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1. Introduction

The reflecting barrier (r. b.) Brownian motion in one dimension has been
well known [12], [16]. In higher dimensions, the r. b. Brownian motion on a
bounded domain D with smooth boundary 3D is more or less classical (at least
analytically) [13], [17], [18]; its transition density is given by the fundamental
solution of the heat equation

(1 •1)

with

(1•2)

the boundary condition

KJIΛ,

dt~

0

\u in D

on 9D,

where Δ is the Laplacian and d/dn, the normal derivative at the boundary.
Recently, Fukushima [9] has constructed the r.b. Brownian motion on an arbitrary
bounded domain in higher dimensions by solving a functional equation in a
Hubert space which is equivalent to (1.2) if 9D is smooth but which involves
neither $D nor 9/9/z,
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In Markov chain theory, the counterpart of the heat equation in Brownian
motion theory is the (backward) Kolmogorov equation:

(1-3) ^ ^ = ±A(i,j)u(t,j), ί = l , 2,

where A(i, j) is a kernel satisfying the conditions that \A(i, j)\ <° ° , A(i, j)^0
for i4=j and *ΣjA(i, j)=0. Feller [6] proposed the problem of determining all
the Markov chains with the given Kolmogorov equation in terms of the lateral
(or boundary) conditions at a certain ideal boundary. Feller also was particularly
interested in the reflecting barrier condition at the ideal boundary. Assuming
that the ideal boundary like Feller's or Martin's contains only a finite number of
exit boundary points, Feller and others1) have introduced the notion of the
normal derivative analogue or the generalized normal derivative and studied
something like the r.b. boundary condition. It seems to us, however, that no
general solution on r.b. Markov chains has been obtained.

In the present paper we will not be involved in any boundary or boundary
conditions but will construct, under a certain symmetric condition on the operator
A, a Markov chain similar to the r.b. Brownian motion by rephrasing in terms
of Markov chains what Fukushima did on the r.b. Brownian motion2). But
since Fukushima's original proof for the existence of the r.b. Brownian motion
does not apply to Markov chains, we will present a method which applies to
Markov chains as well as to Brownian motions to obtain what may be called
reflecting barrier processes. Although we are mainly concerned with Markov
chains, it will be useful to show how our method applies to Brownian motions
(see Appendix). Our method depends on making use of Dirichlet spaces in
potential theory (or the functional analytic method in the theory of partial
differential equations). In this connection we will mention Elliott [5] who has
discussed the Dirichlet spaces associated with stable processes. We also will
mention a forthcoming paper by Fukushima [10] in which he determines com-
pletely a class of Brownian motions including the r.b. Brownian motion in
terms of certain Dirichlet spaces on the Martin boundary, developing a method
similar to ours.

In the rest of this section, we will sketch some elements of the integration
problem of the Kolmogorov equation, following Feller [6]. For the moment we
will not be involved in the symmetric condition on the operator A, which is the
basic assumption in our paper (see Section 3).

1) See Dynkin [4]. See also Doob [2] for the generalized normal derivative at the
Martin boundary associated with Brownian motion.

2) It should be noted that we are only interested in the first half of [9] the latter half
of [9] is devoted to investigating the behavior of the r.b. Brownian motion sample paths
near an ideal boundary similar to the Kuramochi boundary in potential theory.
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Let E be a denumerable space and A(xy y)y x^E, y^Ey a kernel satisfying

y)<oo forx^y,

We will call such A a Kolmogorov-Feller kernel (or operator). To simplify the

argument we will confine ourselves to the case in which the following additional

conditions are satisfied : 3 )

(1.5) A(x,x)<0, ΈyA(x,y) = O.

For a function / over Ey we will write Af for Σ > A(x, y) f(y) if the latter is well

defined in the sense of absolute convergence. Note that Af(x) is finite iff

Hy\A(x,y)f(y)\<oo. Define

f q(x) = -A(xy x), Π(x, y) = ̂ ψφ- for *Φ j ; ,
(1.6) ?(*)

[ U(x, x) = Q.

Then one has

(1.7) 0<?(*)<oo, U(xyy)^0, ΈyU(x9y)=l

and

(1.8) A(x, y) = q(x)[ΐl(x, y)-B(x, y)]

with 8(x, y) the Kronecker symbol.

The (backward) Kolmogorov equation is

(1.9) ^ = Au with u(0+, . ) = /

in the original form or

(1.10) (a-A)υ=f, a>0

in the form rephrased in terms of the Laplace transform.

Let Ga(x, y), α > 0 , x^E, y^Ey be a resolvent over /?, that is, a function of

three variables (α, x, j ) satisfying

(1.11) Ga(xyy)^0y aJ]yGa(xyy)^ly

(1.12) Gβ(*, Jθ-G β (* , y)+(α-/S) Σ , <?-(*, ^)Gβ(^, y) = 0 .

The resolvent Gα(Λ:, j ) is said to be an A-resolvent if, for each bounded function

/, v=GΛf is a solution of (1.10). Such a resolvent satisfies

(1.13) ocGa(xy y) ̂  δ(xy y) as a -» °o .

3) All the results of this paper are valid with minor change in the general case (1.4).
See footnote 7,
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There are many ^4-resolvents in general. Due to [6; Theorem 4.1], the minimal
A-resolvent G%{x, y) allways exists and it is given by

(1.14) Gl(x, y) = [a+q(y)Γ Σ IC(*. y),

where Π£(*, y) = 8(x, y), Ua(x, y) = q(x)[a+q(x)]-1Π(xi y) and I%(x,y) =
yΣtzΐll~

1(x, z)!!^, y). Any condition (usually, not containing the parameter
a explicitly) which is satisfied by one and only one A -resolvent may be called a
lateral condition. In most cases, the lateral condition is described as a boundary
condition, but it sometimes can be expressed in another way. For example, the
condition "minimal" is a lateral condition because of the existence and uniqueness
of the required solution (1.14). Later (see Section 4) we will give a lateral
condition, involving the Dirichlet norm associated with A (symmetric in the
sense of Section 3), which determines the ^4-resolvent similar to the resolvent of
the r.b. Brownian motion by Fukushima.

Feller [6; Theorem 3.1] also proved that an ̂ 4-resolvent is the Laplace
transform of one and only one transition function (continuous at the origin)
P(t, x, y) satisfying the Kolmogorov equation (1.9). More precisely, P(t, x, y)
satisfies the following conditions:

(1.15) P(t,x,y)^09 HyP(t,x,y)£l forί^O,

(1.16) P(t+s, x, y) = ΣL P(t, *, z)P(s, z, y),

(1.17) P(t,x,y)^8(xyy) as f-* 0 ,

(1.18) GΛ(x,y)=[°e-<P(t9x9y)dt,
Jo

and, for each bounded function/,

(1.19)

In particular one has

(1.20) lim P{t,x,y)-h{x,y) = A y )

t-+°° t

In conclusion, the integration problem of the proper Kolmogorov equation
(1.9) can be reduced to that of the reformed one (1.10). For this reason, in the
following sections, we will be concerned only with ^4-resolvents with no further
reference to transition functions or their associated Markov chains. (In para-
graph (e) of Section 6 we will give a brief comment on the sample functions
property of the r.b. Markov chain the resolvnt of which will be constructed in
Section 4.)
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2. IΛresolvents and their associated Dirichlet spaces

The notion of the Dirichlet space was introduced by Beurling and Deny [1].

We need several results on Dirichlet spaces in a special context. The following

presentation is, mainly, due to Fukushima [10].

Let (E9 μ) be a σ-finite measure space4) and X2=X2(E, μ), the Hubert

space formed by all real-valued square-integrable functions over E with the norm

(2.1)

and with the inner product

(2.2)

Two functions / and g are assumed to be indentical if f=g almost everywhere

(μ). An U-resolvent is a family of symmetric bounded operators {Ga, α > 0 }

on X2 such that 0<LaGaf^,\ for every 0 ^ / ^ l in Xz and such that

(2.3) Ga-Gβ+(a-β)GaGβ = 0 .

