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1. Introduction

Let G be a compact Lie group and M a differentiable manifold. Let f:
G X M—M be a differentiable action and F the set of all stationary points of
f. Then we shall say that f is semi-free if the following condition holds: if
f(g, x)=x for some x& M—F, then g=e the identity element of G.

Now let G be a compact connected Lie group. We shall consider all
semi-free G-actions (M", f) on closed oriented differentiable #-manifolds. Such
a semi-free G-action (M", f) is cobordant to zero if and only if there is a semi-
free G-action (W"*, g) on a compact oriented differentiable (#+1)-manifold W”**
for which (W, g|0W) is equivariantly orientation preserving diffeomorphic to
(M”, f). From two semi-free G-actions (M?%, f,) and (M3, f,) a disjoint union
(MtUM3, f) can be formed as usual. We say that (M3, f,) is cobordant to
(M3, f,) if and only if the disjoint union of (M3, f,) and (— M3, f,) is cobordant
to zero in the above sense. By making use of the existence of an equivariant
collared neighborhood,. it is shown that corbodism is an equivalence relation, the
cobordism class to which (M”, f) belongs is denoted by [M", f]. The collection
of such cobordism classes is denoted by SF,(G). An abelian group structure is
imposed on SF,(G) by disjoint union. We shall call this group SF,(G) the
cobordism group of semi-free G-actions of dimension 7.

Let S* and S° be the unit spheres in the field of complex numbers C and of
quaternions H respectively. In this paper we shall consider SF,(S*) and SF,
(S%. We shall recall some well known results on semi-free actions in section
2. And in section 3 we shall prove the following result.

Theorem 3.2. There are split exact sequences:
0— SF,(S") — g Q_o (BU(R)) = Q,_,(CP*) — 0,
0— SF,(S°) — ; Q,_u (BSp(R)) = Q,_(HP~) — 0.

Next we shall show that another splitting homomorphism of ; Qu_x(BU
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(R)) onto SF,(S") is obtained by making use of associated projective bundles in
section 4. And we have an isomorphism CPy : >3 Q,_,(BU(R)) — SF,(S").
k1

The author wishes to thank referee for his kind advice.

2. Semi-free actions

In this section, we recall some well known results.

Let G be a compact Lie group and M a compact differentiable manifold.
Let f: GXM—M be a semi-free differentiable action. By the usual averaging
process, there is a Riemannian metric on M with respect to which G is a group
of isometries of M.

If x& M is a stationary point of f, then we have an induced orthogonal
representation of G on M,, the tangent space of M at x M.

Lemma 2.1. Let x& M be a stationary point of a semi-free differentiable

action f: GXM—-M. Let p,: G—>GL(M,) be an induced orthogonal repre-
sentation and

V= {veM,|p.(g)v = v for any g= G} .

Then the restriction on V of an exponential mapping exp: M,—M is a local
diffeomorphism of V into F, the set of all stationary points of f, and the orthogonal
complement V> of V in M, is a G-invariant subspace on which G acts freely except
for the zero vector.

From this lemma we have a well known result that each connected com-
ponent of F is a differentiable submanifold of M.

In particular, if we consider semi-free S®-actions (a=1, 3), we obtain the
following result (cf. [2], §38).

Lemma 2.2. Letf:S° X M—M (a=1, 3) be a semi-free differentiable action.
Let F* denote the union of the k-dimensional components of the set of all stationary
points of f. Then the normal bundle v, of an embedding F*C M has naturally a
complex structure for a=1 and a quaternionic structure for a=3, such that the induced
S®-action on v, is a scalar multiplication.

Proof. This follows from the fact that the real vector space C' (resp. H")
is the only one irreducible real representation on which S* (resp. S°) acts freely
except for the zero vector. q.e.d.

RemMARK. From this lemma, a codimension of each component of F in M
is even for a=1 and divisible by 4 for a=3.
3. Cobordism of semi-free G-actions

Let G be a compact connected Lie group. We consider all semi-free
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differentiable G-actions (M”, f) on closed oriented differentiable #-manifolds,
where f: GX M"—>M?" is a semi-free G-action.

