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Introduction. The aim of this paper is to prove two vanishing theorems
for cohomology groups related to discrete uniform subgroups of semisimple Lie
groups.

Let p be a representation of a real linear semisimple Lie group G and T'
a discrete subgroup of G such that I'\G is compact. Assume that " contains
no elements of finite order. In §1 we give a criterion in terms of the highest
weight of p for the vanishing of H?(T, p), the p** cohomology group of T'
with coefficient in p. This criterion is a generalisation of a theorem of
Matsushima and Murakami [3].

In §2 we prove the following theorem (Corollary to Theorem 3). Let G
be a complex semisimple Lie group without any simple component of rank 1.
Then for any discrete subgroup I' such that I'"\G is compact, the canonical
complex structure on the space I'\G is rigid. (This question whether these
complex structures are rigid was raised by Professor Matsushima).

1. A vanishing theorem for the cohomology of discrete
uniform subgroups

Let G be a connected real linear semisimple Lie group and I' a discrete
subgroup such that the quotient I'\G is compact. Let g, be the Lie algebra of
left-invariant vector-fields of G and g,=f & p, a Cartan-decomposition of g,
f, being the algebra. Let K be the (compact) Lie subgroup corresponding to f,
and X=G/K the corresponding symmetric space. To every representation of
G in a finite dimensional real (or complex) vector space F, Matsushima and
Murakami [2] have associated certain cohomology groups: we follow their nota-
tion and denote these groups by H?(T', X, p). (In the case when I' has no
elements of finite order I" acts freely on X and H2(T", X, p) is isomorphic to
the p** cohomology group of T" with coefficients in the restriction pn of p to T').
In the same article, they prove moreover the following result (see in particular
§6,87). (Proposition 1 below).
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The vectorfields in g, project under the natural map G —T'\G into vector-
fields on '\G. We will from now on identify g, with this algebra of vectorfields
on T'\G. Let @ be the Killing form on g, and {X,},<;<y and {X,}ni<s<x D€
bases of p, and f, such that ¢(X;, X;)=3§;; and @(X,, Xg)= —38,s. Let
AT, X, p) be the vector space of C~-p-forms 7 on I'\G satisfying i) ix7=0
and ii) Oxn=p(X)7 for every X&¥, where ix (resp fx) denotes interior deriva-
tion (resp. Lie derivation) of » with respect to the vectorfield X. Because of
i) and ii) » is determined by its values 7,--+i,=»(X; - X, ). Finally, let A? be
the operator

A?: AT, X, p) — A¥T, X, p)
defined by

Apn(Xﬁ"'Xip) = :Z:; (_XE_FP(Xk)z)’]il..‘ip

33 (- Ko X oK s XD iy

b=

-

With this notation, we have

Proposition 1. H?*(T', X, p) is canonically isomorphic to the vector space
{n|n€ 43T, X, p); A?7=0}.
Again, following [2], we define two operators A%, and A? as follows:

N ?
AKXy Xip) = =23 Xinryi, 32 3 (— D Xy Xt s,

=1 %=1

n N P
A::(Xil'”Xip) = +?:: P(Xk)zml.-.f,,—Z § (__1)up([Xiu’ Xk])‘)?kkil--»i“mip

k=1
Then A?=A%+A2. In §7 [2], it is moreover proved that
<(A7f)7])il...ip, 7)1'1"'!'1;>F20

i< <ip SI‘/G

where <{ , >p is a positive definite scalar product on F for which p(X) is
(hermitian) symmetric (resp. skew-symmetric (hermitian)) for Xep, (resp. £)).
It follows therefore that if A?»p=0,

p . . . -
i<y SI‘/G <(A‘°77)’1"“P’ iyipr 20
We obtain therefore

Proposition 2. If the quadratic form on the space of exterior p-forms on
p, with values in F defined by

1> 23 (BR)iyrps Migip)F

i< <ip

is positive definite, then H?(T, X, p)=0.
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In the main result of this section we give a sufficient criterion in terms of the
“highest weight” of p with respect to a suitable Cartan-subalgebra of g, in order
that A? define a positive definite quadratic form.