Such a family {Ga, α > 0 } enjoys the following properties:

(2.4) \\aGa\y^l, i.e., (aGJ, aG

(2.5) (f-βGβ+Λf,f)>0 ίora^Q,

(2.6)

Let / be in X2 and bounded and g> in X2 and 0 ^ ^ ^ 1. Then the Schwarz

inequality

follows from Ga(af+ bg)2 ̂  0. Therefore

{aGJJg), aGa(fg))<L(aGaf\ aG.g2) = (f2, a2GY)£(f2, 1) = (/,/),

which proves (2.4) since GΛ is a bounded operator. The inequality (2.5) is

obvious from (2.4). Introduce a collection of symmetric and nonnegative

bilinear forms on X2 by

4) We will omit the σ-algebra from the notation.
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(2.7) H*(u,v) = β(u-βGβ+aiι,v), a^O, β>0.

One has

(2.8) 0^ H£(Gα/, GJ) = β(GJ-βGβ+aGJ, Gaf)

= β(Gβ+af, GJ) = (βGβ+aGJJ)

= {Gaf,f)-(Gβ+JJ)
->(GJJ) as i S - o o ,

proving (2.6).
By the resolvent equation (2.3) one has

(2.9) jβ

(2.10) ^ H 2 ( « , «) = -2(v,

with v=u—βGβ+au. H£(w, w) increases with respect to β. Set

(w, M) - lim Hg(w, M) , and UJμ, u) = lim HS(ιι, u), α > 0
β->oo β->oo

Since

(2.11) H5(«, «) = J?-(u-(β+a)Gβ+.u, u)+-0L(u, u)

βΐ H5+ («, «)

one has Hα(«, M)=H(M, u)-\-a{u, u).
Let 3Γ denote the space of all functions in X2 satisfying H(w, «)<oo. For

u and v in 3C, the finite limits

f ^ I I , o) = lim
(2.12) β

( H(M, V) = lim Hg(a, »)
β->°°

exist and

(2.13) H.(M, ιθ = H(M, ϋ)+α(«, ») .

Proposition 2.1. ΓA^ αόo^e constructed pair (3£> H) ew 'ίryί the following
properties:

(a) DC is a linear subset of X2 and H is a symmetric, nonnegative bilinear
form on 3C.

(b) For each α > 0 , 3C forms a real Hίlbert space with respect to the inner
product H α = H + α ( , ).

(c) Ifu^3C and if v is a normal contraction of u, i.e.,
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(2.14) I v(x) I <£ I u(x) I and \ v(x)-v(y) \ ̂  \ u(x)-u(y) | ,

then v^Xand U(vy v)^H(u, u).

(d) Ifu^DCy βGβU converges to u in the U-norm.

(e) For every a>0, GΛ maps X2 into 3C and for each f of X2, one has

(2.15) Ha(GJ, v) = (f,v) for every v^T.

(f) If Xo is a dense linear subset of X2, then its range by GΛy { G Λ / ; / e Xo),

is dense in 3C with respect to HΛ.

If {#„} is a Cauchy sequence relative to HΛ, it is so relative to H£ and there-

fore, relative to the IΛnorm by (2.11). If u is the L2-limit of {un}, it is the

H^-limit by (2.7) and one has H%(u—un,u—un) = limΐl%(um—un,um—un)
m->oo

ίglim inf Ha(um—um um—un). Hence, H%(u—un, u—un) is uniformly small in β

for n large enough. This proves that M G Ϊ and u is the HΛ-limit of {wn}.

For (c) it is enough to show that

(2.16) Hg(w, u)^Hβ

0(v,v) for every β>0.

An elementary computation shows that, for any bounded u in X2 and

in X2,

Hβ

0(uw, uw) - — β2 [ w(x)Gβ[(u(x)-u)2zv](x)μ(dx)
2 JE

+β(l-βGβwy u2w)-β(l-wy u2w).

Let u be any function in X2 and v, a normal contraction of u. Let uny vn be the

restriction of u, v to the set {x; \u(x)\ ^n} with φ ^ φ c ^ O for \u(x)\ >ny

so that vn is a normal contraction of un. By the positivity and sub-Markov

property of GΛy one has

unwy unw)—Hβo(vnwy vnw)^β(l—wy v2

nw—u\w).

Letting w \ 1 and n->°oy one proves (2.16).

By (2.9),

H(uy u)-Ul(u, u) - ^{u-βGβuy u-βGβu)dβ .

But since the integrand is decreasing by (2.10), it must converge to zero as

yδ^oo, if H(uy u)<°°. This proves (d).

By (2.8), Ha(GJy GΛf)=(GΛf,f)<oo for a n y / o f ^ 2 . If v£Ξ%y by (d)y

HΛ(Gβ/, v) = lim H2(Gβ/, v) = lim (βGβ]af v)

= lim (/, βGβ+av) = (/, v),
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proving (2.15). Finally, (f) is direct from (2.15).

In general, a pair (3Cy H) is said to be an U-Dίrίchlet space if it satisfies

conditions (a), (b) in Proposition 2.1 and the following condition:

(c') If u^2C and if v is a particular kind of normal contraction of u such

that

(2.17) ϋ = (κV0)Λl,

then v^T and U(v, v)^U(uy u)y where (*/Vθ)Λl(#)=min {max (u(x)y 0), 1}.

One has seen that an IΛresolvent generates an L2-Dirichlet space satisfying

condition (c), appearing much stronger than (c'). By the fundamental theorem

of Beurling and Deny [1] it follows that, for any U-Dίrichlet space, there is an

{obviously unique) L,2-resolvent Gω satisfying (2.15). Such an IΛresolvent

satisfies conditions (d) and (f). One proves

Proposition 2.2. Let (3f, H) be an JJ-Dirίchlet space and Ga, its associated

U-resolvent through (2.15). Then, (3C, H) coincides with the U-Dirίchlet space

(say, ( ± , ft)) generated by GΛ.

Corollary 1. Any 17-Dirίchlet space satisfies condition (c) in Proposition

2.1.

Corollary 2. The class of all L2-resolvents is in one-one correspondence

with the class of all λJ-Ώirichlet spaces through the functional equation (2.15).

The family {GJ'J^X2} is dense in both 3C (relative to Ha) and 3C (relative

to HΛ). Moreover, UΛ{Gaf GΛf)=(f, GΛf) = HΛ(GΛf9 GΛf), so that 3 ? = ±

and H Λ = H Λ .

Finally we will give some general remarks on resolvents. A resolvent on

£ is a family of kernels5) {GΛ(x, B), α > 0 } such that aGa(x, E) ^ 1 and

GJx, B)—Gβ(x, B)+(a-β)[ Ga(x, dy)Gβ(yy B) = 0. A resolvent is said to
JE

be μ-symmetric if, for any positive (measurable) functions /, g,

(2.18) (G.f,g) = (f,

where Gaf(x)=\ Ga(x, dy)f(y). Then the μ-symmetric resolvent {Ga(x, B)y
JE

α>0} generates the L2-resolvent {Gm α>0}, since one has for every positive

function /

and therefore

5) A kernel K(x, B) over E stands for a function of x^E, J9e(the σ-algebra of subsets of
E) such that K(x, •) is a measure for each x and K( , B) is a measurable function for each B.
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(aGJ, aGJ)^(aGJ, aGaf)^(ί, aGaf)

In particular, if GaQ(x, ) is absolutely continuous with respect to μ for each x>
then every Ga(x> •) is so and it has the symmetric density ga{x, y)6) with respect to
μ (see [14; p. 497]). In general, however, an L2-resolvent may not be generated
by a /^-symmetric resolvent and the latter, by a symmetric resolvent density.

NOTE. The above remarks on resolvents are concerned only with Appendix.
In case of Markov chains, E is a denumerable space and 0<μ,(x)<oo for every
x^E. The trouble which is caused by sets of (μ) measure zero disappears.
An L2-resolvent determines uniquely the ^-symmetric resolvent and the sym-
metric resolvent density by

Ga(xyy)=GJ{y}(x) and gΛ(χ,y) = <&21

where I{y) is the indicator of the singleton {y}.

