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Introduction

In the previous paper [4] we have considered the cobordism groups of
generic immersions and introduced the cobordism groups B(n, k) of bundles
over manifolds with involution as follows. The basic object is a triple (W, T, &)
where T is a fixed point free differentiable involution on a compact differentiable
manifold W and £ is a k-plane bundle over W. If M, and M, are closed
n-manifolds then (M,, T, §,) is cobordant to (M,, T, &,) if and only if there
exists a triple (W, T, §) for which (W, T, £)=(M,, T}, &)+ (M,, T,, £,). Then
this is an equivalence relation and the set of all cobordism classes B(n, k) be-
comes an abelian group by disjoint union.

These groups B(n, k) play an important role in the study of the cobordism
groups of generic immersions. And there is an exact sequence [4]:

e % B, ) 5T (BOGR)x BOR) -2 B(n, k) ~2%> B(n—1, k) L%s .
where the homomorphism ¢, is a modified Smith homomorphism.

The object of this paper is to determine the structure of these groups. Let
{x,} be the basis of the free Jl,-module J1,(BO(k)), then Tl (BO(k)x BO(k))
=APPREPS® where A®, R® and S® are the free Jl,-modules
with basis {x,, X %}, {x, X %,’| 0<w'} and {x, X x,/+%,’ X x,| 0+ o'} respectively.
Let B(”)zg B(n, k) and C®=¢,(B*®). Then we will prove B®=C®PHS®

and C®=A®QZ[t].

Next we consider the objects (W, T, £, T) where £ is a k-plane bundle
over a compact differentiable manifold W, T': W—W is a fixed point free differ-
entiable involution and 7:—¢ is a bundle map covering T such that 7%=
identity, then the cobordism group B(n, k) analogous to B(n, k) is obtained.
And there is a short exact sequence:

0 — TL(BO(R) -2 B(n, k) 2> B(n—1, k) — 0.
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Now let o: B(n, k)— B(n, k) be the canonical forgetting homomorphism
and d: BO(k)—BO(k) x BO(K) be the diagonal map, then the following diagram
is commutative:

T(BOK) -2 B(n, k) 25> B(n—1, k)

dy o o

T,(BOK)x BO(R)) 2> B(n, k) 2> B(n—1, k).
Clearly o(B(n, k)) is contained in ¢4(B(n+1, k)) and in fact we will prove
o(B(n, k))=¢«(B(n+1, k)).
In the last section we will determine the rank of the oriented cobordism
groups B*(n, k) which are also defined in the previous paper [4].

1. The structure of B(n, k)

Let =(n, k) be the set of partitions of » into integers each of which is <k.
Let z® be the disjoint union of z(n, k) for all =0. Denote n(w)=n for
wcz® if wcrz(n, k). Throughout this paper, suppose any fixed order is
given in z®,

One may choose {x,|wEr®, x,& I,.,(BO(k))} as the basis of the free
Jy-module JT14(BO(k)) such that e(x,) is the dual of W, --- W, if w=(i, ---,1,)
where e: Ju( )=>Hy( , Z,) is the evaluation homomorphism and W; is the
i-th universal Stiefel-Whitney class. Suppose (M., £,) represents the class x,,
where £, is a k-plane bundle over the closed n(w)-dimensional differentiable
manifold M,. Then {x,Xx, |, o' €7%®} becomes the basis of the free Tl,-
module J1,(BO(k) X BO(k)), where x, X x,/ is represented by (M, XM, &,%0,
0xE.).

Let AP=3YAP, R®=31R¥ and S®=31 S be the free Jl,-modules

n n n
with basis {x, X ¥, | 0E7®}, {x,X %,/ | 0, &’ E7P, 0<o'} and {x, X X,/ +x,/ X %, |
w, o' €x®, w+w'} respectively, where AP, R and S are the factors of
degree n. Then

(1.1) T1«(BO(k) x BO(k)) = A®PR®PS® (direct sum).
Lemma 1.2. pupy|R®: R®—S® s an isomorphism of Jly-modules.

