THE CHARACTERIZATION OF DIFFERENTIAL OPERATORS WITH RESPECT TO THE CHARACTERISTIC CAUCHY PROBLEM

Hitoshi KUMANO-GO and Kenzo SHINKAI

(Received February 14, 1966)

1. Introduction. Let $L(\lambda, \eta)=\sum_{j=0}^{M} \sum_{k=0}^{N} a_{j, k} \lambda^{j} \eta^{k}$ be a polynomial of λ and η with degrees M and N respectively. Then we can define a constant $\alpha(L)$ as follows. When $L(\lambda, 0) \neq 0$, we set

$$
\alpha(L)=\max _{a_{j, k} \neq 0, k>0} \frac{m-j}{k},
$$

where m is the degree of $L(\lambda, 0)$. In this case we have $j+k \alpha(L) \leqq m$ if $a_{j, k} \neq 0$ and $j_{0}=k_{0} \alpha(L)=m$ for some (j_{0}, k_{0}) such that $k_{0}>0$ and $a_{j_{0}, k_{0}} \neq 0$. When $L(\lambda, 0) \equiv 0$, we define $\alpha(L)=-\infty$. It is easily shown by the definition of $\alpha(L)$ that the line $t=0$ is characteristic with respect to the differential operator $L\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right)$ if and only if $\alpha(L)<1 . \mathrm{L}$. Hörmander [3] proved that there exist null solutions ${ }^{1)}$ of the differential equation $L u=0$ with respect to the half plane $\Pi=\{(t, x) ; t \leqq 0\}$ if and only if the line $t=0$ is characteristic.

In this note we shall characterize the differential operator L by the smallest (largest) function class $G_{x}(\cdot)^{2)}$ of Gevrey's to which null solutions are (not) able to belong. In theorem 1, using the same method as L. Hörmander's in [2], we construct a null solution which belongs to $G_{x}(\alpha+\varepsilon)$ for any $\varepsilon>0$ if $0<\alpha^{3)}<1$, and to $G_{x}(\alpha)$ if $-\infty \leqq \alpha \leqq 0$. In theorem 2, we prove the uniqueness of the solution of the Cauchy

[^0]in any finite interval $[a, b]$ in $\left(x_{1}, x_{2}\right)$ for some constant K.
3) In what follows we write $\alpha=\alpha(L)$.
problem in the function class $G_{x}(\alpha)$ if $0<\alpha<1$ and in $G_{x}(\alpha-\varepsilon)$ for any $\varepsilon>0$ if $\alpha \leqq 0$.

When $\alpha \leqq 0$, it is impossible to reduce the differential equation $L u=f$ to a system of the form $\frac{\partial}{\partial t} U=P\left(\frac{\partial}{\partial x}\right) U+F$ with a matrix $P(\eta)$ of differential polynomials. Accordingly it becomes impossible to use the method of A. Friedman [1] which reduces the problem to the property of the fundamental solution of a system of first order ordinary differential equations.

We remark for example that $\alpha\left(\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}\right)=1 / 2, \alpha\left(\frac{\partial^{2}}{\partial t \partial x}+\frac{\partial}{\partial t}\right)=0$, $\alpha\left(\frac{\partial^{2}}{\partial t \partial x}+1\right)=-1$, and $\alpha\left(\frac{\partial^{2}}{\partial t \partial x}\right)=-\infty$.

2. Preliminary lemmas.

Lemma 1. Let $-\infty<\alpha<1$. Then there exists a function $\eta(\lambda)$ which satisfies the following conditions:
i) $L(\lambda, \eta(\lambda))=0$.
ii) There exist constants C_{0} and K_{0} such that if $\Im \mathfrak{m} \lambda^{4)} \geqq K_{0}, \eta(\lambda)$ is analytic and satisfies the inequality

$$
\begin{equation*}
|\eta(\lambda)| \leqq C_{0}|\lambda|^{\infty} \tag{1}
\end{equation*}
$$