3. Decomposition of IΛDirichlet spaces generated by μ-symmetric
A-resolvents

Throughout the rest of the paper (except Appendix) we will make the fol-
lowing hypotheses. E is a denumerable space. The measure μ over E is strictly
positive and finite at each state of E: 0<Cμ(x)<.°° for every x^E. (We do not
assume, however, that μ is a finite measure.) A(x,y) is a Kolmogorov-Feller
kernel satisfying condition (1.5) and the condition that

(S) the density a(xy y) = A(x} y)/μ(y) is symmetric.

The bilinear form defined by

(3.1) <u, vy = 1 ΣXty(u(x)-

is an analogue of the classical Dirichlet form (up to constant ^) in a locally
Euclidean space D:

2

so that the form (3.1) may be called the Dirichlet form with respect to (μ, A)

6) The collection of such symmetric densities, {gΛ(x, y), α<0}, will be called a symmetric
resolvent density.

7) Unless condition (1.5) is satisfied, the right side of (3.1) should be added by the term
*£xu(x)v(x)(—Al)(x)μ(x). Then all the results are valid without any change except Propo-
sition 4.2.
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and ζu> uyi/2

y the Dίrίchlet norm with respect to (μ, A). One also uses the

following notation:

(3.2) ζu, v>Λ = ζu, v>+a(u, v).

One starts with some preliminary remarks. Let i9(i9+) be the collection of

all real-valued (nonnegative) bounded functions and Co(Co), the subcollection

of J®(iS+) formed by functions/ such that the support of/, {#;/(#)φ0}, is a

finite set. Note that ζu> u) is well defined (allowing the value infinity) only

if u is finite everywhere. One also notes that, if ζu, u) < + °°, then Au2

and Au are finite everywhere. Indeed, ζu, u) <H-°o implies that /Hj.± _r (u(x)

-u(y))2a(x, y)μ{y) = Σy*x{u{x)-u{y))2A{x, y) < + oo for each x. By the

inequality u2(y)^2[u2(x)+(u(x)—u(y))2] it follows that Σy±xu
2(y)A(x,y)< + oo.

By the Schwarz inequality, lΣ,*x\u(y)\A(x, y)]2 ^Σiy*xA(xy y)- Έy±xu
2(y)

• A(x, y) < + oo. In the same way one can easily prove that, if ζun, uny —> 0,

then un(x) -* 0 and Aun(x) -» 0 for every x.

Proposition 3.1. Suppose that Au is finite^ and v is in Co. Then, ζu, v>,

and {u, Av) are finite and

(3.3) ζu, Vs} = -{Au, v) = -(u, Av) .

Use the Fubini theorem and the symmetry of a(x, y) to verify the finiteness

of 1Σlx>y\u(x)v(x)a(xJy)\μ(x)μ(y),yΣlxy\u(x)v(y)a(xJy)\μ(x)μ(y) and so on.

Use again the Fubini theorem and the hypotheses on A to show that

Σly,yu(xHx)a(xf y)μ(x)μ(y) = Tix,yu(y)v(y)a(x, y)μ(x)μ(y)=0 and that (a, Av)

=Έx,yu{xHy)a(xf y)μ{x)μ{y)=TιXfyu(y)v(x)a(x, y)μ(x)μ(y)=(Au, v).

Let {Ga(x, B), α>0} be a /^-symmetric ^4-resolvent, i.e., a resolvent such

that, for every / E C 0 (and therefore, every / e . 3 ) , u— GΛf is a solution of the

Kolmogorov equation

(3.4) (a-A)u=f

and such that

(3.5) (GJ,g) = (f,Gag) for any f, g<=C0.

The corresponding L2-resolvent and the symmetric resolvent density are denoted

by {Ga, a>0} and {g*(x, y), α > 0 } (see Note in the tail of Section 2).

Proposition 3.2. Let (3Cy H) be the U-Dίrichlet space generated by a

μ-symmetric A-resolvent. (i) If u and v are in i9 and if either u or v is in Co,

then

8) Note that this condition is valid if either <//, w> < + co or
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(3.6) lim Hg(κ, v) = <u, v> .
β->oo

(ii) Space 3C contains Co and therefore, {Ga, α > 0 } is a strongly continuous L2-

resolvent on X,2. (iii) For every

(3.7)

(iv) Ifu^2

(3.8) H(u, v) = <u, vy = (-Au, v).

If I /1 ^ 1, then | Gβf | ̂  1 jβ -> 0 as β -+ oo. Hence the Kolmogorov equa-

tion (3.4) implies that βGβf-^f boundedly and therefore, that

(3.9) β(f-βGβf) = -Λ(βGβf) - -Λ/

in the pointwise sense. In particular one has

(3.10) β*Gβ(x,y)^A(x,y) or β*gάx,y)-* a(x,y) for

(with f=I{y]) and

(3.11) 0^/3(l-/3Gβl(Λθ) -* -i41(Λ?) = 0 .

To prove (3.6) one may assume that v^C0. Then

Hg(κ, ϋ) = β(u-βGβU) v) -> (-iίiί, v) = <u} v>

by (3.9) and the preceding proposition. If u^C0> therefore, one has

H(ι/, u) = lim Hg(w, M) = <u, u) < + oo,
β->oo

proving that M 6 X

To prove (3.7) it is enough to rewrite H§ in the form

(3.12) Hg(n, u) = ±

to use (3.10), (3.11) and the Fatou lemma.

By (3.6) the equality (3.8) is valid for u^3CΓ\13. Since the collection

{GΛ/;/eC0} c 3 : Π Ά is dense in DC both in the H-norm and the Dirichlet norm

(by (3.7)), the first equality of (3.8) extends to every u^3C; the second equality

is due to (3.7) and Proposition 3.1.

By the formula (1.14) it follows that the minimal A-resolvent {G^(x, B),

a>0} is μ-symmetric. Let (DCC°\ Hc0)) be the IΛDirichlet space generated by

{Gl a>0}.
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Proposition 3.3. Space Co is dense in 3fc0) with respect to the H^-norni

(and hence the Dirichlet norm < , >1/2.)

It is enough to show that any function u of the form G°/, f^Co, can be

approximated in the H^0)-norm by a spequence {uk} in Co. First one constructs

{uk}. Let kE be an increasing sequence of finite subsets exhausting E and

kA(x,y)> the restriction of A(x,y) to kE. The kernel kA(x,y) is a Kolmogorov-

Feller kernel on kE. Let kGa(x, y), α > 0 , be the minimal ^-resolvent. (The

kernel kA does not satisfy condition (1.5). In construction of the minimal

resolvent, however, condition (1.5) is irrelevant. Moreover, kGΛ(x, y) is the

unique ^-resolvent.) By the formula (1.14) it follows that kGΛ{x,y) increases

to Gl(x, y) as k->°°. With no danger of confusion, use the same notation

kGa(x, y) to denote the kernel on E defined by zero outside kEχkE. Then,

writing uk for kGΛf one has for all x in kE

Auk(x) = kAuk(x) = auk(x)—f(x),

so that, by the preceding propositions,

(3.13) H H % , uk) = <uky uky+a(ukf uk)

= {—Aukί uk)+a(uk, uk)

= (/, uk).

Using (2.15) and (3.13) one can evaluate H^(G°J-uk, Glf—uk) as follows:

(3.14) W:\Glf-uk, Glf-uk)

= HT(G°f, G°J)-2HT(G0J, uk)-nT{uk, uk)

= (/, Glf)-2{f, uk)+{f, uk)

= U> Glf-uk) -> 0 as Λ^oo,

Proposition 3.4. Let (3C, H) be the U-Dίrίchlet space generated by an

arbitrary μ-symmetric A-resolvent. If u^3Cc°\ then u^3C and

(3.15) H(u,u) = Ή?Xu,u) = <u,ύ>.

One proves, instead of (3.15),

(3.16) Ha(u, u) = UT(u, u) - <μ, u\ .