Such a semi-free G-action (M", f) is cobordant to zero if and only if there is
a semi-free G-action (W”*', F) on a compact oriented differentiable (n-41)-
manifold W”** for which (0W, F|0W) is equivariantly orientation preserving
differomorphic to (M", f). From two semi-free G-actions (M?%, f,) and (M3, f,)
a disjoint union (M3U M3, f) can be formed as usual. We say that (M3, f,)
is cobordant to (M3, f,) if and only if the disjoint union of (M?%, f,) and (—M3,
f>) is cobordant to zero in the above sense, where — M3 is the negatively oriented
manifold of M3. By making use of the existence of an equivariant collared
neighborhood (cf. [2], Th. 21.2), it is shown that cobordism is an equivalence
relation, the cobordism class to which (M", f) belongs is denoted by [M", f].
The collection of such cobordism classes is denoted by SF,(G). An abelian
group structure is imposed on SF,(G) by disjoint union. We call this group SF,
(G) the cobordism group of semi-free G-actions of dimension 7.

Let f: GX M—M be a semi-free G-action and N a closed manifold. Then
f¥: GXMXN—-MXN defined by fN(g, m, n)=(f(g, m), n) is also a semi-free
G-action. This defines a right Q4-module structure on SF*(G)zgSF,,(G).

In the above definition, if the term “semi-free” is replaced by “free”, one
may define a cobordism group F,(G) of fixed point free G-actions of dimension
n and a right Q4-module structure on Fy(G)= X F,(G).

720

Let B(G) be a classifying space of G and k the dimension of G as a manifold.
let (M™, f) be a free G-action. Then z: M"—M"|G is a principal G-bundle by
the differentiable slice theorem (cf. [1], ch. 8), and there exists a homotopy class
of a classifying map f: M”/G—>B(G). The correspondence [M”, f]—[M"|G, f]
is well-defined homomorphism of F,(G) into Q,_,(B(G)) and we have the
following known result (cf. [2], 19.1, [7], 19.6).

Lemma 3.1. The above defined homomorphism py : F(G)—Q,_(B(G))
is an isomorphism and py : Fy(G)—Qy(B(G)) is an isomorphism of degree —k
as a Qy-module homomorphism.

Here we consider the cobordism groups SF,(S") and SF,(S®). Let M, (U)
(n/2 nl4
= ;]Q”_zk(BU(k)) and M, (Sp) :(’z_,‘] Q. _(BSp(R)), where Q,(BU(0)) = Q, =

Q,(BSp(0)). In the following we consider the cobordism group SF,(S%),
since the cobordism group SF,(S°) can be considered similarly.

_ We define By :SF,(S")—M,(U) as follows. For each semi-free S'-action
(M™", f), let F*=*# denote the union of the (n—2k)-dimensional components of the
fixed point set and let »# denote the normal bundle to F*~%# with natural complex
vector bundle structure. Then v* is canonically oriented and let F”~% be so
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oriented that the bundle map 7F @ v*— T M is orientation preserving. Define
Bx([M", f1)= g[v"]e‘.m,,(U). Then By is a well-defined homomorphism.

We also consider the homomorphism 8,: M, (U)—Q,_,(CP~), the sum of
the homomorphisms 0y: Q,_,(BU(k)) — Q,_,(CP>) as follows. For each com-
plex vector bundle &%, let S(£%) and CP(£¥) denote the associated sphere bundle
and projective bundle respectively and let z: S(£¥)— CP(£¥) be a projection.
Define 04([£#])=[x], the class of principal S*-bundle z. By definition 94(,)=0.

Theorem 3.2. The sequences

)
0 — SF, (SY B, M, (U) —> Q,_,(CP) — 0
and

)
0 — SF,(S% B, M, (Sp) —— Q_(HP?) — 0
are split exact.

Proof. Let ay: F,(S")—SF,(S") be a canonical forgetting homomorphism
and Sy: M, (U)—F,_,(S") a homomorphism as follows. For each complex
vector bundle &%, let @: S'XS(E¥)— S(£%) be the scalar multiplication.
Define S«([£4])=[S(£*¥), #]. Then we have the following sequence:

S
o F(SY X5 SFL(SY) B (1) F (57 25 SF,, (S) — -

which is exact by a standard argument (cf. [9], Th. A). Moreover the following
diagram is commutative:

Sx

M (V) F,(S")
0x \ / Px
Q,_(CP~)

where py is the isomorphism in Lemma 3.1.

Next we define Dy.: Q,,_,(CP~)—M,(U) and show 94 Dy=identity. For each
principal S'-bundle £, let Dy([£]) be the class of the associated complex line
bundle. Clearly D, is well-defined and 84 Dyx=id. These complete the proof.