Proof. Set

$$
L(\lambda, \eta)=Q_{N}(\lambda) \eta^{N}+\cdots+Q_{0}(\lambda)
$$

then we have $Q_{N}(\lambda) \equiv 0$ and

$$
\left\{\begin{array}{l}
\operatorname{deg}^{5)} Q_{0}(\lambda)=\operatorname{deg} L(\lambda, 0)=m \geqq 0 \tag{2}\\
\operatorname{deg} Q_{k}(\lambda)+\alpha k \leqq m, \quad(k=1,2, \cdots, N) \\
\operatorname{deg} Q_{k_{0}}(\lambda)+\alpha k_{0}=m
\end{array}\right.
$$

Let $\eta_{j}(\lambda)(j=1,2, \cdots, N)$ be the roots of the equation $L(\lambda, \eta)=0$. Then every $\eta_{j}(\lambda)$ has the Puiseux series expantion at infinity:

$$
\begin{equation*}
\eta_{j}(\lambda)=\sum_{n=-\infty}^{l_{j}} \alpha_{j, n} \lambda^{n / p_{j}}, \quad\left(\alpha_{j, l_{j}} \neq 0\right) \tag{3}
\end{equation*}
$$

Hence, for a sufficiently large constant $K_{0}, \eta_{j}(\lambda)$ is analytic in $\Im m ~ \lambda \geqq K_{0}$. By (1) and (2) we have

$$
\left|Q_{N}(\lambda) \eta_{1}(\lambda) \cdots \eta_{N}(\lambda)\right|=\left|Q_{0}(\lambda)\right| \leqq K_{1}|\lambda|^{m}
$$

and

[^1]$$
\left|Q_{N}(\lambda) \sum_{i_{1} \cdots i_{N-k_{0}}} \eta_{i_{1}}(\lambda) \cdots \eta_{i_{N-k_{0}}}(\lambda)\right|=\left|Q_{k_{0}}(\lambda)\right| \geqq K_{2}|\lambda|^{m+k_{0}} .
$$

Without loss of generality we may assume

$$
\left|Q_{N}(\lambda) \eta_{\boldsymbol{k}_{0}+1}(\lambda) \cdots \eta_{N}(\lambda)\right| \geqq K_{3}|\lambda|^{m-\alpha \boldsymbol{k}_{0}},
$$

hence we have

$$
\begin{aligned}
\left|\eta_{1}(\lambda) \cdots \eta_{k_{0}}(\lambda)\right| & \leqq K_{1}|\lambda|^{m}\left|Q_{N}(\lambda) \eta_{k_{0}+1}(\lambda) \cdots \eta_{N}(\lambda)\right|^{-1} \\
& \leqq\left(K_{1} / K_{2}\right)|\lambda|^{\alpha k_{0}} .
\end{aligned}
$$

Using (3) and this we have

$$
\sum_{j=1}^{k_{0}}\left(l_{j} / p_{j}\right) \leqq \alpha k_{0} .
$$

This shows that $l_{j} / p_{j} \leqq \alpha$ for some j, and by this, if we choose K_{0} large enough, we have

$$
\left|\eta_{j}(\lambda)\right| \leqq C_{0}|\lambda|^{\infty} \quad \text { if } \quad \Im m \quad \lambda \geqq K_{0} .
$$

Q. E. D.

Definition. We call a function $f(t, x)$ to be in a class $G(\nu, \mu)$ in a domain $\Omega \subset R^{2}$, where ν and μ are real numbers, if $f \in C^{\infty}(\Omega)$ and satisfies

$$
\begin{equation*}
\left|\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} f(t, x)\right| \leqq K C^{j+k}(j!)^{\nu}(k!)^{\mu}, \quad(j, k=0,1,2, \cdots) \tag{4}
\end{equation*}
$$

for some constants K and C.
Let H be a integro-differential operator of the form

$$
\begin{align*}
& (H f)(t, x)=\sum_{j+\alpha k \leq m, j \leq m-1} a_{j, k} \int_{0}^{t} \frac{(t-\tau)^{m-j-1}}{(m-j-1)!} \frac{\partial^{k}}{\partial x^{k}} f(\tau, x) d \tau \tag{5}\\
& \quad+\sum_{j+\alpha k \leq m, j \leq m, k>0} a_{j, k} \frac{\partial^{j-m+k}}{\partial t^{j-m} \partial x^{k}} f(t, x), \quad(-\infty<\alpha \leqq 0),
\end{align*}
$$

where m is a non-negative integer and $0 \leqq j \leqq M, 0 \leqq k \leqq N$. Then we have the following