Let g denote the complexification of g, and f and p those of £, and p,. We
identify £ and p with subspaces of . Let iy be a Cartan-subalgebra of , and §,
a Cartan-subalgebra of g, such that ;D . Let hp =bh,Np,. Let by b and by
denote respectively the complexifications of By §, amd §p . Then his a Cartan-
subalgebra of g. Let A be the system of roots of g with respect tof). For a€A
let H, <0 be the unique element such that ¢(H,,, H)=a(H) for all HeY). Then,
it is well known that the real subspace f)*:a?_]A RH, of g spanned by the {H,} ses

is the same as 7fy BPp,. Moreover if ¢ is the extension to g to the Cartan
involution 6, denfied by the Cartan-decomposition g,=f,P p,, then 4 is an auto-
morphism of g leaving f) invariant. Hence 8 acts on the dual of f) and permutes
the elements of A. The set A may then be decomposed as the disjoint union
AUBUC of three subsets 4, B and C

where A ={alaeA; 0(a) = a; O(E,) = E,}
B ={alacA; 0(a) + a}
C={alaeA; 0(a) = «a; (E,) =—FE,} .

(In the sequel we sometimes write a® for d(a)).

We introduce next a lexicographic order on the (real) dual of §* as follows: let
H, , ..., H, be an orthonormal basis of §* with respect to @ (Pl gx is positive
definite) chosen so that H,, -, H, form a basis of iy and if the centre ¢, of ¥, is
non-zero, of dimension 7, then H,, :--, H, belong to ic,; for «, B in the (real)
dual of §*, a> @ if the first non-vanishing difference a(H;)—B(H;) is greater
than zero. Let A" be the system of positive roots with respect to this order and
let AA=ANA*", B/=BNA"™, C=NCA". Then 6 leaves A+, B* and C*
invariant. Let 3\\=A"U{a|aeB*; §(a)>a} and 3,=C* U{a|acB"; i(a)
>aj}.

Theorem 1. Let p denote a finite dimensional representation of G in a
complex vector-space F, as also the induced representation of g. Let A, be the
highest weight of p with respect to the above defined Cartan-subalgebra and the
order on the dual of b*. Then if 3 ,—={a|ac),, p(A,, @)=+0} contains more
than q elements, then the Hermitian quadratic form Q, defined by

n—=> 23 <(Ag7])ir-~ip) 77i1--~iP>F
i<y

is positive definite for p<q. Hence H*(T, X, p)=0 for 1< p<q.
Before we proceed to the proof of the theorem, we will make a few prelimi-
nary simplifications:
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Lemma 1. Let E be the g** exterior power of p and let ot be the isomorphism

onto FQE of the space of exterior q-forms on p with values in F defined by
n— Z 77‘1 ,q®(X A - /\X,-q)

41<

Then
T = 2a0Afea™ = 2p@ 1)) +(100)c)—(p@1)c)— (P@0)(c')

where

c:éX%— X2

=N +1

and ¢'=— _Z"} X2 are elements of the enveloping algebras of g and ¥ and o

@=N+1

denotes the adjoint representation of ¥ in E. Hence T is a symmetric endomorphism
of FQE with respect to the scalar product

<.1<21<. iy ’P®X A Ati’ > ’71’1-"1'1:®Xi1/\'"/\XJ’1>>

71<-<ip

= <Z<'p <7)i1---ip) 77i1.-..'1,>1~‘
<<

Proof. We have

(ADiyia = 2 P71y i g2 2 (12X Xk,

For every g-tuple I,=(i,<<---<i,), we write X, for X; A--AX,,.