Proof. pupu(%, X %,/)=%,X X,/ 4%, X %,, since py@py=147y, where 7, is
induced from the map 7: BO(k) X BO(k)—BO(k) x BO(k) switching factors.
q.e.d.

Lemma 1.3. For any o= 7® and any 1=0, 1, 2, ---, there exists an element
VL€ B(2n(w)+1, k) such that $u(y)=y." and ymga(x, X x,).

Proof. Let y! be the class of (S‘xM, xM,, AxT, 0xE&,x0), where
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A: §'— 8’ is the antipodal map on the sphere, (M,, £,) represents x, and T is
the map switching factors on M, X M,. Then this is the desired element.
q.e.d.

Let C®>=31C», C®=3 C¥ and C®=3C¥ be the Tl4-submodules

n n n

of B®=31 B(n, k) generated by {yl|locz®}, {yllocz®, =0} and {yl|

wEx®, >0} respectively, where C?, C¥ and C{ are the factors of degree
n. From Lemma 1.3, if we define ¢§’(x, X x,)=7y%, then we obtain the following
result.

Lemma 1.4. There exist Jly-module homomorphisms @@ : A®—C*®? of
0) (€2}

degree | for any 1 =0 such that p’=@, and @’ are surjective for any 1>0, and
the following diagram is commutative:

A

23 (l—1)

Pl / \90*

CkD P > Ckii=1)

Lemma 1.5. For any integer n=0, the following statements are true:
(a,) the homomorphism @y: AP —CF% is an isomorphism,
(b,) CP zlg CP (direct sum) and the homomorphism Jy:CR,—C¥ is an
isomorphism,
(cn) B(n, )=p«(AP)Dp«(R)DC.
This lemma will be proved in the next section. As a corollary of this lemma
we obtain the following results.

Theorem 1.6. B®=3 B(n, k) is the direct sum C®PDp(R®) and C*®

=x(B®) where C® is the free Jli-module with basis {y}|wes=®, =0} and the
degree of y! is 2n(w)+1. In particular B® is a free Il -module.

Corollary 1.7. B®=(APQZ[t]))PS® as Tly-modules where Z[t] is the

polynomial ring with one generator t of degree 1.

2. Proof of Lemma 1.5
Consider the following exact sequence:
B(0, k) 2% 91,(BO(k) x BO(R)) 2> B(0, k) — 0.

Then ¢, is isomorphic since T, (BO(k) X BO(k))=A§=Z,. Therefore (a,) and
(¢,) are true. In general we will prove the statements by induction on 7.
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(i) Suppose “(a,) is true for r<n”. Then the homomorphisms
PP AP = CEP and () CHP —> C
are isomorphic for r <z and /=0 by Lemma 1.4. Suppose
x(0)+x(1)+ ves +x(10) — 0
where xP e Ci#?, then
(Ga)o(599) = (Pa)fo(xO-HaO o +aW) =0 thus 2% =0,

Therefore x°=0 for all 0<I/</, and C¢ is the direct sum of C{¥, [=0.
On the other hand, the homomorphisms

Jat CHED = Cipo0

are isomorphic for />0. Therefore the homomorphism
gx: CB, — CRP
is isomorphic. Consequently “(a,) is true for » <n”’ implies “(b,) is true”.
(if) Suppose “(b,) and (c,) are true.” Then
B(n, k) = C3* @ p«(R:")
and the homomorphisms
Jy: CR, = C and  py: pu(RP) — S§P

are isomorphic. Thus C{PC ¢(B(n+1, k)) and P«(B(n+1, k)) N px(R:P)=0.
Therefore CP=¢4(B(n+1, k)). Then the following is an exact sequence of
Z,-modules:

0 — (kernel of pw) — B(nt1, ) —2% CP 0.
Therefore
B(n+1, k) = C&, @ (kernel of Jx)
= C8) @ @x(Tnr(BO(K) X BO(K)))
since @4(Sk,)=0. Suppose @i(x+y)=0 for x4, and yeRy,, then
Pxp+(¥)=psp+(¥+y)=0 since p4p(4:%,)=0, and y=0 since pxps|R® is
isomorphic. Thus @4(45%,) N @(R%,)=0. Therefore

