξ1φξ2)— 2 aj(ζ\)ak{ζ^i a l s o f°r anY n n e bundle

ξ> βi(ζ)=ζ — 1. Therefore it is immediate that aP(p)=ad+mk(A) where Λ is the
vector bundle ί/λφm[λφλ 2 φ φλ*], and so (2.1) follows from

(2.2) Ker(α: &G^K°(Slμ))^(p-l)n.&G,

(2. 3) Λ admits a never vanishing section.

To get (2.2) we compare μ with the standard linear action μQ: SχG-±S

obtained by viewing S as the unit sphere in nL=L(B'» ®L. S2n~1jμQ is a

(In— l)-dimensional cell complex and η: S-^S/μ is (2n— l)-universal in the

sense of [5]. Hence there is a bundle map
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Furthermore, it is obvious that

K\Slμ0)

commutes, so Ker α c K e r a0. But a0 fits into an exact sequence (see [1])

SίG -^-> SίG - ^ > K°(Slμ0)

where φ is multiplication by λ_1(//p) = (l—p)Λ, so Ker <20Q(p—V
In [3] it is shown that /gives rise to a section S of m(λ®λ2 ®λfe) which

vanishes precisely on A(f)/μ (see especially Digression 1, p. 171-2 and Step 3,
p. 180-1 of [3]). s and the given section s0 of d\f go together to prove (2.3).
This completes the proof of (2.1).

Our next step is to show that (2.1) is actually equivalent to the inequality

d>n— \-\-pa~ι am(pa—pa~1). The equivalence is obvious if n<d-\-mk, so

assume n>d-\-mk. Lift (2.1) to the polynomial ring Z[x] to get the equivalent

(2.1.1) 3g, AeZ[*]: P(x) = g(x)(x-iy+h(x)(x«-l).

Now P{x)=(x-\)d+Mk-nU2fj{x)mίk/n; ( * * - ! ) = ( * - l ) Π?=i/y(*) where / y is
the j t h cyclotomic polynomial and [k/j] is the integral part of k/j. Hence, if
(2.1.1) holds then# is divisible by Π?Ii//(tf) and h is divisible by (x—l)d+km-1.
So, putting Sj=0 ΊίjXpa, S~ 1 if j \pa, (2.1.1) implies (and is clearly implied by)

(2. l.2) Bg, h£ΞZ[x]: πufλxr1*'*-' = g(χ)-(χ-iy-d-km+z(χ)-Mχ)

Let γ be a primitive qth root of unity and consider the projection Z[x]->Z[<γ]ςzC.
Its kernel is the ideal generated by fg(x) so (2.1.2) is equivalent to

(2. 1.3) (7-lf-d-^\UU2f(Ύ)mίk/n-εJ in Z[γ] .

Now Z[γ] is precisely the algebraic integers of the field Q(j) and (γ—l)Z[γ] is
the unique prime ideal in Z[γ] lying above pZ, see e.q. [6]. Let 37: Q (y)~*Q
be the norm map for the extension Q(Ύ)IQ. It is then an immediate con-
sequence of classical ideal theory for Dedekind extensions that (2.1.3) is equivalent
to

(2.1. 4) 32(7-1)*-*-^ I Πί=i m(fj(y)rίkm-J in Z.

The norms involved here are not hard to compute, so rearranging (2.1.4) slightly

it takes the desired form d>n— \-\-pa~ι—— am(pa— pa~ι).
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If A(f)lμ happens to be a CW complex then of course we have
(dim A(f)Iμ<2d)=φ(dXf has a never vanishing section), and the above lemma
can then be translated into a condition on dim A(f)/μ. Since also dim^4(/)=
dim A(f)/μ (because A(f)^A(f)lμ is a finite covering and dim has the mono-
tonicity and sum-properties, see [4]) this completes the proof of the mod pa

Borsuk-Ulam theorem. A(f)lμ, however, need not be a CW complex so we
need to know the following

L e m m a 2. If λ is a complex line bundle over a compact metric space X of

covering dimension <!2d then dX admits a never vanishing section.

I certainly do not believe that this lemma is unknown. However, nor do
I know of any reference for it, so a proof of it is given as an appendix.

3. Proof of the anti-theorem

Consider the standard linear action μ0 of G=Zpa on S2N~1

y N big, i.e. view
S2"'1 as the unit sphere in NL=L@ — @L. S2N~ιjμQ is a CW-complex with
S2N-λjμQ as (2n—l)-skeleton. Let ξ be the vector bundle S^^XGIG-*

S2N~1/μ0 where IG is the augmentation ideal of the real group algebra RG.
We notice that the anti-theorem is a consequence of

(3. 1) mξ admits a never vanishing section over the

[(ρa—l)m+(2p—3)m— l]-skeleton.