Lemma 2. Let Ω be a rectangular domain $(0, T) \times\left(x_{1}, x_{2}\right)$; $0<T<+\infty,-\infty \leqq x_{1}<x_{2} \leqq+\infty$, and let a function $f(t, x)$ belong to $G\left(\rho, \rho \alpha-\varepsilon_{0}\right)$ in Ω for some constants $\rho>1$ and $0<\varepsilon_{0} \leqq 1$. Then the equation $v-H v=f$ has a unique solution in the same class.

Proof. It suffices to prove that the series $\sum_{m=0}^{+\infty} H^{n} f$ converges to a function in $G\left(\rho, \rho \alpha-\varepsilon_{0}\right)$. If we write

$$
\left(H_{j, k} f\right)(t, x)=\int_{0}^{t} \frac{(t-\tau)^{j-1}}{(j-1)!} \frac{\partial^{k}}{\partial x^{k}} f(\tau, x) d \tau
$$

and

$$
\left(H_{j, k}^{\prime} f\right)(t, x)=\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} f(t, x)
$$

then we have

$$
\begin{aligned}
H_{j, k} H_{j^{\prime}, k^{\prime}} & =H_{j+j^{\prime}, k+k^{\prime}}, \\
H_{j, k}^{\prime} H_{j^{\prime}, k^{\prime}} & =H_{j+j^{\prime}, k+k^{\prime}}, \\
H_{j^{\prime}, k^{\prime}}^{\prime} H_{j, k} & =\left\{\begin{array}{lll}
H_{j-j^{\prime}, k+k^{\prime}}, & \text { when } j>j^{\prime} \\
H_{j^{\prime}-j, k+k^{\prime}}^{\prime}, & \text { when } & j^{\prime} \leqq j
\end{array}\right.
\end{aligned}
$$

If we write

$$
\begin{equation*}
\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} H^{n} f=\sum a_{j_{1}, k_{1}} a_{j_{2}, k_{2}} \cdots a_{j_{n}, k_{n}} H_{j_{1}, k_{1}, \cdots, j n, k_{n}} f \tag{6}
\end{equation*}
$$

then, each term of the summation in the right hand side takes one of the following two forms:
a)

$$
H_{j_{1} k_{1} \cdots j_{n} k_{n}} f=H_{J-j, K+k} H_{J^{\prime}, K^{\prime}}^{\prime} f
$$

where $J=\sum_{i=1}^{q}\left(m-j_{i}\right), K=\sum_{i=1}^{q} k_{i}, J^{\prime}=\sum_{i=q+1}^{n}\left(j_{i}-m\right), K^{\prime}=\sum_{i=q+1}^{n} k_{i}$,
b)

$$
H_{j_{1} k_{1} \cdots j_{n k n}} f=H_{J^{\prime}+j, K^{\prime}+\boldsymbol{k}}^{\prime} f,
$$

where $J^{\prime}=\sum_{i=1}^{n}\left(j_{i}-m\right), K^{\prime}=\sum_{i=1}^{n} k_{i}$.
For the case a), let $\left\{j_{i_{1}}, \cdots, j_{i_{r}}\right\}$ be the set of all elements which are contained in $\left\{j_{1}, \cdots, j_{q}\right\}$ and smaller than m, and let

$$
\begin{aligned}
J_{1} & =\sum_{l=1}^{r}\left(m-j_{i_{l}}\right), \\
K_{1} & =\sum_{l=1}^{r} k_{i_{l}}, \\
J_{2} & =J_{1}-J, \\
K_{2} & =K-K_{1} .
\end{aligned}
$$

Then in view of (5) we have

$$
\left\{\begin{array}{l}
J=J_{1}+J_{2}, K=K_{1}+K_{2} ; J_{1} \geqq r, K_{2} \geqq q-r \tag{7}\\
J_{i}+\alpha K_{i} \leqq 0, \quad(i=1,2)
\end{array}\right.
$$