Let {un} be a sequence in Co such that H^0)-limwn=w. Since (3.16) is true

for every C0-function, {un} is a Cauchy sequence in the H^-norm. Write

^=HΛ-limwM. Since v is also the L2-limit of un, one has v=u. Therefore,

HΛ(M, U) = lim HΛ (uny un) = lim U^ (uM, un) = Hc

Λ°\u, u). The second equality

follows from W£\u—uny u—un)^<u—un, u—unya.
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NOTE. Proposition 3.4 implies that χ c 0 ) is closed both in DC with respect
to HΛ and in the space of all L2-functions with finite Dirichlet norm with respect
to the norm < , >^/2.

A function u, finite everywhere, is said to be a-harmonic (with respect to A)
if (a—A)u=0, or equivalently, if YlΛu—u (for the definition of Πα, see (1.14)).

Proposition 3.5. If u is a-harmonic, in X2 and of finite Dirichlet norm,
then Au2^0 and

(3.17) <μ, u\ = JΣ,(Au2)(x)μ(x).

As was noted already, ζu> z/>< + °o implies that Au2 and Au are finite.
Hence one has for each x

0 ^ Σ , Φ * (u(x)-u(y))2a(x, y)μ(y) = Σ , (u(x)-u(y))2a(x, y)μ(y)

= A(u(x)-u)\x)

= u2(x)A\(x)-2u(x)Au(x)+Au2(x)

= -2au2(x)+Au2(x).

Integrate by the measure — μ(x) to obtain

<u,u)=-a{u,u)+^(Au2

y 1).

In the same way one has a little more general result.

Proposition 3.6. If u^ X2, <u, u} < oo and if Au e X2

} then Au2 is
ίntegrable (μ) and

(3.18) <u9 u>+(Au, u) = \{Au2, 1).

Theorem 1. Let (3C, H) be the L2-Dirichlet space generated by an arbitrary
μ-symmetric A-resolvent {Ga(x> B), α>0}. Let SiΛ be the space of all a-harmonic
functions in 3C. Then one has the orthogonal decompostion of 2C into 3Cc0:> and 3ίΛ:

(3.19) X = Xm®MΛ with respect to the Ha-norm.

Moreover, the operator

R<» — G<*—G<*

maps X2 into Ma and for each f in X2, one has

(3.20) Ha(RJ,v) = (fv) for every v^MΛ.

In particular, {RΛf; f^C0} is dense in Jί* with respect to H^.
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By (3.8), ifv£ΞCoy

(3.21) Ha(uy v) = <uy v>a = (—Au, v)+a(uy v) for any

One has already seen (the note for Proposition 3.4) that 3f(0) is a closed subspace
of DC in the H^-norm. By (3.21), u^Jίa iff u is orthogonal to Co. Since Co is
dense in 3£™ in the Hl0)-norm and since HΛ=H^ 0 ) in 3CC°\ u^Ma iff u is
orthogonal to 2Cc0), which shows that SiΛ is the orthogonal complement of 3CC°\

lίf^X2, then for every v^C0

H.(R.f, v) = Ua(GJy v)-HT(G°fy v)

= (/.*M/>») = o,

so that RJ<EΞMΛ.

NOTE 1. Theorem 1 implies that MΛ={ϋ] or not simultaneously for every
a>0.

NOTE 2. In the above, one has proved that MΛ is closed in the H^-norm.
We will give another proof of this fact. Let {un} be a sequence in SiΛ and
w=HΛ-lim un. Note that u is the pointwise limit of un. Since Hα(wM—u, u—un)
^ζu—uny u—unyay it follows that un(x)->u(x) and Aun(x)-^Au(x) for every
Λ? (see the paragraph preceding Proposition 3.1). Hence one has

(au—Au)(x) = lim (au—Aun)(x) = 0 ,
«->oo

proving that M G J Λ .

4. Resolvents associated with the Dirichlet norm and their lateral
conditions

Let 3C' be the space of all L2-functions with finite Dirichlet norm.

Proposition 4.1. The pair (3C\ < , » is an L,2-Dirichlet space.
It is enough to show that 3C* is complete in the norm < , >^/2. Let {un}

be a Cauchy sequence in the norm < , >^/2. Let u be the LMimit of {un} and
therefore, in our special context, the pointwise limit of {un}. By the Fatou
lemma,

<u—uny u—uny^lim <um—un
?M->oo

which proves that M E T and ζu—uny u—wΛ>Λ^

Let {G'Λ(xy B)y a>0} be the /^-symmetric resolvent associated with

pr, <,».
Theorem 2. The condition
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(4.1)9> M G Γ and <u9 v>+(Au, v) = 0 for every v

is a lateral condition for the Kolmogorov equation

(4.2) {a-A)u=f,

and the corresponding A-resolvent is given by {G'Jjx, B), α > 0 } . More precisely,

for every f in Co (or more generally, in J?2), u=G*af is the unique solution of (4.2)

and(4Λ).

Recall that u=G'af is the unique solution of

(4.3) u^3C* and ζu> vya = (/, v) for every

so that one has only to show that a function u satisfies (4.2) and (4.1) iff it satisfies

(4.3). The necessity is evident. For the converse, note that the equation in

(4.1) is always satisfied for every M ^ T and v^CQ (see Proposition 3.1 and

footnote 8). If u satisfies (4.3), therefore, then

(4.4) ((a—A)uy v) = (/, v) for every v

which implies (4.2). But it follows from M G Γ and (4.2) that Au<^£\ so that

(4.4) is valid for every v^X2. Hence one has

(Au, v) = (/, v)—a(u, v) = — O, v> , v<=3£\

proving (4.1).

Proposition 4.2. If μ is a finite measure, then {G'a(x9 B), a>0} is a

Markov resolvent, i.e.,

(4.5) aGa(x, E) = 1 every a>0 and every

Since 1 ^2C" and since

l, v) - (αl, v),

one has l = G;(αl)=αG;( . , E).

Since {G*Λ(x, B), a>0} is a /^-symmetric ^4-resolvent, Theorem 1 applies to

obtain

Proposition 4.3. Let M*Λ be the space of all a-harmonic functions with

finite Dirichlet norm. The kernel

(4.6) K{x, y) = G a(x, y)-G°{x, y)

is characterized by R'xf^Jί'afor eachf^C0 and by the functional equation

(4.7) <K,f,υ> = if,v) for every

9) This form of the lateral condition for {G'#(x, B), a>0} was informed us by H. Kunita,
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This proposition shows that the resolvent {G'Λ(x, B), a>0} is an exact

counterpart in Markov chains of what Fukushima [9] called the resolvent of

the r.b. Brownian motion on an arbitrary bounded domain. In accordance

with Fukushima's terminology, {G'a(x> B), α>0} will be called the resolvent of

the reflecting barrier Markov chain associated with (μ, A).10> In the next section

we will give another justification of this nomenclature, discussing the boundary

condition of the r.b. (in the present sense) birth and death process. The re-

solvent G'a coincides with the minimal resolvent G# if <4ίm

a={0}. The condition

"c#C={0}", however, may be considered the case when there is no boundary

point admitting the "reflection"; the resolvent G'a still determines the r.b.

Markov chain (though in the trivial sense). This fact also will be illustrated

for birth and death processes in the next section.

The following generalization of Theorem 2 is now obvious.

Theorem 3. Let 2CnC0 and let (3£, < , » be an U-Dίrichlet subspace of

(3?#, ζ ,y). Then the condition

(4.8) u^DC and <w, v>+(Au, v) = 0 for every v

is a lateral condition for the Kolmogorov equation (4.2) and the corresponding

A-resolvent is the μ-symmetric resolvent associated with (3?, < , ».

Let Co be the closure of Co with respect to the < , >Λ-norm, α > 0 , in 3C\

Obviously Co is independent of a>0.

Theorem 4. The pair (Co, < , » is an L2-Diήchlet space. The condition

(4.9)

is a lateral condition for the Kolmogorov equation (4.2) and the corresponding A-

resolvent is the minimal A-resolvent {G'Λ(x, B)y α > 0 } . This is equivalent to saying

that

(4.10) (Co, < , » = (3^ 0 ), H η .