Consequently “(b,) and (c,) are true” implies ‘“(C,,,) is true.”
(iii) Suppose “(c,) is true”’. Then
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p+(B(n, k)) = psxp(R°) = Si¥,

since @x(AP)DCP C P«(B(n+1, k)). Thus the restriction of @4 on AP PRI
is injective by the following exact sequence:

B(n, k)25 49RO © S 2% B(n, k).
In particular, @4: AP—C® is isomorphic. Consequently ‘“(c,) is true”

implies ““(a,) is true”.
These complete the proof of Lemma 1.5.

3. Forgetting homomorphisms

Clearly the following diagram of the forgetting homomorphisms is commu-
tative:

B(n, k) —> 91,(BO(K))
|
12
B(n,0) —> 71,
where b,([M, T, E))=[M, T), i,([M, T, )=[M, &), i,([M, T))=[M] and
b,([M, £])=[M]. Moreover the homomorphism 7, is the zero map and the

homomorphism &, is surjective. Then we obtain the following result by the
above diagram.

Lemma 3.1. The forgetting homomorphism i,: B(n, k)—IJL(BO(k)) is not
surjective if J1,=0.

Lemma 3.2. The restriction of the forgetting homomorphism i,: B(n, k)—
T(BO(k)) on C# =g (A®) is the zero map.

Proof. Let {{M,xM,, £,x0,0xE,]} be the generating elements of 4,
then 7, pu([M,xXM,, £,X0, OXE])=[M,XM,, E,XO0|U[M,xM,, O0XE,]
But [M,xM,, E,X0]=[M,xM,, 0xE, by the map switching factors on
M, xM,. Therefore i,p,=0 on A®, q.e.d.

Theorem 3.3. In general, the forgetting homomorphism
F: B(n, k) — B(n, 0)J1,(BO(k))
is not injective, where F(x)=b,(x)-+1,(x).

Proof. Let f: A®—Jl, be the restriction of the forgetting homomor-
phism f’: Jl4(BO(k) X BO(k))— Tl defined by f'([M, &, n])=[M]. Then
f: 4?—17J1, is not injective in general, by comparing the rank of 4:* and JI,
over Z,. Let x be an element of A3 such that x=0 and f(x)=0, then b,@p4(x)=0
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by definition of the homomorphisms ¢, and b,. Moreover @,(x)==0, since
@x: A®— B(n, k) is injective. On the other hand, 7,p4(4*)=0 by Lemma 3.2.
Thus F(@«(x))=0. Therefore F is not injective in general. q.e.d.

4. Cobordism groups B(n, k)

Now we consider the objects (W, T, &, T) where £ is a k-plane bundle over
a compact differentiable manifold W, T: W—W is a fixed point free differenti-
able involution and 7': £ is a bundle map covering T such that 7T?=identity,
then the cobordism group B(z, k) analogous to B(n, k) is obtained. This group
B(n, k) is canonically isomorphic to the bordism group J1,(BO(k) X B(Z,)) where
B(Z,) is the classifying space for the double covering spaces. And we obtain an
exact sequence by the similar argument as the case of B(n, k):

e % B, B) P 91 (BOR) T Bin, k) -2 B(n—1, k) 5> ..
where ¢y is the modified Smith homomorphism similarly defined as the case of
B(n, k), ps is the forgetting homomorphism py([M, T, &, T])=[M, £] and ¢
is defined by @«([M, E])=[M x S°, idx A, £ X0, idx A] where 4: S¥— Sk is the
antipodal map and 0 is the O-plane bundle.

Lemma 4.1. The homomorphism p, is the zero map.

Proof. Let [M, T, &, T] be any class of B(n, k). Let W be the quotient
space of Mx[0, 1] by identifying (x, 1) with (7(x), 1) for any x& M, then W
becomes a differentiable manifold with boundary M such that the quotient map
p: Mx [0, 1]—W is differentiable. By the similar method there exists a k-plane
bundle ¢ over W satisfying p*¢=£x 0. Thus (M, £)=0(W, §). Therefore py
is the zero map. q.e.d.