We also have

$$
\left\{\begin{array}{l}
J^{\prime}=J_{1}^{\prime}-J_{2}^{\prime}, \quad K^{\prime}=K_{1}^{\prime}+K_{2}^{\prime} ; J_{2}^{\prime} \geqq s, K_{1}^{\prime} \geqq(n-q)-s \tag{8}\\
J_{1}^{\prime}+\alpha K_{i}^{\prime} \leqq 0, \quad(i=1,2)
\end{array}\right.
$$

For the case b), we have as above

$$
\left\{\begin{array}{l}
J^{\prime}=J_{1}^{\prime}-J_{2}^{\prime}, K^{\prime}=K_{1}^{\prime}+K_{2}^{\prime} ; J_{2}^{\prime} \geqq s, K_{1}^{\prime} \geqq n-s, \tag{9}\\
J_{i}^{\prime}+\alpha K_{i}^{\prime} \leqq 0 \quad(i=1,2)
\end{array}\right.
$$

Since f satisfies (4), we have for the case a)

$$
\begin{align*}
& \left|H_{J-j, K+k} H_{J^{\prime}, K^{\prime}} f\right| \leqq K_{0} C^{J-j+J^{\prime}+K+k+K^{\prime}} \times \\
& \quad \times[(J-j)!]^{-1}[(K+k)!]^{\alpha \rho-\varepsilon_{0}}\left(J^{\prime}!\right)^{\rho}\left(K^{\prime}!\right)^{\alpha \rho-\varepsilon_{0}}, \tag{10}
\end{align*}
$$

and for the case b)

$$
\begin{equation*}
\left|H_{J^{\prime}+j, K^{\prime}+k}^{\prime} f\right| \leqq K_{0} C^{J^{\prime}+j+K^{\prime}+k}\left[\left(J^{\prime}+j\right)!\right]^{\rho}\left[\left(K^{\prime}+k\right)!\right]^{\alpha \rho-\varepsilon_{0}} . \tag{11}
\end{equation*}
$$

When $J+\alpha K \leqq 0$, using Stirling's formula we have

$$
\begin{equation*}
(J!)(K!)^{a} \leqq C^{K} \tag{12}
\end{equation*}
$$

for some constant C. Using (7)-(12) with the inequality

$$
(n-q)!q!\leqq n!\leqq 2^{n}(n-q)!q!
$$

we have for both cases

$$
\left|H_{j_{1} k_{1} \cdots j_{n} k_{n}} f\right| \leqq K_{0} C^{n+j+k}(j!)^{\rho}(k!)^{\alpha \rho-\varepsilon_{0}}(n!)^{-\varepsilon_{0}},
$$

and this completes the proof.

3. Main theorems.

Theorem 1. For every positive constant ε there exists a null solution U_{ε} of the equation $L u=0$ with respect to the half plane Π, which satisfies one of the following inequalities for some constants K and C depending on ε,

$$
\begin{array}{r}
\left|\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} U_{\mathrm{\varepsilon}}(t, x)\right| \leqq \exp \left\{K\left(t+|x|^{-1 /(1-\alpha-\varepsilon)}\right)\right\} C^{j+k}(j!)^{1+\varepsilon}(k!)^{\alpha+\varepsilon}, \\
\text { if } 0<\alpha<1, \\
\left|\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} U_{\mathrm{\varepsilon}}(t, x)\right| \leqq \exp \left\{K(1+t)\left(1+x^{1 /(1-\infty)}\right)\right\} C^{j+k} e^{k t}(j!)^{1+\varepsilon}(k!)^{\infty} \tag{14}\\
\text { if }-\infty<\alpha \leqq 0 .
\end{array}
$$

Remark. When $\alpha=-\infty$, we can write $L=L_{0} \eta$ with a polynomial L_{0}. Then, if we set

$$
\psi(t)=\left\{\begin{array}{l}
0, \text { when } t \leqq 0, \\
\exp \left\{-t^{-1 / s}\right\}, \quad \text { when } t>0,
\end{array}\right.
$$

$\psi(t)$ is a null solution and satisfies

$$
\left|\frac{\partial^{j}}{\partial t^{j}} \psi(t)\right| \leqq K_{\varepsilon}^{j+1}(j!)^{1+\varepsilon} \quad \text { (See [3] p. 257) }
$$

This means that the statement of the theorem is also valid for the limiting case of (14).