Corollary 3.3. Each fixed point free differentiable S®-action on an oriented
closed differentiable n-manifold is cobordant to zero in SF,(S?), for a=1 and a=3.

4. Examples of semi-free S'-actions

Let £ be a complex k-plane bundle over an oriented closed differentiable
manifold V" and @' a trivial complex line bundle over V”. Let CP (§8")
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be a total space of complex projective bundle over V* associated with the Whitney
sum £PF'. Then CP (£) and CP(¢6') have canonical orientations defined
by the complex structure of £. Moreover the normal bundle » of the embedding
CP(E)c CP(£40") has a complex structure conjugate equivalent to the complex
line bundle £ associated with the principal S*-bundle z: S(£)—CP(£).
Define
u: S*x CP(£P0)—~CP(£PF")

by u(n, <u, v>) =< \u, v> where A& S?, u and v are vectors of & and 6" respec-
tively. Then p is a semi-free differentiable S'-action with the fixed point
set V" UCP(E). And & becomes the normal bundle of the embedding V" C
CP (£P¢") with canonical complex structure induced from the action x. On
the other hand, S*-action on the normal bundle » of the embedding CP(¢§) C CP
(E6") is the conjugate scalar multiplication by definition of the action p.
Therefore we have

(+.1) BA[CPEDE), u] = [£] — [E]in Muna(V).

Theorem 4.2. Let (M", f) be a semi-free S*-action, F"=** a (n—2k)-di-
mensional components of the fixed point set and v* a complex normal bundle of the
embedding F*»~**C M". Then we have

[M" f]= ; [CP*®O"), p] in SF,(S").
Proof. By (4.1) and the definition of By,
BulM", 13 B[CP(*&0), 1]
=23 ([ —(¥1—[41)
= ; [v*].
where 7* is a complex line bundle associated with the principal S'-bundle
n: S(w¥)—CP(v¥). Then [$*]=Dy 04 [v*] by definition. Therefore
51 [5#] = Db (S [4])
= Dy 046x[M", f]
=0
since 048x=0. Since By is injective, this implies [M", f]———zk] [CP(v:DE"), 1]
in SF,(S"). q.ed.

Let CP, assign to [£] the cobordism class [CP (¢ ®¢"), p] in SFx(S).
Then we have well-defined homomorphisms
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CPy: Q,(BU(R)) = SF,.4(S")
and
CPy: M, (U) — SF,(SY).

Corollary 4.3. The homomorphism CPy: M, (U)—SF,(S) is a left inverse
of B, i.e. CPyBy = identity.
Corollary 4.4. The homomorphism
CPy: ’E Q,,_(BU(k)) = SF,(S")
1s an isomorphism.

Theorem 4.5. Let (M", f) be a semi-free S®-action with the fixed point set
F" %7 where a=1 or a=3. Then

[M”, f] = 0 in SF,(S%.

Proof. Let » be a normal complex (for a=1 and quaternionic for a=3)
line bundle of the embedding FC M”. Let » be a principal S®-bundle associated
with ». Then [v]=D4[r] and

[7] = 04D[7] = 0x[v] = 0xB«[M", f1= 0.
Thus
B«[M?”, f] = [v] = D«[p] = 0.

Therefore [M", f]1=0, since By is injective. q.e.d.

Corollary 4.6. Let M" be an oriented closed manifold. Then the following
conditions are equivalent:

(i) [M*"]=0inQ,,
(i) there exists a semi-free S*-action (V"**, f) with the fixed point set M”,
(iil) there exists a semi-free S°-action (W"**, g) with the fixed point set M”.

Proof. Under the condition (ii), [V**?, f]=0 in SF,,,(S") from the above
theorem. Then B4[V"** f]=0 and in particular [M"]=0. Similarly (iii)
implies (i). We shall show (i) implies (ii) and (iii).

Let S® and D**" be the unit sphere and the unit disk in the field of complex
numbers for a=1 and of quaternions for a=3. There exists an oriented compact
differentiable manifold W”** for which M"=0W since [M”]=0 in Q,. Then

0 (Wx 8% = M"xS*=0(M"xD*").
Therefore we obtain an oriented closed differentiable manifold

prta+r Wn+ix S8 UM”XDa+1.
id
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Let f: S*X V****'— P*+%*1 be a map defined by f(, (¥, 2)) = (», A 2) for (x, 2)
€ W™ x S%r (x, 2)eM"x D**.

Then f is a semi-free S%-action with the fixed point set M”". q.e.d.
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