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1. Introduction. Let L(λ, ^) = ΣjίoΣ*I-o aj,k^jVk be a polynomial
of λ and η with degrees M and N respectively. Then we can define a
constant a(L) as follows. When L(λ, 0)^0, we set

a{L) = max m~J 9

where m is the degree of L(λ, 0). In this case we have
if ajk^0 and j o = koa(L) = m for some (j0, k0) such that ko>O and
0yOi*o4=O. When L(λ, 0 ) Ξ 0 , we define a(L) = —oo. It is easily shown
by the definition of a{L) that the line t = 0 is characteristic with respect

to the differential operator L[ — , — ) if and only if α(L)<l . L.

Hormander [3] proved that there exist null solutions^ of the differential
equation Lu = 0 with respect to the half plane Π={(Y, x); t^O} if and
only if the line t = 0 is characteristic.

In this note we shall characterize the differential operator L by the
smallest (largest) function class G*( ) 2 ) of Gevrey's to which null solu-
tions are (not) able to belong. In theorem 1, using the same method
as L. Hόrmander's in [2], we construct a null solution which belongs
to Gx{a + 6) for any £>0 if 0 < α 3 ) < l , and to Gx(a) if - o o ^ α ^ O . In
theorem 2, we prove the uniqueness of the solution of the Cauchy

1) A solution u(tt x) of the equation Lu = 0 is called a null solution with respect to the
half plane IT, if weC°°(i?2) and WEJEO in R2 but u = 0 in Π.

2) A C°°-function f(t>x) is called to be in Gx(a) in (7\, T2) X (#i, *2)» — ° °^* i<#2^
+ oo, if it satisfies

-J(t> x) 0=0,1,2,—)

in any finite interval [a, b~] in (x1, x2) for some constant K.
3) In what follows we write α = α ( L ) .
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problem in the function class Gx(a) if 0 < α < l and in Gx(a — S) for any
£>0 if a^O.

When a^0y it is impossible to reduce the differential equation Lu=f

to a system of the form -Lu=p(Jf) U+F w i t h a matrix P(v) of differ-
ential polynomials. Accordingly it becomes impossible to use the method
of A. Friedman [1] which reduces the problem to the property of the
fundamental solution of a system of first order ordinary differential
equations.

We remark for example that a(—-—} = l/2, a(
\dt 8*v '

} l/2, a( +
dt 8*v ' \dtdx dt

= - l , and+ l ) l, and a(dtdx I \dtdx

2. Preliminary lemmas.

Lemma 1. Let — oo<a<l. Then there exists a function v(\) which
satisfies the following conditions:

ii) There exist constants Co and Ko such that if $mλ4)^Zf0, y(X) is
analytic and satisfies the inequality

(1)

Proof. Set

then we have QN(X)Ξ£0 and

|

deg5) Q0(λ) - deg L(λ, 0) = w^O ,

deg QΛ(\) + ak^m, (k = l ,2 , .,

degQko(X) + ako = m.

Let VjM O" = l, 2 , ,iV) be the roots of the equation L(λ, v) = 0. Then
every ^?/λ) has the Puiseux series expantion at infinity :

(3 ) v/λ) = Σlί-oo aitH\H»J , (αy,,,Φ0).

Hence, for a sufficiently large constant Koy Vj(X) is analytic in 3>m λ^/Γ0.
By (1) and (2) we have

I QN(λ)v1(\) -^(λ) I = I Q0(λ) I ^ K, I λ Γ
and

4) Sπt λ means the imaginary part of a complex number λ.

5) deg(?o(Ό means the degree of Q0(Ό
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Without loss of generality we may assume

hence we have

Using (3) and this we have

This shows that ίj/pj^a for some j , and by this, if we choose Ko large
enough, we have

λ-Γ if
Q. E. D.

DEFINITION. We call a function f(t, x) to be in a class G(v, μ) in
a domain Ω c δ ! , where v and μ are real numbers, if /eC°°(Ω) and
satisfies

( 4 )

for some constants K and C.
Let H be a integro-differential operator of the form

(Hf)(t, x) = Σ , ^ . ^ . . l β A

where m is a non-negative integer and 0<Ξ/<^M, O^k^N. Then we
have the following

Lemma 2. Let Ω, be α rectangular domain (0y T)x(xly x2);
0 < T < + oo, — oo<:#!<#2<£ + oo, βwrf /βί β function f(t, x) belong to
G(p, pa — £0) in Cί for some constants p>l and 0 < £ 0 ^ l . Tfew ίΛβ

v — Hv=f has a unique solution in the same class.

Proof. It suffices to prove that the series ΣίΓ0 H
nf converges to a

function in G(p, pa — £0). If we write
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and

then we have

Hj-j>tΛ+k>, when

H'j>_jk+k'y when

If we write

( 6 )

then, each term of the summation in the right hand side takes one of
the following two forms:

where / = Σ ϊ = i (™-Jil ^ = Σ ϊ - i * , , / = Σ l ί + 1 ( i r m\ if'-

b ) Hjiki jnkn f = H'τ'+j\Kf+kf >

where / = Σ? = 1 (i, - m), K' = Σ?-i *, -

For the case a), let {jh , ,i/r} be the set of all elements which are
contained in {jly~',jg} and smaller than rn> and let

= ΣU

Then in view of (5) we have

We also have

( 8 ) . - 1 2 , - i + 2, 2 = s, q sy
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For the case b), we have as above

r /' = /ί-/ί, K' = K{ + K'2; Jfes, Kfen-s,
{j'i + aK't^O (f = l,2).