In this
notation,

a(")) 2 77]q®XIq

5 Tia(n) = 2035 A1, 430 33 (= (X X i) @Ky

=1 #=1

—Z{ZP(Xk) gt 2 (DT XDt @ X

q=iyiy

—Z{Z PXf et 33 (1), p(Xa)ns @ X,

qAIg=iyj,y
On the other hand,
q

(X)X = SISV (— 1)k, (XA X, X, - A X,,)

r=1u=1

= B (DX,

- . . Ju
IgAT q=jyiy

It follows that

% Tia(r) = 3 SV P(X 11,0 X143 P(Xa)n,,R(X) X,
Ig k=1 Tq

— (2 P(XRI+ H(X)Ro(Xo) )}
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Now the required result follows from the fact
2p(X4)R0(Xa) = {P(Xa)R1+1R0(Xa)} —p(X,) @1 —1R0(X,)’
— (PR X — XN D1 —1R0(X,)
That T is a hermitian symmetric endomorphism follows from the facts that

p(X;) and o(X;) are hermitian symmetric while p(X,) and o(X,) are skew-
hermitian with respect to { , > and the extension to E of the Killing form on p,.

Lemma 2. a) If A is the highest weight of an irreducible representation p
of g induced by a representation p of G, then
p(e) = {p(A, M)+ p(A, a)}.  Identity

b) when restricted to the (irreducible) K-subspace gemerated by the eigen-space
corresponding to the highest weight A,

p(c)y = {—i—q)(A-{-Ao, A+A+ X <p<A, a—ga")} . Identity.

“ET
For a proof see [4]: Lemmas 4 and 16(c).

Lemma 3. If A, and A, are the highest weights of two irreducible represen-
tations p,, p, of g, such that A,—A, is a non-negative linear combination of
simple roots of g, then N, >\, where p(c)=(\,. Identity) (k=1, 2). Equality can
occur only if A,=A,.

The same conclusions hold for ¥ and ¢’ instead of g and ¢ provided that A,
and A, coincide on the center of ¥.

For the proof see Lemma 5 [4].

Proof of Theorem 1. We obtain the eigen-values of T'¢ as follows: Let

E=3E, and F=3F, and FQE.= >V}
reM AEL VEM}#
be the decomposition of E, F and F,QE, into irreducible f-modules indexed
by the highest weights (for the order defined by H,,---, H, on #h,). Since p
is an irreducible representation of g and ¢ is a central element of U(g), p(c) is a
scalar operator. Similarly, since ¢’ is central in U(¥), p(c")®1, 1®a(c’) and
(pRQo)(c’) are scalars on F, E, FQE, and V.. Hence T? acts as a scalar on
each V.. We denote the corresponding eigen-value by a(\, u, v). Among
V3w there is a unique irreducible component with highest weight v=X\+x we
denote the corresponding scalar a(\, p, v) by a(\, p) with this notation, we have

Assertion L. a(\, u, v)>a(\, p); equality occurs only if v=n-p.

Proof. We denote the representation in V'3, by py.. Then since (p®1)(c),
(PR1)(c") and (1Q0c)(c’) all define the same scalar operator in FyQE,,



248 M. S. RAGHUNATHAN

a(n, p)+a(n, p, v) = PAi*(c")—Plu(c’)

(Here we have let p}.(c’) stand for the scalar). Now any weight in F,QE,
has the form \,+ u, where A, and p, are weights of F, and E,; on the other
hand A —2\, and p— u, are non-negative linear combination of simple roots of
k; hence so is (A+u)— (X, +p,). It follows then from Lemma 3 that

a(\, p)=a(n, p, v)

Equality can occur only if A4 p=>nX,+u, and there is only one component of
F\,QE, with A+ as the highest weight. (Note that if ¥ has a centre, then the
central elements act as scalars on F, and E hence in all of F,QE,).

Assertion II. Let f, be a highest weight vector of F such that || f,||%=1.
For acA, let E, be a root vector of a. Suppose that E, f,=0 for acA*. If
there is an a,EB* with E, f,+0, then E, f\cF) for some )\, and a(\, p)<
a(xn IM)