Proof of the theorem. Take a positive constant $\rho, \alpha<1 / \rho<1$, and set

$$
\begin{equation*}
u(t, x)=\int_{-\infty+i K_{0}}^{+\infty+i K_{0}} \exp \left\{-i t \lambda-i x \eta(\lambda)-(\lambda / i)^{1 / \rho}\right\} d \lambda \tag{15}
\end{equation*}
$$

where $\eta(\lambda)$ is the function defined in lemma 1 and $(\lambda / i)^{1 / \rho}$ is defined real and positive on the positive imaginary axis. Then by L. Hörmander [4], p. 121, $u(t, x)$ is a null solution of the equation $L u=0$ with respect to the half plane Π. If we set $C_{1}=\cos (\pi /(2 \rho))$, we have

$$
\begin{equation*}
\mathfrak{R e}(\lambda / i) \geqq C_{1}|\lambda|^{1 / \rho} \quad \text { when } \quad \Im m \quad \lambda>0 \tag{16}
\end{equation*}
$$

When $0<\alpha<1$, we have using (1) and Young's inequality,

$$
|x \eta(\lambda)| \leqq C_{0}|x| \cdot|\lambda|^{a} \leqq \frac{1}{2} C_{1}|\lambda|^{1 / \rho}+K|x|^{1 /(1-\rho a)}
$$

Hence we have

$$
\begin{array}{r}
\left|\frac{\partial^{k}}{\partial x^{k}} u(t, x)\right| \leqq \exp \left\{t K_{0}+K|x|^{1 /(1-\rho \infty)}\right\} C_{0} \int_{-\infty}^{+\infty} \exp \left\{-C_{1}|x|^{1 / \rho} / 2\right\} d y \\
\text { where } \lambda=y+i K_{0} .
\end{array}
$$

Using the inequality

$$
\begin{equation*}
r^{n} e^{-\gamma r^{1 / \rho}} \leqq C_{\gamma, \rho}^{n}(n!)^{\rho} \quad(r>0) \tag{17}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|\frac{\partial^{k}}{\partial x^{k}} u(t, x)\right| \leqq \exp \left\{C^{\prime}\left(t+|x|^{1 /(1-\rho \alpha)}\right)\right\} C^{\prime k+1}(k!)^{\rho \infty} \tag{18}
\end{equation*}
$$

When $-\infty<\alpha \leqq 0$, if we take $|\lambda|=|x|^{1 /(1-\infty)}$, we have

$$
|x \eta(\lambda)| \leqq C_{0}|x||\lambda|^{\infty}=C_{0}|x| \cdot|\lambda|^{a /(1-\infty)}=C_{0}|x|^{1 /(1-\infty)} .
$$

If we replace the path of the integration in (15) by the path from $-\infty+i \tau$ to $\infty+i \tau$ where $\tau=K_{0}+|x|^{1 /(1-\infty)}+k$, we get

$$
\begin{aligned}
& \left|\frac{\partial^{k}}{\partial x^{k}} u(t, x)\right| \leqq \exp \left\{t\left(K_{0}+|x|^{1 /(1-\infty)}+k\right)+C_{0}|x|^{1 /(1-\infty)}\right\} \times \\
& \quad \times C_{0}^{k} \int_{-\infty}^{+\infty}|\lambda|^{\infty k} \exp \left\{-C_{1}|\lambda|^{1 / \rho}\right\} d y, \quad \lambda=y+i \tau
\end{aligned}
$$

Since $|\lambda|^{a k} \leqq k^{k \infty}$, using Stirling's formula we have

$$
\begin{equation*}
\left|\frac{\partial^{k}}{\partial x^{k}} u(t, x)\right| \leqq C^{\prime \prime} \exp \left\{C^{\prime \prime}(1+t)\left(1+|x|^{1 /(1-\infty)}\right)\right\} \cdot\left(C^{\prime \prime} e^{t}\right)^{k}(k!)^{x} . \tag{19}
\end{equation*}
$$