Note that the relation

<M, v>+(Auy v) = 0, v(ΞC0

is automatically satisfied if u^3C° and Au^X2 and hence that, assuming that

Φw < > » i s a n L2-Dirichlet space, (4.9) is nothing but (4.8) with X replaced

by Co. Then it is obvious from Theorem 3 that the proof of the theorem is

reduced to showing (4.10).

The relation (4.10) follows immediately from Proposition 3.3 and the note

10) This actually depends only on A (see Proposition 6.2).
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for Proposition 3.4. We will give, however, an alternative proof of the theorem

without using Proposition 3.3. This also turns out to give an alternative proof

of Proposition 3.3.

One proves first that (Co, < , » is an IΛDirichlet space. Given a function

u, let Tu denote the function (MVO)ΛI. It is enough to show that MGC0 im-

plies TMGC 0 ; the other conditions for L2-Dirichlet space are satisfied obviously.

Let un^C0 and w=< , >Λ-lim un. Then u is the pointwise limit of {un}. Since

I Tun\ ^ \un\ and | Tun-Tu\ ^\un-u\, it follows that Tun^C0, Tun->Tu both

in X2 and in the pointwise sense. Let J(x, y) = 0 if x = y, and = 1 if

x^py. Since \un(x)—un(y)\2 is uniformly integrable relative to the measure

J(x, y)a(x, y)μ(x)μ{y) and since

(4.11) I Tu(x)-Tun(x)-(Tu(y)-Tun(y))\2

fg2{Iu(x)-u(y) 12+ Iun(x)-un(y) |2} ,

the left side of (4.11) is uniformly integrable relative to J(x, y)a(x, y)μ(x)μ(y)

and converges to zero for every ( X J ) G £ X E . Therefore Tun^Tu in the

Dirichlet norm. One has proved that Tu=( , X-lim Tunζ=C0.

In the same way as in the proof of Proposition 3.4 (but without using Prop-

osition 3.3) it is easy to show that, if M G C 0 , then u<=3£^ and H(0)(«, u) =

<u,u}. It remains to prove that J C C ( ° C C 0 . Let {Ga(x, B)y α > 0 } be the

/^-symmetric ^4-resolvent associated with (L?0, < , >). Since {G£(x, B), α > 0 }

is the minimal ^4-resolvent, one has Ga(x, y)^G£(x, y)^0 for every (a, x, y)^

(0, oo)XExE. If M G Ϊ ( 0 ) , then u+=uVθ and fΓ = (-tt)Vθ are in 2C'0' and

u=u+—u~. One has

lim β^-βG^, z/±)^lim β^-βGlu^ u*) = H ^ M * , I ^ ) < oo ,
β->oo β->oo

which implies that UΓ^LC^ by Proposition 2.2.

NOTE for Theorem 3. In the case of Brownian motions, Fukushima [10]

has given an example of (2C, < , >), which is nontrivial in the sense that

5. Case of birth and death processes

The Kolmogorov-Feller kernel for the birth and death process, satisfying

condition (1.5), is given by the infinite matrix

ί-β0 βo 0 0

8, -(8,+βΛ βλ 0
(5 X\ A =
κ ' ; 0 δ2 - (
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with every /?t > 0 and δ t > 0 . The integration problem of the Kolmogorov
equation for such process has been completely analyzed by Feller [7]. He gave
the most general lateral condition in terms of the boundary condition. We will
construct the resolvent of the reflecting barrier (in the sense of Section 4) birth
and death process and find its boundary condition. Moreover we will construct
Feller's elastic barrier solution by the method of IΛDirichlet space.

We follow Feller's notation and terminology with some obvious exceptions11}.
The natural scale {xn} and the canonical measure μ are defined, respectively, by

(5.2)

and by

(5.3)

χ _

= lim xn

( n = l , 2 , •..)

μ(0)=ί, ( n = 1, 2,

Then the pair (μ, A) satisfies condition (S) of Section 3 the infinite matrix of
the symmetric density a(x, y) is of the form

0 o
δ _ &

βo

βo

The state space £={0, 1, 2, •••} is identified with the set {x0, xlt x2, •••} by the
correspondence n<^>xn. For a function/ over E, one denotes f(xn) for/(«).
The right difference ratio/+ of/ and the difference ratio Dμf with respect to μ
are respectively defined by

(5.4)

and by

(5.5)

Write

X*,j-Ί X*.

( W = o , 1 , 2 ,

/*(«)
( n = l , 2 ,

11) For example, we use μ(n) for //„, Af for j2/, Gα/[resp. G^0/] for F A * [resp. F λ] etc.
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(5.6) f{xj)

(5.7) /-(*„) = l i m / > , ),

if the limits exist. Then one has

(5.8) Af(xn) = Dμf+(xu) (n = 0, 1, 2, •••),

so that the Kolmogorov equation is of the form

(5.9) au-Dμu
+=f ft=C0.

We will make use of some elementary results among those by Feller. Some

of them will be stated just below, and some others, in the place where they are

needed.

The boundary point x^ is classified into the four types called regular, exit,

entrance and natural [7; Section 6]. One need only the definition of the regular

boundary: x^ is regular if #oo<oo and if μ is a finite measure. For each

α > 0 , there is one and only one solution AΛ

12> of

(5.10) aha-Dμh: = 0, Λ β ( * o ) = l .

Therefore, any α-harmonic function is a constant multiple of ha. Both hΛ

and ha are strictly increasing, so that ha(xj) and h^xj) are well defined. The

boundary x^ is regular iff both h^xj) and h~(xj) are finite (see [7; Theorem 7.1]

for the proof of the assertions on hΛ).

Noting that, for any function u over E,

(5.11) lim Σ Dμ{uY{xj)μ{j) = lim [u(xn+1)+u(xn)] u+{xn)

and that the conclusions of Proposition 3.5 are valid for every α-harmonc

function if one allows the both sides of (3.17) to be infinite, one has immediately

the following proposition.

Proposition 5.1. If u is a-harmonic, both u(Xoo) and u~{xoo) exist and

(5.12) <u, u\ = u(xOQ)u-(x00)^oo .

Therefore Jί'Λ={0} if x is not regular, while M°Λ={chΛ, —oo<cc<°°} if x is

regular.

Moreover one has

Proposition 5.2. Let x^ be regular. If u is a solution of the Kolmogorov

equation (5.9), then u^DC'f]^ and

12) This function is denoted by u in Feller's notation,
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(5.13) <u, ύ>+(Au, M) = - J - l i m [u{xn+1) + u(xn)]u' (xn).

Since u-G°J=cha^M'Λ, then M G T Π J . Formula (5.13) follows from
Proposition 3.6 and (5.11).

Proposition 5.1 implies the first assertion of the following theorem.

Theorem 5. (i) If x^ is not regular, one has

i,j = 0, 1,2,.-. .

(ii) Let #oo be regular. Then the lateral condition (4.1) for the Kolmogorov
equation (5.9) of the birth and death process is equivalent to Feller's reflecting barrier
boundary condition

(5.14) «"(*„) = 0 .

The kernel [R'^i,]), a>0} is given by

One first proves (5.15). Let R'af=cha (f^C0) and v=dha with constants
c> d. By (4.7) one has

so that c=(f> ha)l^hai h^}Λ and hence by (5.12),

p /•_ h (f,hΛ)
hΰύ(xΰO)ha(xoo)

proving (5.15).
The former half of (ii) is obvious by comparing formula (5.15) with [7;

Theorem 11.1]. However, one prefers to prove that, if u is a solution of the
Kolmogorov equation (5.9), the function u satisfies condition (5.14) iff it satisfies
(4.1). Suppose that u satisfies (4.1), i.e., u—G'af One may assume t h a t / ^ 0 .
Let R'Λf=cha. Note that £ > 0 unless / is identically zero, for (R°af haya =
{f> K)>0. Then, therefore, u=G%f+R'af is bounded below by a positive
constant. Taking u for v in (4.1) and using (5.13), one has (5.14). Conversely,
suppose that u satisfies (5.14). By Proposition 5.2, we3f*Π-S. It is enough
to show that, for every g G C 0 ,

(5.16) <u, G ag>+(Au, G'ag) = 0 ,

because {G'Λg;g^C0} is dense in 3C" with respect to the norm < , >1/2. Since
u~{Xoo)={Gm

Λg)~(xJ)=0y one has by (5.13)
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I, = <u+G ag, u+G'ag>+(A[u+σ.g], u+G'ag) = 0 ,

72 = <«, u)+{Au, u) = 0 .