Thus we obtain a short exact sequence:

(4.2) 0 — TL(BO(E) 2% B(n, k) 25> B(n—1, k) — 0.

Now let o: B(n, k)= B(n, k) be the canonical forgetting homomorphism
defined by o([M, T, &, T])=[M, T, £] and d: BO(k) — BO(k) x BO(k) be the
diagonal map. Then the following diagram is commutative by the definition of
the homomorphisms:

T1(BOR)) -2 B(n, k)5 B(n—1, k)
d* ag ag

T1,(BO(K) x BOR) -2 B(n, k) 2% B(n—1, k) .
Since Tydy=dy, dy(I1(BO(k))) is contained in APBS®. And o(B(n, k)
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is contained in CP=¢(B(n+1, k)), because Px(B(n+1, k))=B(n, k). Letrx
be the projection of J1,(BO(k)x BO(R))=A®PPRP®PHS® onto A®. Then the
following diagram is commutative:

T(BOKR) % B(n, k) %> B(n—1, k)
(4.3) 1,,(1* 10 la
AP Px Cw® P > O®

and the lower horizontal line is exact by Theorem 1.6.
Let F’ be the Jl4-submodule of Jl4(BO(k)x BO(k)) generated by {x,, X x|

n(w)+n(o’)<I}. Then
(4.4) d*(xw)— z_‘,_ xa,lxx,,,z = Fr-t

where a),‘a)2=(i1, oty gy oy Js) i o =(, -+, 4,) and w,=(j,, -, j,), since
d¥(W, W, QW W, )=W, - W, W, - W, in H¥(BO(k); Z,).

We will use the following known result.

Lemma 4.5. Suppose the following diagram of the homomorphisms is

commutative:
A > B

o 8N

A-————>B — 5

and the lower horizontal line is exact. Then (3 is surjective if o@ and vy are surjective.
Lemma 4.6. The homomorphism ndy: Tl (BO(k))—A® is surjective.

Proof. Let F"'=3} Fy" be the Jl,-submodule of J1,(BO(k)) generated by
{x,|m(0)<1} and F*'=31F2! be the Jl,-submodule of A% generated by

n

{x,,,xxml n(m)§71} where Fy' and F2? are the factors of degree n. Then

0= Fr'cFYc...c Ft" = J1,(BO(k))

and
0=F2'CcF¥cC...cF2*»= AP .

Moreover F*/|F"* " is isomorphic to the free Jl,-module generated by {x,, | #(w)
=1} and F*!/F*!™" is isomorphic to the free Jl,-module generated by {x,Xx «,,|
n(w)=1/2}. Then zd(F“')C F*! by (4.4), thus 7dy induces dy: F"*|[F"'"'—
F?!|[F>" and dy(%,.)=%,X %, in F>7@[F22@=1 0 Thus dy is surjective and
therefore 7dy is surjective by Lemma 4.5. q.e.d.

Theorem 4.7. o (B(n, k))=CP=¢«(B(n+1, k)).
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Proof. 'This is an easy consequence of (4.2), (4.3), Lemma 4.5 and Lemma
4.6. q.e.d.

5. The rank of B*(n, k)

In the last section of the previous paper [4] we have considered the oriented
cobordism groups of generic immersions and introduced the cobordism groups
B*(n, k) and B~(n, k) of oriented k-plane bundles over oriented z-manifolds
with orientation preserving involution and with orientation reversing involution
respectively. These groups play an important role in the study of the oriented
cobordism group of generic immersions and there exist following exact sequences

[4]:

B Px Pk s o
o = B~(m, k)25, (BSO(k) X BSO(R)) 2> B*(n, K)~—> B~ (n—1, k)~ -+,
ces > B(, k)L 0 (BSO(R) x BSOR) 2% B(n, )25 BH(n—1, B) - .