Let $\varphi(t, x) \neq 0$ be a function of the class $G(1+\varepsilon, 1+\varepsilon)$ in R^{2} such that $\operatorname{supp}^{6)} \varphi(t, x) \subseteq\left\{(t, x) ; t^{2}+x^{2}<1, t>0\right\}$ and $\varphi(t, x) \geqq 0$. Such a function is easily constructed using the function given in the above remark. We write $\varphi_{\delta}(t, x)=\varphi(t / \delta, x / \delta)$, then φ_{δ} is also in $G(1+\varepsilon, 1+\varepsilon)$. Set

$$
U_{\delta}(t, x)=\varphi_{\delta} * u=\int \varphi_{\delta}(t-\tau, x-y) u(\tau, y) d \tau d y
$$

Then, $L U_{\delta}=0, U_{\delta}=0$ for $t \leqq 0$ and $U_{\delta} \equiv 0$ in R^{2} for sufficiently small $\delta>0$. Hence U_{δ} be a null solution of the equation $L u=0$. When $0<\alpha<1$, we take $1<\rho<1+\varepsilon / \alpha$, and write

$$
\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} U_{\delta}(t, x)=\int\left\{\frac{\partial^{j}}{\partial t^{j}} \varphi_{\delta}(t-\tau, y)\right\}\left\{\frac{\partial^{k}}{\partial x^{k}} U(\tau, x-y)\right\} d \tau d y .
$$

Then by (18) and (19) we get the desired estimates (13) and (14).

> Q. E. D.

Next, we shall prove in the sharper form that we can not construct any null solution in the class $G_{x}(\alpha)$ if $0<\alpha<1$, and $G_{x}(\alpha-\varepsilon)$ for every $\varepsilon>0$ if $-\infty<\alpha \leqq 0$.

Theorem 2. For any $T>0$ we have the following results:
i) When $0<\alpha<1$, let u be a distribution solution of the equation $L u=0$ in $(-\infty, T) \times(-\infty, \infty)$ such that $\operatorname{supp} u \subset\{(t, x) ; t \geqq 0\}$. Furthermore assume that u is a function satisfying

$$
|u| \leqq K \exp \left\{K x^{1 /(1-\infty)}\right\}
$$

for some constant K. Then $u \equiv 0$ in $(-\infty, T) \times(-\infty, \infty)$.
ii) When $-\infty<\alpha \leqq 0$, let u be a distribution solution of the equation $L u=0$ in $(-\infty, T) \times\left(x_{1}, x_{2}\right),-\infty \leqq x_{1}<x_{2} \leqq+\infty$, such that $\operatorname{supp} u \subset\{(t, x)$; $t \geqq 0\}$. Furthermore assume that $\frac{\partial^{k}}{\partial x^{k}} u(k=0,1,2, \cdots)$ are functions satisfying

$$
\left|\frac{\partial^{k}}{\partial x^{k}} u\right| \leqq K^{k+1}(k!)^{a-\varepsilon}
$$

for some constants $\varepsilon>0, K$. Then $u \equiv 0$ in $(-\infty, T) \times\left(x_{1}, x_{2}\right)$.

[^2]Proof. The proof of i) is given in [1] and [5]. So we shall prove ii) using lemma 2. Set $\varepsilon_{0}=\varepsilon / 2$ and determine $\rho>1$ by $\alpha-\varepsilon=\rho \alpha-\varepsilon_{0}$, i.e. $\rho=1+\left(\varepsilon-\varepsilon_{0}\right) /(-\alpha)$. Let $\varphi(t, x) \neq 0$ be a function of the class $G(\rho, \rho)$ in R^{2} such that $\operatorname{supp} \varphi \subseteq\{(t, x) ; t \geqq 0\}$, and set $\varphi_{\delta}(t, x)=\varphi(t / \delta, x / \delta)$ for $\delta>0$. Then $u_{\delta}=\varphi_{\delta} * u$, where u is a function of ii), is defined in $(-\infty, T-\delta) \times$ ($x_{1}+\delta, x_{2}-\delta$) and satisfies the following condition:

$$
\left\{\begin{array}{l}
\left.L u_{\delta}=0, \quad \operatorname{supp} u_{\delta} \subset\{t, x) ; t>0\right\} \tag{20}\\
\left|\frac{\partial^{j+k}}{\partial t^{j} \partial x^{k}} u_{\delta}(t, x)\right| \leqq K^{\prime j^{+k+1}(j!)^{\rho}(k!)^{\alpha \rho-\varepsilon_{0}}} .
\end{array}\right.
$$