On the other hand one has by (4.1)

h = <G'ag, u>+(A G ag, u) = 0 ,

Λ = <G ag, G agy+(A σag, σag) = o .
Hence

G-.g) = 1,-1,-1,-1, = o .

We next proceed to discuss Feller's elastic barrier solution. Let #«, be
regular and let u^3£°. Consider the orthogonal decomposition of u (see
Theorem 1);

(5.17) u = u1+u2y uλ^X^\ u2^Jί'Λ.

Proposition 5.3. (i) u^xj) is a continuous linear functional of u^3£"
with respect to the < , y^-norm. (ii) u2{xj) is independent of α > 0 . This
common value is called the boundary value of u and it is denoted by ufaj).

Let un^3C* and let (uny unya^0. The α-harmonic component of un is
expressed as un2=cnhΛ. Since (un2y un£>a=(%(hΛ, λβ>->0, one has £n->0, so that
Un^x^—cJi^xJ)-^®. One has proved assertion (i).

For assertion (ii) one need one more result due to Feller [7; Lemma 9.1]:
if x^ is regular (or exit), then

(5.18) G2/(*,)-*0 as ί-> oo

for every/eJ^Π-S and every α > 0 . Let u^2C" and let

Choose/Me J72Π IB such that un~G°Λfn^u in the < , >Λ-norm. Then un-*u in
the <, Vnorm and uH=σβgH with gn=fn+(β-a)G'Jn^X2n ^. Since
Gifnix^Glgnix^O by (5.18), one has Kfn(Xoo)=Kgn(x). By assertion (i),
^ ( Λ g - l i m ^ i?;/w(Λ:00)=limM^00 R'βgnix^v^xJ, proving (ii).
One can now introduce a bilinear form on 3C* by

(5.19) N(ιι, v) = K ^ ) ^ ) .

For a positive constant ay define

(5.20) H(w, v) = <uy vy+aN(uy v), uy Ϊ I G Γ .

By Proposition 5.3 it follows that the pair (3£\ H) is an L2-Dirichlet space. The
following theorem is easily proved in the same way as Theorem 2 and Theorem 5.
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Theorem 6. The condition

(5.21) u<=3£m and H(uy v)+(Auy v) = 0 for every

is a lateral condition for the Kolmogorov equation (5.9). The corresponding A-

resolυent is the μ-symmetric resolvent {Ga(x, B), a>0} associated with (3£, H).

The lateral condition (5.21) is equivalent to Feller's elastic barrier boundary condition

(5.22) u-{xj)+au(xj) = 0 .

The kernel RΛ(iy j) (=GΛ(ί, »—G°(i, j)) is given by

NOTE. The kernel GΛ(iy j) in Theorem 6 reduces to G#(i, j) for a=co

and to Gl(iy j) for a=0.

6. Concluding remarks and open problems

In this section we will give some complementary results and propose some

open problems.

(a) Given the Kolmogorov-Feller kernel A(x> y), one can ask how many

measures satisfy condition (S) of Section 3. Since the resolvent {G°a(x, B), α>0}

of the r.b. Markov chain depends at least formally on the measure μ as well

as A, one can also ask if it really depends on μ or not. We will answer these

problems in the sequel.

Let μ be an arbitrary (but fixed) measure satisfying condition (S).

Proposition 6.1. There is a unique decomposition of E into the disjoint subsets

{Ek} such that a measure v satisfies condition (S) iff

(6.1) v{B)=ciμ(B)J £f > 0 ,

whenever B is a subset of Ei.

The decomposition of E is carried out in a way similar to the decomposition

of the state space into the minimal closed recurrent subsets in Markov chain

theory (see [8]). Let Π(#, j;) be the stochastic matrix defined in (1.7). For two

states x, y in E, denote x^y if Hn(xy y)>Q for some n ^ 1. From condition (S)

it follows that x<~^y implies y^*x. Then one can easily verify that the relation

" ~ * " is an equivalence relation. Denote the equivalence classes by Eiy

/ = 1, 2, . It is shown that each E{ is a minimal closed set with respect to Π,

i.e., that Π(x, E—Ei)=Q for every x^E{ and for any proper subset B of Eiy

Π(xy E—B)>0 for some x^B.
Let i/ be a measure satisfying condition (S) and b(xy y)y the symmetric
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density A{x,y)fv{y). If both x and y are in Eiy there is a chain {xly x2y — ,xM--}

such that Π(#, XX)>0, Π(xt , xi+1)>0 and Tl(xn_1,y)>0. Since A(x, ̂ ) > 0 , one

has a(x> ^ ) > 0 and b(x, ^ ) > 0 . Hence

v(x) _ a(xly x) _ a(x, x,) __ v(x1)

μ(x) b(xly X) b(xy X,) μ(x1)

In the same way one has v{x)j μ{x)—v{x^)l μ{x^)= ~ =v(xn_^)l μ((xn_^)=v{y)j μ{y).

The converse is easy, because A(x, y)=0 if x^E{, y^Ej, (z

Proposition 6.2. The resolvent {G*(JC, B)y α>0} of Section 4 depends only

on A.

Let v be a measure satisfying condition (S) and v{ [resp. μi\y the restriction

of v [resp. μ] to the set E{. Let A{{x, y) be the restriction of A(x, y) to

E1; x E{. The kernel A (#, jv) is a Kolmogorov-Feller kernel satisfying condition

(1.5) on E{. The pairs (μi9 A{) and (ẑ t , A{) satisfy condition (S) on E{. Since

vi=ciμi9 it follows that the pairs (μiy A{) and (viy A^) generate the same r.b.

Markov chain resolvent {'G*(Λ:, B), a>0} over E{. Define

(6.2) GΓΛ(x, y) ='G-Λ(x9 y) for x, y^E,, ι = l , 2, ...,

= 0 otherwise.

One wants to prove that the above {G°a(x, B), a>0} is the resolvent of the

r.b. Markov chain associated with (μ, A) as well as (v, A). Let IE. be the

indicator of the set E{ and/,-, the restriction of a function/ (over E) to Z^ . By

(6.2),

(6.3) hP'J =

From the formula

(6.4) <u, v>a = Σ <I

it follows that if u^3C\ then J^. u^DC', where 3C] is the L2-Dirichlet space

on Ei associated with the Dirichlet norm < , >, with respect to (μif A{). Since

^ ' G /. , v^i^^KJs^Glfiy IE. Όi>Λ=(IEifi, Iε^i) for every ϋf G3??, one has by

(6.3) and (6.4)

(6.5)

= (/,«),

One has proved that the {G'^x, B), α > 0 } in (6.2) is the r.b. Markov chain

resolvent associated with (μ, A). The same argument applies to the pair (v> A).

(b) Let {G^x, B), a>Q} be any μ-symmetric resolvent. For / G C J ,
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(aGaf, 1)=(/, aGal)^(f, 1), so that the measure μ is excessive relative to any

μ-symmetric resolvent, i.e.,

(6.6) a Σ , μ(x)GΛ(x, B) = μ{aGΛ){B) £ μ(B)

for every subset B of Z?. In the same way, by hypothesis (S) one has

(6.7) Σ* μ(x) Έy,B Λ{x, y) = μA(B) = 0, BaE.

Note that the condition

(6.8) μA(B)^0i BdE

is equivalent to the condition that μ is excessive relative to the minimal A-

resolvent {G«(x, B), a>0}. Condition (6.8) will be a standard which should be

imposed on the measure μ in the generalization to the unsymmetric case (see

paragraph (c)).