Proof. Using the fact that  is an involution, we have

= f)r@m§+ {CEMEBCE:»} D w§+{C(Em+Ew6)EBC(E—w+E-—m6)}
a>ab
a+a’
2

as the positive roots. The roots of f are necessarily zero on the centre of f.
It follows that the weights A and A+«, (which is the weight corresponding to
E, f\) have the same values on the centre. On the other hand, since A-+a,
and A, are weights of the same irreducible representation of f, A, and A+,
have the same values on the centre of £. It follows that A,=X\ on the centre
of f. Now n—A=\,—(A+a,)+a, and A,—(A+a,) is a non-negative linear
combination of simple roots. Hence A,—X\ is a non-negative linear combination
of simple roots and A,=X. A similar remark holds for A+ and A+pu. It
follows then from Lemma 3 above that

Pa(e’) < Pa(€’)

and the order chosen on bf=if) has precisely {a|as A"} and { aEB‘L}

and
PAIH(E) < PUEH(C)
The operators (pP®1)) (¢) and (1®0a) (¢') on the other hand are scalars on the

whole of FQE. Hence from the expression for 7%, the Assertion follows.

Assertion IIL. Suppose that E,F,=0 for acc A* UB™ but that there is an
a,EC™ such that E, fy+0. Then a(\, p)>0.

Proof. If {E,},cs are root vectors ‘so chosen that @(E,, E_,)=1, then, it
is well known that
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¢= NV EE + 3 E_ B3 H?
weAT wvept i=1
It follows that
1
P(e)fx =M§+ P(EmE—m+E—¢Ea)_fx+§ P(H)f
Using the facts, E, f,=0 for a€ A" UB" and that [E,, E_,]=H,, we have

PR =3 MHMAIN HY ik D pEE-ut BBt 31 HHY,
Hence

P for = T MEIASIMEY+ 3 PEE-uE-Enfy >
+ i§l<P(Hi)zfm f}>F

Now it is well known that F admits an orthogonal decomposition with respect
to {, > into irreducible representations of the algebra ¢'=CE,®CE_,CH,
for aeC™* so that to prove that <p(E,E_,+E_,E,)f,, fL,>=|NH,)| equality
occurring only if E,f,=0, we may assume that the g’-invariant subspace W
spanned by f, is irreducible with respect to the three dimensional algebra. Now
by Lemma 2,

{E Bt B But o Hﬂ)} fi= {%’)(Hiﬁh(wka)(lfﬂ,)} I3

where A+ka, k>0 is the highest weight in W (of g¢’). Hence

ka(H,)’
P(EE_o+E_E)f, = (., H,,,)+(X+ka)(H“)f*
so that
_ a(H,)
C(EE-stE_oEu)f\, fior = (W ka)(H,)+ (.. H,,)Z IN(H,)|

(It is well known that (A +ka)(H,) > | M(H,)| since A+ka is the highest weight).
Moreover equality occurs only if k=0; if k=0, however, A is the highest weight
so that E,f,=0. We have thus shown that

<P(EwE—w+E—wEm)fm fA> > 7\(Ifm) I

equality occurring only if E,f,=0. We have therefore,
» 1
P = T MHIAZMHEF+ 3, M)+ 31 GHYh o

equality occurring only if E, f,=0 for all acC*. Moreover S= Zl} p(H;)? is

i=p+1
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a non-negative symmetric operator so that

P 0= 3 IMH S MEF+<Sho fo+ 3, ML)

with §>0 (Note that for ac A*UB", E,f,=0 so that A(H,)>0).
Using b) of Lemma 2, we have also

PO = IMHY+ 3 MH.AHa)[2). Identity
F)\®E i=1 aEF,
?
(PN |, = 23 OAWHF+ 33 O+ ) Hot Ha)l2. Tdentity
A i=1 ae 1
and
(1Ro)(e)| = ulH )+ 3 w(H,+Hyo)2. Tdentity
F®Ep. i=1 xET,

so that if e,®E, is a unit weight vector of weight p,

T\ ®ew) @22 35 IMHo+Hao)[2|+2 33 MH,)

+20S(), fO—2 2 MH)(H)

Now u being a weight of o, it is the sum of q of the weights of the adjoint
representation of k, in p,. Hence

=3 (e +ad)f2
where all the «; belong to >%,. Hence
(TYA®ea), ®e>>2 3 MHy+H0)2—2 )M (HaytHag) 2

Here equality can occur only if E,f,=0 for a=A* and {Sf,, fi>=0. It
follows therefore that a(\, 1)>0 if there exists a,&C* with E, f,+0.