Since / satisfies (4), we have for the case a)

I Hj.J.κ+kHί>κ>f\ <κoσ-^'+κ+>°+κ' x

x[(/-

and for the case b)

(ID \H!τ,+J,κ>+k

When J+aK^09 using Stirling's formula we have

(12) (j\)(κ\y^cκ

for some constant C. Using (7)-(12) with the inequality

(n-q)\q\ ̂  n\ ̂  2n(n-q)\q\,

we have for both cases

\Hhkl Ίnknf\ sκoc»^ji)\kiyp-χn\y*o,

and this completes the proof.

3. Main theorems.

Theorem 1. For every positive constant £ there exists a null solu-
tion Uz of the equation Lu = 0 with respect to the half plane Π, which
satisfies one of the following inequalities for some constants K and C
depending on £,

(13)

(14)

Ql+k
Ut(t, x) {κ(t

if 0<α<l,
Qj+h

^ exp
dt'dx"

if - .

REMARK. When α= — oo, we can write L=Lov with a polynomial
Lo. Then, if we set

r 0, when f < 0 ,

I exp {-r1/s} , when / > 0 ,
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ψ(t) is a null solution and satisfies

(jl)1+2 (See [3] p. 257).

This means that the statement of the theorem is also valid for the limit-
ing case of (14).

Proof of the theorem. Take a positive constant p, α < l / p < l , and
set

(15) u(t, x) = {-itX-ixy(X)-(X/i)1/p}dX,

where y(X) is the function defined in lemma 1 and (λ//)1/p is defined
real and positive on the positive imaginary axis. Then by L.
Hormander [4], p. 121, u(ty x) is a null solution of the equation Lu = 0
with respect to the half plane Π. If we set Cx= cos (τr/(2p)), we have

(16) 5te(λ/0 ^ C11λ11/p when S m λ > 0 .

When 0 < α < l , we have using (1) and Young's inequality,

*. i i -N i cύ -I- y"1 i -N.

Hence we have

3*
dx>

u(t, x) ^ exp

Using the inequality

(17)

we have

exp{-C1\x\1/"/2}dy:
— oo

where λ = y + iK0.

(r>0),

(18)
dxk u(t, x) exp {C\t +

When - o o < « ^ 0 , if we take | λ | = |*| 1 / c l-β ), we have

If we replace the path of the integration in (15) by the path from
— 00+IT to 00+ιV where τ = K0+ \x\ 1/σ'a^ + k, we get

dxk u(t, x) ^ exp {t(K0+ \x\ x

X = y + iτ ,
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Since \\\**^kka> using Stirling's formula we have

(19)
Qk

dxk
u{ty x)

Let φ{ty Λ:)ίO be a function of the class G(l + £, 1 + 6) in R2 such
that supp6 ) φ(t, x) c {(*, x); t2 + x2 < 1, ί > 0} and ?>(f, *) ^ 0. Such a
function is easily constructed using the function given in the above
remark. We write φ8(ty x) = φ(t/8y x/8), then φ8 is also in G(l + £, 1 + 6).
Set

y x) = <P8*u = ^φ8(t-τy x-y)u(τ, y)dτdy.

Then, LU8 = Oy U8 = 0 for t£0 and t / δ ΐ 0 in R2 for sufficiently small
δ>0. Hence U8 be a null solution of the equation Lu = 0. When
0 < α < l , we take l < p < l + £/α, and write

dJ+k ττ*V,x) =

Then by (18) and (19) we get the desired estimates (13) and (14).
Q. E. D.

Next, we shall prove in the sharper form that we can not construct
any null solution in the class Gx(a) if 0 < α < l , and Gx(a — £) for every
£ > 0 if - o

Theorem 2. For any T> 0 we have the following results:
i) When 0 < α < l , let u be a distribution solution of the equation Lu = 0
in (— oo, T ) x ( — oo, oo) such that supp ua {(ί, x) t^O}. Furthermore
assume that u is a function satisfying

for some constant K. Then u=0 in (— oo, T)x(—oo, oo).
ii) When — oo<α<:0, let u be a distribution solution of the equation
Lu = 0 in (— oo, T)x(xly x2)y — oo<^χ1<χ2^ + oo, such that supp ua {(ί, x)

ί^O}. Furthermore assume that — u (k = 0y 1, 2 ,•••) αr^ functions satis-
dxk

fying
Qk

-udxk

for some constants £>0, /ί. TAβ« u = 0 in (— oo, T)x(jtr!, #2).

6) supp 9?(ί, x) is the closure of {(ί, *) 99(ί, Λ:)ΦO}.
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Proof. The proof of i) is given in [1] and [5]. So we shall prove
ii) using lemma 2. Set £0 = £/2 and determine p > l by a—S = pa—Soy

i.e. p = 1+ (£—£„)/(—a). Let φ{t, *)=|= 0 be a function of the class G(py p) in
/?2 such that supp <pc {(/, :*;) ί^>0}, and set φ8{ty x) = φ(t/8y x/8) for δ>0.
Then u8 = φ8*uy where u is a function of ii), is defined in (— oo, T— δ)x
(ΛΓj + δ, ΛΓ2—S) and satisfies the following condition:

Lu8 = 0, supp wδc {̂ ,

(20)
ty x) j \y

Now setting vδ = ^u8f we have v8<=G(p, pa-S0) in (0, T— 2 —δ)

and

(21) dt'

Hence we have

for y ̂  m

Jo(m—7 —1)!
for

0 = a~}0Lu8 = v8-Hυ8

where H is the operator given by (5). As υ8<=G(p, pa — £0), we can
apply lemma 2 and get #δΞθ in (0, T—δ)x(x1 + 8, x2 — δ). Hence u8=0
in the same domain.
Letting δ->0, we have u = 0 in (—00, T)x(xly x2). Q. E. D.
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