(c) Let A(x, y) be a Kolmogorov-Feller kernel satisfying condition (1.5)

and μ, a measure (strictly positive and finite at every state) satisfying condition

(6.8). We will ask, without the symmetric hypothesis (S), if one can construct

something like the r.b. Markov chain associated with (μ,, A), developing the

method of Section 4. Replacing hypothesis (S) by other kind of hypotheses,

Kunita (unpublished, see Theorem 7) has obtained a partial answer to the above

question. In this paragraph we will give a slightly more general formulation

than Kunita's and propose an open problem, together with Kunita's result.

We will use the same notation as in the symmetric case. Let a(x> y) be the

density A(x, y)lμ(y) and A*(x, y), the co-kernel of A(x, y) with respect to μ:

(6.9) A*{x, y) = a(y, x)μ(y).

Kernel A*(x, y) is also a Kolmogorov-Feller kernel by condition (6.8), but it

does not satisfy condition (1.5) unless μA(B)=0. In the same way as in Section

3, introduce the Dirichlet form with respect to (μ, A) by

(6.10) <X v> = -1 Σ*,, (u(x)-u(y))(v(x)-v(y))a(xy y)μ(x)μ(y)

and O, vyΛy by

<M, vya = <M, v>+a(u, v).

As in Section 4 one denotes by 3C' the space of all L2-functions with finite

Dirichlet norm. For each a > 0, DC' forms a Hubert space with respect to

the norm < , %/2. As in Section 3, if M E T , both Au and A*u are finite

everywhere.
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The basic hypothesis on the pair (μ, A) is this:

(B) A* —A is a bounded operator from 3£° into X2.

The above hypothesis is valid, for example, in the symmetric case or in the case

when a(x, y)—a(y, x) is square-integrable with respect to the product measure

μ X μ. We do not know if there is a pair (μ, A) which does not satisfy hypothesis

(B).

Problem 1. Under hypothesis (B), the condition

(6.11) UΪΞX\<U, vy + l-([A+A*]u, v) = 0 for every

is a lateral condition for the Kolmogorov equation

(6.12) (a-A)u=f, / G C 0 .

That is, there is a unique solution u of (6.12) and (6.11) for each α > 0 and the

family of kernels {G'a(x, B), α>0} defined by

(6.13) u=G\f

is a resolvent.

Theorem 7. (H. Kunita) The assertion of Problem 1 is true if μ is a finite

measure satisfying condition (6.7): μA=0. In this casey {G'^x, B)y α>0} is a

Markov resolvent.

We now introduce the outline of Kunita's proof. Define a bilinear form

on 3T by

(6.14) ΌΛ(u, v) - <!*, v\+λ.(\A*-A\u, bv).

In the same way as in Theorem 2, u satisfies (6.11) and (6.12) iff it satisfies the

functional equation

(6.15) M G Γ and ΌΛ(u, v) = (/,©) for every i>e3T .

From hypothesis (B) and Oa(u, u)=ζu, u)a it follows that (6.15) has a unique

solution. It is not difficult to see that the kernels {G°Λ(x, B), α > 0 } defined by

(6.13) satisfy the resolvent equation (2.3). One next proves the positivity of

G .̂ A direct computation shows that, for every

(6.16) Dα(w+, ιΓ)^0 with M + - W 0 , M" = ( - M ) V 0 .

On the other hand, i f /^0 and u=G^f then DΛ(u, M")==(/, ιΓ)^0. Therefore,

by (6.16)
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\ = Dβ(iΓ, u-) =

proving u~=0y i.e., u==G'af^0.

The proof of aG%

a\ = l is the same as in Proposition 4.2, since .41=^4*1=0

under the hypothesis of the theorem.

In proving the general case of Problem 1, the crucial point is to verify the

sub-Markov property of aG*a; aG'aί^ί. Kunita's proof remains valid for the

other parts.

(d) It will be interesting to find the boundary condition which the resolvent

of the r.b. Markov chain should satisfy at the ideal boundary of Feller, Martin

or other types. The case of the birth and death process, in which the ideal

boundary consists of one point #«,, was discussed in Section 5. We propose

two problems related to the boundary condition.

Let us introduce the following hypothesis:

(F) There are at most finitely many linearly independent, bounded α-harmonic

functions.

Under this hypothesis, Feller [6] and Dynkin [4] have obtained the most general

lateral condition for the Kolmogorov equation (1.10) in terms of the boundary

condition at the exit13> boundary (consisting of finitely many points by hypothesis

(F))

Problem 2. Find the Feller-Dynkin boundary condition for the resolvent of

the r.b. Markov chain.

The second problem is concerned with a natural ideal boundary induced by
the r.b. Markov chain itself. Let {P\t9 x, B), t^O} be the transition function
corresponding to {G'Λ(x, B), a>0} (see Section 1) and %u the Markov chain
with P\ty xy B) as its transition function. By [15; Theorem 1], there is a nice1^
standard modification xt of xty taking values in an extended state space E. We
will say that the process xt is the reflecting barrier Markov chain associated with

A. Space E is compact and the original state space E is dense in E, so that
the set E—E is an ideal boundary. The kernels G'a(x, y) and P'(t, x, y) are
extended to ExE. If f^C (=the space of all continuous functions over E),
G'af is continuous on E.

Problem 3. Find the boundary condition of u(x)=G#f(x), f^C, X G £ ,
at the boundary E—E.

(e) Similarly to the latter half of the preceding paragraph, Fukushima [9
Theorem 2 and p. 213] has defined the r.b. Brownian motion on a bounded

13) The word "exit" is taken in the sense of Feller [6].

14) The strong Markov property, the right continuity of sample paths and so on.
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domain as a nice Markov process defined over an extended space15) and with the
transition function of his Theorem 1, (v). He has proved that the almost all
sample functions of the r.b. Brownian motion are continuous at the boundary
(as well as in the interior of the original domain). One can expect the following
result.

Problem 4. The almost all sample functions of the r.b. Markov chain {see

paragraph (d)) are continuous at the boundary E—E.

It seems to us that Fukushima's proof depends heavily on the fact that his
resolvent is a Markov resolvent. In fact, if our {G'Λ(x, B)> α>0} is a Markov
resolvent, Fukushima's proof applies to the r.b. Markov chain. The complete
proof is given in [19]16). In the case of sub-Markov resolvents17), Problem 4
remains still open.

(f) One can ask how the results of this paper can be extended to the Markov
process over a general (but nice topological) state space. So far one has two
such examples; the Brownian motion [9] (where A is the Laplacian multiplied
by ?r) and the stable process [5] (where A is a certain integro-differential
operator), both defined on a domain of Euclidean space. Note that, in these
cases as well as in the Markov chain case, the operator A is the characteristic
operator [3] of its associated minimal process. One possible formulation in the
general case is this.

Problem 5. Let xn

t be a standard (or Hunt) process over a locally compact,

separable Hausdorff space E and A, the characteristic operator of xn

e. Let μ be a

Randon measure on E, strictly positive for every open set. Suppose that the resolvent

{G#(x, B), α > 0 } of the process x°t is μ-symmetric. Then find the Dirichlet norm

with respect to the pair (μ, A) and construct its associated r.b. Markov process.

Appendix. The resolvent of the reflecting barrier Brownian motion

We will now outline how the resolvent of the r.b. Brownian motion by
Fukushima can be constructed by the same method as in Section 4. This method
is, mostly, nothing but the Hubert space method for elliptic partial differential
equations (PDE). At least, the crucial parts in the proofs depend on those results
in PDE. All the results on PDE which will be used with no reference in the
sequel are proved, for example, in [17].

15) His compactification is slightly different from ours in paragraph (d). But the
arguments of [9 Sections 3 and 4] are much simplified under our compactification (applied to
the case of Brownian motion), all the results there remaining valid [20].

16) One needs only establish the analogue in the r.b. Markov chain of [9; Lemma
4.4]; the other parts are the same as in the r.b. Brownian motion (see footnote 15).

17) This situation can arise even in the case of Brownian motion, if the original domain
is allowed to be unbounded. Fukushima considers only bounded domains.
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We will often use the same notation as in the previous sections in a different
context. Let E be a (possibly unbounded) domain of Euclidean N-space and

Δ, the Laplacian Σί=i The measure μ is the Lebesgue measure on E.
dXi

Space X2 is the L2-sρace with respect to the Lebesgue measure dx. Space C
[resp. Co] is the space of all real-valued, bounded continuous functions [resp.
with compact support]. Space C°° [resp. Co] is the subspace of C [resp. Co]
formed by C°°-functions18>.