In view of Assertions I, IT and III, we see that T is positive definite if and
only if @(x,, u)>0 where \, is the greatest of the dominant weights {\ |[AE L} :
this follows from the fact that E,f, =0 for all €A™ if and only if £, is the
highest weight vector for p; it follows that any weight of p|, is of the form
N— 2 mr(a;) where m; >0 and 7(«;) are the restriction of positive roots of
g; finally 7(ct;)=0 hence greater than zero (see Lemma 16 (f) [4]).

Thus to complete the proof of the Theorem, we need only prove

Assertion IV. If \, is the restriction r(A) of the highest weight A of p,
then a(n,, u)>0 for all ueM provided there are at least (q¢-+1) roots a €,
such that A(H,+H,0)>0.

Proof. By evaluation on the highest weight f, ®e, we have (Lemma 2)
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» »
To(fr,®eu) =12 271 A(Hu+Ho0)[24-2 33 A(H,Y—2 25 AH)u(H )} fr,®ew)
153 2 i=1 i=1

=25 A(Hu+H)2-2 3 (Hart Huf)/2+2 3 MHY} (h,6)

where u= r(i (a;+af)2). It follows that

=1

a(\y, p) >0 under our hypothesis,
since ﬁ AH)=0.

i=
This completes the proof of the Theorem.

REMARK 1. Theorem 1 generalises Theorem 12.1 of [3] where only the case
when G/K is hermitian symmetric, is considered. In fact, the present theorem
is more general than Theorem 12.1 of [3] even in this case: H*(T, X, p) admits
a type decomposition (see [3])

H*T, X, p) :’+];1=”H"(I‘, X, p)

so that under the hypothesis of Theorem 1, we have
H™T, X, p)=0

for r+s<q. Theorem 12.1 of [3] is the special case g=dim G/K. In section
§2, we will give an interpretation of the groups H™(T, X, p). In [4] all the
representations for which 7'} is positive definite are determined.

ReEMARK 2. The author has checked in a number of classical cases, that if
G is simple and non-compact and p is any nontrivial irreducible representation,
then the number of elements in >, is greater than or equal to the rank of the
associated symmetric space.

2. Compact quotients of complex semisimple Lie groups

Let X be a complex manifold and X % X be the universal covering of X.
Let T be the fundamental group of X acting fixed point free on X. Let p be
a representation of T" in a finite dimensional complex vector space. Let L,
denote the local system associated to p and W, the holomorphic vector bundle
associated to p. Let L, and W, denote respectively the sheaf of germs of
sections of L, and holomorphic sections of W,. By the de Rham theorem, the
cohomology groups H?(X, L,) of X with coefficients in the local system L, are
the cohomology groups of the complex

A=314%T, X, p)

defined as follows: A?(T, X, p) is the vector space of C~-exterior p-forms » on
X with values in F satisfying the condition
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(Yx(t), V(o5 5 Yal(2,)) = P(¥) (2, -+ )

where t,, -+, t, are tangent vectors to X and v,(#) denotes the image by v of the
tangent vector ¢ to X; the boundary operator in the complex is the exterior
differentiation of F-valued forms on X. The complex structure on X gives a
decomposition of each of the space A?(T", X, p) as a direct sum > A" (T, X, p)

r+Ss=p
according to the bidegree. Moreover d=d’'+d” where d’ and d” are of bidegree
(1,0) and (0, 1) respectively. This gives 4 a structure of a double complex.
The term E%? of the spectral sequence associated to this double complex is
clearly the ¢*# cohomology of the complex

