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1. Preliminaries

Let H be a Hilbert space; (), || || and are the notations for the scalar product
and for the norm. Denote by R the real axis, —co <<t<<co, and 9D(R), D(R, H),
D'(R, H) the spaces of infinitely differentiable scalar functions with compact
support, infinitely differentiable H-valued functions with compact support and
H-valued distribution, respectively, on R with their usual topologies (see L.
Schwartz [7]). The space of H-valued distributions with compact support
will be denoted by £'(R, H). If ue D'(R, H) we may define D*uc D'(R, H)
by the formula: Dfu(p)=(—1)*u(D*p), \fpE D(R, H). If p= D(R, H) then
for each complex A, #(A) denotes its Fourier-Laplace transform. (Here D'p=

.dp
=1/i=E).
)

Let A: D,CH—H be a closed linear operator with the domain D, dense in
H and let A* be its adjoint. The domain D of the operator A* is Banach
space in the norm |x|=||x||4||4*x||. We denote by D(R, D 4%) the space of
infinitely differentiable D 4%-valued functions with compact support on R and by
D'(R, Dyx) its dual. Since D(R, Dx)=9D(R) R D 4 it is easy to see that the
space Y(R, D %) is dense in P(R, H). In an analogous manner, we may define
the spaces 9(a, b; H), D'(a, b; H) and D(a, b; D x). Let L* : D(R, D %)—
9D(R, H) be the linear operator

1d
1.1 L¥p = —( = %24 4*
(1.1) P ( s co)
and let L: 9'(R, H)—9'(R, D 4x) be its adjoint defined by

(1.2) Lu(p) = w(L*p), pED(R, D4x).

Let (9, H) be the space of all vector H-valued distributions L(9(R, H), H).
For E€_[(9), H) we define LE by the formula

(13) LE(p) = E(L*p), pcD(R, Ds¥),
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and denote, for every pe D(R, H)
(Exp)(t) = Ep(t—9)) -

It is easy to see that ExpeC~(R, H). If uc&’'(R, H) and Ec (D, H), Exu
denotes the distribution defined by

(Exa)p) = u(Ep(t+5), pEDR, H).
If p(t)e D(R), then as in the scalar case it follows immediately
supp (pE*u)Csupp p-+supp «.
DerFINITION. We say that the distribution v 9’(a, b; H) is a weak solution
on (a, b) of the equation

(E) L gy—y,

where fE€ D (a, b; D 4%), if the following relation
(1.4) w(L*9) = flp)

holds for any p =€ 9D(a, b; D 4%).

The existence theorems for the weak solutions of the equation (E) have
been obtained by T. Kato and H. Tanabe [3], S. Zaidman [8] and M. A. Malik
[6]. We give in this paper some results concerning the regularity of the weak
solutions of (E). For the strict solutions of (E) a similar result has been proved
by S. Agmon and L. Nirenberg [1].

2. Differentiability of solutions
In the following we denote by R(A, A*) the resolvent (AJ—A*)™" of the

operator A*.

Theorem 1. Suppose that for every m>0 there exists a number C,, >0
such that the resolvent R(\, A*) exists in the domain

(2.1) A, = {\;|Imx|<mlog|Re\|; |Ren| >C,}
and
(2.2) [IR(A, A¥)||<CalN|Mexp (N|Im\]|), in Am,

where M >0, N>0 are constants independent of m and Cp>>0. Then every weak
solution uc 9'(—a, a; H) of (E) with f «C~(—a, a; H) is infinitely differentiable
on the interval |t|<<a—N.
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Proof. Let E€ (9, D,*) be defined by the equality

@3 Eg)=—Cn|

Obviously

R(—o, AN P(e)do; @ ID(R, H)
Cm

lo|>

(24) EL*9) = 90|

lo

PHo)do;  PED(R, Dyx).

We denote by A the interval (—a’, a”) where a’<a—N,, N<N,<a, and consider
P(t)ED(R) such that @(f)=1 for |t|<a’+8 and @()=0 in [t|>a’+3 .
Assume that N<8<8'<N,. If uc9'(—a,a; H) is a weak solution of (E) then
we have

(2.5) L(up)($) = (fo)()+(D'pu)(¢)

for every y=9D(—a, a; H). On the other hand since A* is closed, from (2.2) it
follows

(2.6) (L(up)+E)¢) = (LE+up)(¢) .
Let us denote by g the distribution D'@-u. Then from (2.4) and (2.5) we get

(2.7) up($) = (Exfp)(§)+(Exg)(¢)+up(hy)

for every y=9(—a, a; H), where h¢(t)=s
Obviously

(2.8) ID*hy(t)[| < Mullgll2,  tER

et (o) do.

lol

for any y = 9(—a, a; H), where || ||,z denotes the norm in the space LY R, H).
Since fpeC=(R, H) it follows that ExfpeC=(R, H) which implies that

(2.9) | DXExfo)(¢)| <Millgll;  pED(—a, a5 H).