Now setting $v_{\delta}=\frac{\partial^{m}}{\partial t^{m}} u_{\delta}$, we have $v_{\delta} \in G\left(\rho, \rho \alpha-\varepsilon_{0}\right)$ in $(0, T-\delta) \times\left(x_{1}+\delta, x_{2}-\delta\right)$ and

$$
\frac{\partial^{j}}{\partial t^{j}} u_{\delta}=\left\{\begin{array}{l}
\frac{\partial^{j-m}}{\partial t^{j-m}} v_{\delta} \quad \text { for } \quad j \geqq m \tag{21}\\
\int_{0}^{t} \frac{(t-\tau)^{m-j-1}}{(m-j-1)!} v_{\delta}(\tau, x) d \tau \quad \text { for } \quad j<m
\end{array}\right.
$$

Hence we have

$$
0=a_{m, 0}^{-1} L u_{\delta}=v_{\delta}-H v_{\delta}
$$

where H is the operator given by (5). As $v_{\delta} \in G\left(\rho, \rho \alpha-\varepsilon_{0}\right)$, we can apply lemma 2 and get $v_{\delta} \equiv 0$ in ($\left.0, T-\delta\right) \times\left(x_{1}+\delta, x_{2}-\delta\right)$. Hence $u_{\delta} \equiv 0$ in the same domain.
Letting $\delta \rightarrow 0$, we have $u \equiv 0$ in $(-\infty, T) \times\left(x_{1}, x_{2}\right) . \quad$ Q. E. D.
Osaka University
University of Osaka Prefecture

References

[1] A. Friedman: Generalized functions and partial differential equations, Englewood Cliffs, N. J. 1963.
[2] L. Hörmander: On the theory of general partial differential operators, Acta Math. 94 (1955), 161-218.
[3] L. Hörmander : Null solutions of partial differential equations, Arch. Rational Mech. Anal. 4 (1960), 255-261.
[4] L. Hörmander : Linear partial differential operators, Berlin, 1963.
[5] H. Kumano-go and K. Isé : On the characteristic Cauchy problem for partial differential equations, Osaka J. Math. 2 (1965), 205-216.
[6] G. Talenti : Intorno alle classi funzionali di Gevrey, Ann. Mat. Pura Appl. 63 (1963), 151-173.
[7] G. Talenti : Un problema di Cauchy, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 165-186.
[8] B. L. van der Waerden : Einführung in die algebraishe Geometrie, Berlin, 1939.

[^0]: 1) A solution $u(t, x)$ of the equation $L u=0$ is called a null solution with respect to the half plane II, if $u \in C^{\infty}\left(R^{2}\right)$ and $u \equiv 0$ in R^{2} but $u=0$ in II.
 2) A C^{∞}-function $f(t, x)$ is called to be in $G_{x}(\alpha)$ in $\left(T_{1}, T_{2}\right) \times\left(x_{1}, x_{2}\right),-\infty \leqq x_{1}<x_{2} \leqq$ $+\infty$, if it satisfies

 $$
 \left|\frac{\partial^{k}}{\partial x^{k}} f(t, x)\right| \leqq K^{k+1}(k!)^{\infty} \quad(k=0,1,2, \cdots)
 $$

[^1]: 4) $\mathfrak{J m} \lambda$ means the imaginary part of a complex number λ.
 5) $\operatorname{deg} Q_{0}(\lambda)$ means the degree of $Q_{0}(\lambda)$.
[^2]: 6) $\operatorname{supp} \varphi(t, x)$ is the closure of $\{(t, x) ; \varphi(t, x) \neq 0\}$.