0 — AP, X, p) — AT, X, p) —--— 427(T, X, p) =0

(n=dim X). Again, by the Dolbeault theorem, the ¢** cohomology of this
complex is H(X, Q?®Q W,) where Q2 is the holomorphic bundle of holomorphic
(9]

p-forms, and Q?QW is the sheaf of germs of holomorphic p-forms on X with
o

coefficients in W. Moreover, the derivation d, in the term E, is clearly the
map induced by the exterior differentiation

d: QPQW,— Q"'QW,
o o

(since we have Q?QW,~Q?QL,, the operator d above makes sence: Q*QL, —
O (4 c
QP QL,).
[
We have thus

Proposition 1. There is a convergent spectral sequence {E2% ..,<.. con-
verging to H*(T', X, p) such that E?*=H %X, Q*QW,) and d, is induced by the
O

map d: QP®V_V9 g QpH@Ep .
V]

Now let X=G be a simply connected complex Lie group and I'CG a discrete
subgroup; then X=T"\G. Let g be the Lie algebra of left invariant vectorfields
on G. (Then elements of g may be regarded as vectorfields on T'\G as well).
Let g¢ denote the complexification of g. Then g¢=1u,Pu, where 11, and u, are
respectively the complex ideals of holomorphic and antiholomorphic left-invariant
vectorfields. The natural projections g— 1, and g— 11, define isomorphisms of
g on 11, and 1, respectively.

Suppose now that p is the restriction of a representation of G in a finite
dimensional vector space F. In this special case we can compute the term E,
as well.

In the first place, there is a canonical (holomorphic) isomorphism of the
vector bundle W, on X with the trivial bundle. In fact the vector bundle W, is
obtained as follows: the group I'" acts G X F by diagonal action:
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v(g f) = (vg p(v)f)  for yET.

This is an (holomorphic) automorphism of the vector bundle G XF on itself
covering the left translation by ¢ and hence this action defines a vector bundle
on I'\G. Now let ®: G XF— G XF be the isomorphism

(g, f)= (& r(8)"f)

(78, P(7)f) = (78 P(&)'f)

Hence @ defines an isomorphism &, of W, on the trivial bundle X XF.
Now, for left-invariant holomorphic vectorfields Z,, -+, Z,,, and a holo-
morphic p-form » with values in F,

Then

P+

dn(Z,, ) Zyi)) = ;(_1)”12,.,7(2“...,Z“'_,...,ZM)
+ 3 (=) n((Z Z,) ZpoZpoZ o Zy)
It follows that
p+1 . _
(qu@”l)(ﬂ)(Z” e, Zp+1)g0 = ,21 (—1)z+1 {p(go) ‘Z,-P(g)ﬂ(Zn vy Zyyeeey ZII“H)}go

+-’<Zj (—1)i+j{p(g°)_l([zi’ Zj]’ Z1"'Zi"'Zj"'Zp+1)}go
= {:,2:(_1)i+lP(Z;)’7(Zl"'2;"'Zp+1)

p+1
+ El (_ 1)i+lzi77(Z1"'Zi"’Zp+1)
+;§ (—Vy+in([Z;, Z)), Zl"'Z:"'Zj"'Zp+1)}g0
(p has a natural extension to g€ hence to u,)
It follows that if we identify germs of holomorphic W-valued forms on I'\G

with germs of holomorphic F-valued forms on I'\G through the isomorphism &,
the operator d is transformed into the operator 4, defined by

dn(Zss s Zye) = S (NP EAPEZN A Zs s 2oy Zp)
_|_<</;: (1Yt in([Z;y Z]], Zyoo By 2 o Zog ) e e eoeene @D
Now the map which associates to each W,-valued holomorphic p-form 7,
the F-valued holomorphic form ®,(») defined by
()21 -5 Zp) = P02y, -+ 5 Z)))

for every p-tuple (Z,,--+, Z,) of projections of left invariant holomorphic vec-
torfields on G, defines an isomorphism @, of the sheaf Q?Q W, on the sheaf
o

Hom¢ ( /p\u,, OQF). Moreover clearly the diagram
c
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@
_QP®WP —i) HomC (Apu” @®F)
O c
d o ldo
QP QW, —5 Home (A**'u,, ORQF)
© C

where d, is defined by equation () above, is commutative. Now O is a sheaf of
u,-modules: the map f—— Zf for the projection on X of a left invariant
holomorphic vectorfield Z on G defines a representation 1,(—=g) in the Lie
algebra of endomorphism of . The stalks at a point x X of the complex of
sheaves