One is concerned with the Laplace transform of the heat equation (1.1):

α — 1 - Δ ) « =

The words symmetric and Brownian resolvent stand for "μ,-symmetric" and

"^Δ-resolvent", respectively. For a locally integrable function u, let —

denote the derivative in the sense of Schwartz distribution and < , )>, the classical
Dirichlet form (up to constant ̂ ):

(A.2) ζu, v) — — \ Ύ\ dx .
2 Jfi.-i dXi'dXi

Let DC' be the space of all L2-functions u such that — e J?2, / = 1 , 2, •••, JV.

Proposition A.I. ΓAe /wίr (5Γ, < , » w an U-Dirichlet space.
It is a standard fact in PDE that 2C' forms a Hubert space with respect to

the < , >Λ-norm. It is enough to prove assertion (c) of Proposition 2.1. Let

V and v, a normal contraction of u. In general, let I —=2- denote the

Radon-Nikodym derivative of u relative to the measure dxλ for each fixed

(#2> " >-*W) ^ i s known that — exists for almost all {x2r" >%N) a n d it is

locally integrable iff — is a locally integrable function and that, in this case,

— = 1 — almost everywhere. This result obviously implies that v^3C° and
dx1 Idx^
then ζu, uy^ζv, vy.

Proposition A.2. L /̂ / e J72. 4̂ function u is a solution of the equation
in Jί

(A.3) <uyvya = (ffv) for every

iff it satisfies the distribution equation

18) Functions having continuous partial derivatives of all order.
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(A.4)

and

(A.5) Me=3T, <!/,»>+(— AU,Ό) = 0 for every vt=3£m.

The "if" part is obvious. The "only if" part also goes along the same line
as in Theorem 2 of Section 4 as follows. Note that, for each

(A.6) ζu,vy~{-lu,—Av) = 0 for every V^CQ.

Therefore, if u is a solution of (A. 3), one has

(au, v)—[u, y Δτ j = (/, v), U<ΞCΪ,

proving that u is a solution of the distribution equation (A. 4). Hence it follows
that the function \Au, with the derivative taken in the distribution sense, is in
X2. Therefore one has

(au, v) — ( — Au, vj = (/, v), ^

which, together with (A. 3), proves (A. 5).
As noted in Section 2, equation (A. 3) determines only an L2-resolvent in

general. In the present case, however, this result can be strengthened as
follows.

Proposition A.3. There is a unique resolvent {G*a (x, B), α > 0 } which is
associated with (3£\ < , » and maps Co into C: G'ωf^C or every a>0 and every

Let f^X2f)C°°. Since the solution of (A. 3) satisfies (A. 4), it has a
C°°-version19), denoted by G'af. In particular, G\f is continuous, so that the
arbitrariness of measure zero which is involved in the L2-resolvent associated
with (3C\ < , » is eliminated in the version G'af Hence, whenever / e X 2 Π C°°

and

(A.7) 0^G;/(tf)gl for every x<=E,

and, for every /GX 2 Π C°° and every x^E,

(A.8) σΛf(x)-Gm

βf(x)+(a-β)σΛG βf(x) = 0, a,β>0.

19) If two functions/ and g equal almost everywhere, ^[resp. /] is called a version of/

[resp. g\. Then the stated result is known as the lemma of Weyl.
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From (A. 7) and (A. 8) it follows that there is a unique resolvent

{G'Λ(x} B), α > 0 } such that G'J(x)=[ G'a(x, dy)f(y), f^X2f]C°°. Since Cζ, a
JE

subset of X2 Π C°°, is dense in Co with uniform norm, the function

I G'a(x, dy)f(y), f^C0, is continuous.
JE

One next proves the analogue or Theorem 4 (Section 4) in the two prop-

ositions.

Proposition A.4. Let Co be the closure of CQ with respect to the < , >Λ-

norm, α > 0 . The pair (Co, < , » is an U-Dίrίchlet space.

It is evident that Co is independent of a>0.

One uses the same notation as in the proof of Theorem 4. Let u^Co

and let un^Co such that M = < , X-limu n. One may assume that un converges

almost everywhere to u20\ Then Tun^> Tu both almost everywhere and in X2.

Also since Tun<^C0 Π 3£\ it can be approximated in the < , X-norm by a sequence

of regularizations of Tun belonging to Co, which proves that Tun^Co- The

rest of the proof is the same as in Theorem 4; it is enough to replace the

partial derivatives for the difference and, the Lebesgue measure dx for

J(x, y)a(x9 y)μ(x)μ(y).

It is well known (for example, [11], [13]) that the minimal Brownian resolvent

{Gl(x, B), a>ϋ) exists and it is symmetric. Moreover G° maps Co (actually,

the space i3 of all bounded measurable functions) into C.

Proposition A.5. The condition

(A.9) u^Co ne-

ts a lateral condition for the equation (A. 1) and the corresponding Brownian re-

solvent, say {&a(x, B), α>0}, is nothing but the minimal Brownian resolvent.

Since Proposition A. 2 and A. 3 are valid for any IΛDirichlet subspace,

containing C^, of (3C\ < , )>), then the former half is obvious. Also since both

GΛ and G® map Co into C, it is enough to prove that they define the same L2-

resolvent, i.e.,

(A.10) (Co, < , » = (3Cco\ H<°>).

One first proves that, if u^Coy then u^DCC0^ and

(A.ll) W°\u, u) = <u, it) .

The proof is similar to that of Proposition 3.2. Indeed, one can easily verify

that β(u—βGβU) converges to —^Au in the distribution sense, so that

20) Rewrite by un the a,e. convergent subsequence, if necessary.
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H ( 0 ^ , u) = lim β{u-βG°βu, u) = (-u, —Au) = <w, u) .
β^-o \ 2 /

Then, in the same way as in Proposition 3.4, it follows that, if u^Co, u^3Cc°^

and (A. 11) remains valid. The proof of 3£C0^CICQ is the same as in the final

argument of Theorem 4.

Let SCΛ be the space of all α-harmonic functions21* in 2£\ By (A. 10)

one has the same orthogonal decomposition as in Theorem 1 (or rather in Prop-

osition 4.3). The kernel

(A.12) /£(*, B) - Gm

Λ(x, B)-G°Λ(x, B)

is characterized by R°af ^M*Λ, f ^C%> and

(A.13) <Kf,*>X = (f,o) for every

Proposition A.6 There is a symmetric density r"a(x, y)—R*Λ(x, dy)\dy such

that, for each yy rΛ(xy y) is a-harmonic.

Kernel ra{x, y) is denoted by RΛ{x> y) in [9]. Note that, for each fixed

y> v(y) is a continuous linear functional on v^JQ [9; Lemma 2.2]. Let rm

a(x> y)

the reproducing kernel in M'^.

(A. 14) <rl( , y), v\ = v{y), v^3CΛ.

Using [9; Lemma 2.1] in the same way as in the proof of [9; Lemma 2.7], one

has, for each x,

f dlJ^)f{y)dy = A_Λ ra(x,y)f{y)dy),
JE dXi OXi JE

which implies that

Hence, R*Λf{x)= \ f{y)r^{x^ y)dy for every f^Co and every x in E.
JE

We will now summarize the main results of this section.

Theorem 8. The condition

(A.15) u<E3e'PiC-y <w, *>>+(— ΔK, vj = 0 for every V

21) The genuine solutions of f a ——Jju=O,
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is a lateral condition for the equation (A.I). The corresponding Brownίan resolvent

{G'a(xy B), a > 0} is symmetric and it generates the \?-resolvent associated with

(3£\ < , >). For each α > 0 , G'a maps Co into C. Moreover, if E is bounded,

{G*a(x, B), a>0} is a Markov resolvent. The harmonic part R'Λ{x, B) has the

symmetric density r'a(x9 y) which is a-harmonic in each variable.
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