In this section we will consider the rank of B*(n, k). Let Q be the field of
rational numbers. Then the following sequences are exact:

(1) —B(n, k)@Q—E-*aQ,,(BSO(k)X BSO(k))®Q—z)£>B+(n, k)®Q—¢-**
B (n—1,B)Q0— -,

@) = B*(n, HR0-"5 0 (BSO(k) x BSOR)R0-2% B-(n, H@0-*>
B (n—1,k)QQ— -+
We will use the following fact (cf. [1], [2]).
(5.1) Let (X, A) be a CW-pair, then Qu(X, A)YRQ is a free QR Q-module
isomorphic to Hy(X, 4; Q)Re(QxRQ0).
Now let {t,| = A} be a homogeneous basis of Q4(BSO(k))QO over QxR O.

Then {¢,xts|a, BEA} be a basis of Q«(BSO(k)x BSO(k))QQ. Let A®=
VAP, S®=31S and T®=31T:" be the free Qx®O-module with basis

{tyXt,|aE A}, {t,Xts+tsXt,|a, BEA, a+B} and {t,Xts—1tsXt,|t, BEA,
a =B} respectively, where A%, S and TP are the factors of degree n. Then
Qu(BSO(k) X BSO(k))QQ=A®PS®PT*® (direct sum).

Lemma 5.2. The homomorphisms

p*¢;: A(k)@s(k) — A(k)@S(k)
and
pxpyr: T® — T®

are the multiplication by 2.
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Proof. pu@i(t, X te)=t,Xtg+1g X2, since pypyx=1-+T7y, where 74 is in-
duced from the map 7: BSO(k) X BSO(k)—BSO(k) x BSO(k) switching factors.

q.e.d.
Let PP=pi(A D SiP) and MP=px(T"). Then
(5.3) ¢’-l|;: A:;h)@S,(.k) ~ P;Ir) R p*: P:‘k) ~ A;k)@S:lk) s
¢);: T;‘k) ~ M"(‘k) , p*: M:lk) o~ T;k)
by Lemma 5.2.

Lemma 54. B*(n, hQQ=P and B (n, )QQ=MS .

Proof. Since BSO(k) is simply connected, Q,(BSO(k)x BSO(k))=Z and
Q,(BSO(k)x BSO(k))=0. Therefore B*(0, k)=Z, B(0, k)=Z,, B*(1, k)=Z,
and B™(1, k)=0 by direct calculation. On the other hand P{*=Q, M{*=0 and
PP=M{»=0. Therefore Lemma 5.4 is true for n=0, 1. In general we will

prove the lemma by induction on #.
Suppose B*(n—1, ()QQ=P:?,, then the homomorphism

px: BT (n—1, R)QO0 — Q,_(BSO(k)x BSO(k))QR QO
is injective by (5.3). 'Thus the homomorphism
dx: B (n, )QQO — B*(n—1, k) QRO
is the zero map by the exact sequence (2). Therefore
B (n, )Q®Q = ¢x(Qu(BSO(k) x BSO(k))® Q)
— ¢;(A§.k)®S£‘k)@ T;.h))
= Px(Px(PR")DTI")
— oi(TS)
= M
by (5.3) and the exact sequence (2). Similarly B~ (n—1, k)QQ=M®, implies
Bt (n, k) QQ=P;". q.e.d.
Corollary 5.5. ¢y (B*(n, k)) is contained in the torsion subgroup of
B¥(n—1, k).
Corollary 5.6. B*(n, k) and B~ (n, k) are torsion groups if Q,(BSO(k)Xx
BSO(k)) is a torsion group.

Now Q,®@Q=0l[x,, x,, -**, X, ---] where the degree of x,=4n, H¥*(BSO(k);
Q)%"Q[Pl, b s Pr] for k=2r+1 and H*(BSO(k)’ Q)%’Q[Pl, D2 s Provs xr]
for k=2r where the degree of p,—47 and the degree of x,=2r. Therefore the
rank of B*(n, k) is determined by (5.3) and Lemma 5.4.
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RemaRk. Recently R. Stong [3] studied the equivariant bordism groups.
The cobordism group B(n, k) is ﬁl,,(BO(k), 7) in his notation.
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