0 - ORF — Hom¢ (1t,, ORQF) —---— Hom (A™u,, OQF) — 0
c c C

from then clearly the standard complex of the Lie algebra u with values in
O.QF, where O, is the stalk at » of ©. Passing then to the g**-cohomology
groups of this sheaves, we see that, we obtain the standard complex

0— H%(X, O)®F —Homc (1,, H(X, O)Q@F)---Hom¢ (A™1,, H(X, O)QF)—0
c (o c

where HY(X, ©) carries the 1,-module structure defined by the action of 1, on ©
defined above and H?(X, O)®F is the tensor product of this representation and p.
Combining the preceding, with Proposition 1, we obtain

Theorem 2. Let G be a connected complex Lie group and T a discrete
subgroup. Let O be the sheaf of germs of holomorphic functions on X=T\G. Let
p be a representation of G in a finite dimensional complex vector space F and L,
the associated local system. Then there is a convergent spectral sequence {E,} <, <.
converging to H*(X, L,) such that E}¥=H?*(g, H{(X, @)(?F) where HY (X, O)
and F are considered as g-modules as follows: a left-invariant vectorfield Y on G
projects on X as a vectorfield whose 1-parameter group is a group of holomorphic

automorphisms of X; hence f ——> Xf defines an endomorphism of © and hence a
representation of g; in F we have the representation p.

Proof. The argument above is incomplete only in two details, under the

isomorphism g £>1 11, we must show the following:
1) If pCis the extension to g of p, then pC p, and p are equivalent.
i) Xf—p(X)-f
The former is a well known fact; the latter follows from the fact that if p,: g—u,
is the projection onto antiholomorphic vectorfields, then, p,(X) f=0 for holomor-
phic f.

A corollary is the following

Theorem 3. Let G be a connected complex semisimple Lie group and T a
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discrete subgroup such that T\G is compact. Then, H(T'\G, O) where © is the
sheaf of germs of holomorphic functions on T'\G vanishes provided that G has no
3-dimensional components.

Proof. Since T'\G is compact H?(X, ©) are finite dimensional so that, in
view of the Whitehead Lemma for semisimple Lie algebras, we have, for any
finite dimensional representation p of G in a vector space F, in the spectral
sequence of Theorem 2

E}*=FE =0. On the other hand,

E% = E®
is the homology of

0—-E}—E}=0
Hence EV=EP}=Hg, H'(X, O)QF). Now if HY(X, O)=+0, and if we

¢

choose F to be the dual of this module, then, H%g, H'(X, O)QF)=+0. On
the other hand since the spectral sequence converges to H*(X, L,), this implies
that H'(X, L,)=0. But according to [la] and [4] under the hypothesis of the

theorem, viz., that G has no 3-dimensional components, H*(X, L,)=0, a con-
tradiction. Hence the theorem.

Corollary. If I'C G is a discrete subgroup of a connected complex semisimple
Lie group G such that T\G 1s compact, then the natural complex structure on T\G
is locally rigid.

Proof. T'\G is holomorphically parallelisable. Hence the sheaf © of
germs of holomorphic vectorfields is isomorphic to a direct sum of copies of O.
From Theorem 3, therefore, H(T'\G, ©)=0. It is well known that this last
implies that the complex structure is locally rigid.

RemARK. Reverting to the notation of §1, when K\G is hermitian sym-
metric, Matsushima and Murakami have given a type decomposition

HT, X, p) Z’Z H™T, X, p).

+5=¢
The groups H™(T', X, p) have an interpretation in terms of the spectral sequence
of Proposition 1 of this section. In fact, according to proposition 1, there is a
spectral sequence converging to H*(T, X, p) with E}* as HY(X, QRQW,). A
simple calculation using Lemma 4.1 of [3] shows that E%? is ison?orphic to
H?(T, X, p) and that the spectral sequence degenerates from the E, stage
onwards.
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