Let p(t) be a scalar C*~ function on the real line such that p(t)=1 for |¢| <& and
p()=0 for |2| >¢&"; 0<e<E’.
Since supp g {t; a'+8<|t|<a’+38'}, taking & so small such that £'<<3,
from an above remark we deduce that (pExg)(¢)=0 for any p=D(—a’, a’; H).
Hence

(2.10) (Exg)$) = (1—p)Exg)(¢),  ¢ED(—a’,a’; H).

Now we introduce the function ¢{*(s)=(1—p(s))D*J(¢+s5) and denote by ‘21‘,’”(7\)
its Laplace transform. Let m be an arbitrary non-negative integer. We may
write $§P(A) in the form



52 V. BarBu

PPO) = FRO) IR0

where

s>

PR = S Ee“”‘s(l—p(s))D’%/)(t—l—s)ds
and
HHON) = S e p()DRY(t-)ds

s<

A simple computation shows that with another constant M}, one must have the
estimates,

(2.11) lg$(o —i m loglo IS Mylo |*™||pll,2, oER
and
(2.12) lgso+imlog |o|||<Myla|*™|pll2, oER

Let f¢¥(t) be the functions

(2.13)  fiP(t) = (27)™ S R(—o, A¥)*(o)do;  i=1,2;tER.

lol>C

After a suitable deformation of contours in the complex plane, the functions
f¥(2) can be expressed in the following form

(2.14) F(8) = (27) Sl R(—x, A9gH0dN; =12

where T}, is the frontier of the domain {\; ImA> —mlog |Re M| ;|Rer|>C,}
and T2 the frontier of {\; ImA<mlog|Re\|; |[Rex|>C,}. It is easy tosee
that the shift of the integration contour is legitimate. Now we have on T,

IR(—X, A¥)PEMNI< M, |o| M4 Nlg]| 25 o=ReX.

Choosing & so that £>N and m so large such that M+k—m(E—N)<—1, one
obtains

(2.15) APONS Mgl tER; y€D(—a',a’; H).
We remark that

DX(1—p)Exg)(¢) = (—1)*(g (f1")+8(f%")) -
From (2.15) this implies that
(216)  [IDM(1—p)Exg)DII<SMuliPllz;  pED(—a’, a’; Dgx) .
Using (2.7), (2.8), (2.9) and (2.16) we obtain
(2.17) | DX up)(P) | <Ml s pED(—a’, a’; Dyx).
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Since the space D(—a’, a’; D ,*) is dense in D(—a’, a’; H) from the Hahn-
Banach theorem it follows that D¥(up)= L*(—a’, a'; H) for any k=0,1---. Hence
upeC=(—a’, a’; H). Because the number N,> N is arbitrary, the proof is
complete.

Corollary 1. Suppose that there exist some non-negative numbers N, C, N,
such that R(n, A*) exists in the domain

(2.18) A= {\;[Imr|<Clog |Re M| ; |Re N| =N}
and
(2.19) IR, A1 <pol (IX1) exp (N [ Imn]).

Then every solution uc D(R, H) of (E), with f € C=(R, H), is infinitely differenti-
able on R.

Corollary 2. Suppose that f € D'(—a, a; D %) such that
(2.20) IDEAP) | S Millg+A*Pll2 5 NPED(—a, a; D gx).

If the hypotheses of theorem 1 are satisfied, then every solution uc 9D'(—a, a; H)
of (E) is infinitely differentiable on the subinterval |t|<<a—N.

Proof. 'The proof in this case is very much the same, except the inequality
(2.9). To estimate | D¥(Exfp)(J)| we remark that

A E+)DI<MD'll,25  pED(—a, a; H)
where / is a non-negative integer. From (2.6), (2.7) and (2.16) this implies that
(2.21) | DX up)(P) | SMLID'Yll2 5 pED(—a’, a’; Dax).
As in the proof of theorem 1 this implies that us C~(—a’, a'; H).

Remark. If ueC=(A, H) is a weak solution of (E) with feC~(A, H), then
u(t) is a strict solution of (E). To prove this it is enough to choose in the
equality (1.2), p=¢,Qx where ¢, 9(A) and x= H. Hence the necessity results
for differentiability, proved by Agmon-Nirenberg [1], are true in our case.