Indeed, it is well known how a section s of mξ over the (2n—l)-skeleton cor-
responds to an equivariant map F: S2n~1-^m(IG)=IG®IG® — ®/G. If
i: IG^RG is the inclusion then equivariance of F means that (/©••• ®i)F has
the form {i®-®ί)F(x)=(τgf1{xg-λ)g, •••, ̂ Jm{^g~ι)g) for well defined con-

tinuous maps fa S2n~1^R. Put f=(fly ••",/«) and notice that A(f)=φ is
equivalent to s having no zeros.

If we have shown (3.1) for m = l then it follows for general m by noticing
that mξ^A*(ξX ••• Xξ) for any skeletal approximation A: S2N~1lμ0->
S2N'1jμQX ••• X S2N~1jμQ to the m-ίo\ά diagonal. Hence, assume m=\. In [3]
we showed that the mod p Euler class of ξ vanishes whenever a>\. If we
further exclude the case pa=9 then the same proof shows that the integral Euler
class vanishes. Hence ξ does have a never vanishing section over the 2k
skeleton. The obstructions to extending this section over the succesive skeleta
lie in H2k+χS*»-ηG; π2k_1+i(S**-1))^H**+<(G; π2k_1+i(S2k~% For 0 < / <
2/>—3 the homotopy group in question has vanishing ^-primary component
so the obstructions vanish and we do have our desired section over the
(2k+2p—4)-skeleton.

REMARK. In the above we have made strong use of the fact that ξ admits
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a complex structure so that ξ is orientable and hence no twisting of coefficients
occur.

4. Remarks on the case G=Z25, m=l> linear action

For G=Z25 and m = l our results show that there exists a map /: S29->R
with A(f)=φ whereas every map /: S33^R has A(f)^φ. In fact every map
/: S31-+R has A(f)^φ as we now show. Suppose that A(fo)=φ for some
f0: S31->R. Then

so(xG) = (*, π{τjo{xg^)g))G

defines a cross-section s0 of ξ over the 31-skeleton. (π: RG-+IG is given
by π(Σrglg) = Σrg(g—l)). The obstruction to extending s0 further lie in
HZ2+\S2N'ιlZ25\ π31+i(S23)). Since the 5-primary component of τr31+t (523) is
zero for 0 < z < 6 we get a never vanishing section over the 37-skeleton. As in
§3 this gives an/: S37 -*R with A(f)=φ. But that contradicts the above result
for maps S33->R.

Unfortunately for pa>25 our positive and negative results are too far apart
to close the gap between them by means as trivial as the above.

Appendix. Proof of lemma 2

Let Δ be the abstract 4d-l simplex and | Δ | its standard realization in
R4d. By the general embedding theorem for compacta (see e.g. p. 139 of [2])
X can be taken as a closed subspace of | Δ | . Let Kn be the subcomplex of Δ ( n )

(=nth barycentric subdivision of Δ) spanned by all Ad — 1 simplices T for which
| τ | ΓϊXφφ. Then Kn is a subcomplex of the barycentric subdivision of
Kn_λ so the inclusion in\ \Kn\-^\Kn_1\ admits a simplicial approximation
φn\ Kn->Kn_1. Also {|i£w|} is cofinal in the (downward) directed set of all
neighborhoods of X in | Δ | , so for any abelian group A we have H*(X; A)
^lim H*(\Kn\ A), where as usual H* is Cech cohomology, while H* can be

taken as any ordinary cohomology theory. Since line bundles are characterized
by the first Chern class cλ^H2{— Z) it follows that λ admits an extension λ^
over \KN\ for N sufficiently large. Fix such an N and define (inductively,
for n>N) Xn= \<Pn\*~λ>n-i- Let σn be the sphere bundle associated with d\n.
Since λ = λ w | X , n>N, it is clearly sufficient to show that σn admits a cross-
section when n is sufficiently large, in other words, if we let k be the maximal
number such that for some n>N σn admits a cross-section over the Λ-skeleton
\Kn\ of Kn, then we must show k>4-d—l. Suppose k<4d—l. Choose n>N
such that σn \ K^\ has a cross-section, s, say. Consider the restriction sf of s to
the (k— l)-skeleton and the obstruction c to extending sf over the (β-f l)-skeleton
(obstruction in the sense of [5]). cG Hk+1( \ Kn \ π) where π=πk(S2d~1), and —
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by maximality of k— cφO. Since k is clearly >2d— 1 our assumption on
άϊraX assures that Hk+1(X; π)=limHk+ι(\Kj\ π) vanishes so there is an

m>n such that c\\Km\ = \φ\*c=0; here φ is an abbreviation for φn+ιφn+2 --
φm\ Km->Kn. Now crm=\φ\*<rn and \φ\ is skeleton preserving so s gives
rise to a cross-section ^ of σm\\Km\. Moreover, if s/ is the restriction of ^ to
IJSΓiΓ1! th^n the obstruction to extending s^ over |^ ί , + 1 | is precisely |^ | *^ .
But \φ\*c=0 so V ώ^ί extend over \K^τ\, thus contradicting the maximality
of A.
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