3. Hypoanaliticity of solutions

DEerINITIONS. A C® H-valued function u(t) is said to be d-hypoanalytic on
ACR if for any compact subset K CA there exists a non-negative constant M g
such that for any % the following inequality be true

3.1) [|1D*u; K||.<M (kY
where ||u, K||.=sup [|u(2)||.
tEK
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In the following we denote by G?(A, H) the space of all d-H-valued hypo-
analytic functions on A. If H=R we omit R and write G4(A).
Theorem 2. Suppose that R(\, A*) exists in a region
2N [ Im A | <C|Ren|'? [Re A | >N,}
C,N,=0, d>1 and that
(32) IR(A, A%)[|<pol (In1) exp (N |Im A]) ;

for some N>0. Let uc 9'(—a, a; H)be a solution of (E) with f € G(—a, a; H).
Then u is d-hypoanalytic in the interval |t| <a—N.

Proof. We use the notations of the proof of theorem 1. First we assume
that >1. Then we may choose o= 9D(R) N G?(R) so that p(t)=1 for |t|<a’
+8 and @(#)=0 for |¢| >a’+8"; N<8<8'<N,. Hence ExfpeG¢(R, H) and
34 | DX Exfp)(¢)| < M* (k17|12

for every y= 9(—a, a; H).

Let p(#) be a scalar G¢(R)-function such that p(¢)=1 for |¢| <& and p(t)=0
for |¢|>¢&’, where 0<&<&'. To estimate |D*((1—p)Exg)(¢)| we write it in
the form

(3.5) D¥(1—p)Exg)(¢) = (—1)*(g(f1")+5(f£"))
where

=0 || Reo anii@ds, =12,

lol>

Using the fact that p= G9(R) we obtain the estimates
(3.6) llg¢(e—iC [o |'@)[|< M exp (—CE|o|'?)
911233 MY ||+
and similarly
3.7) g (o +iC o ['@)]|<
<M exp (—Célo ")l 3 MY o

By a contour deformation we may write
(3.8) [P@) = (2n)™ SF'_R(—X, A*)gz‘,’f’,()»)dh

where T'={\; A=0+iC|o|'?} U {|Re M| =N,; 0<Im A< CN}?} and I'’=
A A=0—iC|a |, |ad|=N}U{|Re \|=N,; —CN}¥*<Im r<0}.
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Using the estimates (3.6) and (3.7) we get
(39)  IfP@I<MIlgll: 33 MAGYY (19124 exp (N—)Clo|4do
for every gy D(—a’, a’; Dyx). Choosing €>N, from Stirling’s formula it
follows
(3.10)  IfP@OI<MI (RNl 5 p€D(—a’,a’s H),  i=12.
This implies that
(.11) | DX(1—p)E*g)(¢) | < M1 (R ||| 2 -
Hence
(3.12) | DYue)()| <MiT(RIYIIYlLz,  for pED(—a’,a’; H)

where M, is a non-negative constant independent of k.. Hence ueG%(—a’, a’;
H).

To prove theorem 2 in the analytic case d=1, we consider instead of ¢(t)and
p(?) two sequences of C< scalar functions {@;(#)}7-, and {p,(t)}7-, such that
(see Friberg [2])

(3.13) |Dfp ()| <M*"j* 5 for k<j,
where supp @;C{t;|t|<a’+8'}, @;(t)=1 for |[t|<a’+ 8 and similarly
(3.14) | D¥p (2)| < M*+ j* for k<j

supp p; C{¢; |81 <€’} and p;(t)=1 for |2]<E.
Then denoting g;=D'p ju, as above we obtain

(3.15) | D*(1—pu) Exgi)($) | < M RH| ]| 2
for every y= 9(—a’, a’; H) and k=0,1,.--

Hence
lle(u¢k),|w<Mf+lk' ) k=011,'"
That is ue G'(—a’, a’; H).

As consequence of theorem 2 we get the following result (see Agmon-
Nirenberg [1])

Corollary 1. Suppose that R(\, A*) exists in the sector 3\: {|arg (+\)| <e;
IN| =N}, O<a<z/2, and

IR, A¥)I<pol (In]) exp (N|ImA]),  for AEX
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where N is a non-negative constant. Suppose that f is analytic in |t|<<a. Then
every solution uc 9)'(—a, a; H) of (E) is analytic in the subinterval |t| <a—N.

By a slight modification of the preceding proof one easily verifies the
following

ReEMARK. The conclusions of theorem 2 hold if we merely assume that
f€D'(—a, a; Dyx) and

(3.16)  [Df(9)| SM*T (R NIg+A*Pll2,  pED(—a, a; Dax) .
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