SOME CRITERIA FOR HEREDITARITY OF CROSSED PRODUCTS

MANABU HARADA

(Received March 26, 1964)

Let $\mathfrak D$ be the integral closure of a discrete rank one valuation ring R with maximal ideal $\mathfrak p$ in a finite Galois extension L of the quotient field of R. Auslander, Goldman and Rim have proved in [1] and [2] that a crossed product Λ over $\mathfrak D$ with trivial factor sets is a maximal order in K_n if and only if a prime ideal $\mathfrak P$ in $\mathfrak D$ over $\mathfrak P$ is unramified and Λ is a hereditary if and only if $\mathfrak P$ is tamely ramified. Recently Williamson has generalized those results in [11] to a crossed product Λ with any factor sets in $U(\mathfrak D)$, where $U(\mathfrak D)$ means the set of units in $\mathfrak D$, namely if $\mathfrak P$ is tamely remified, then Λ is hereditary and the rank $\mathfrak D$ of Λ is determined.

In this paper, we shall modify the Williamson's method by making use of a property of crossed product over a ring.

Let G, S and H be the Golois group of L, decomposition group of \mathfrak{P} and inertia group of \mathfrak{P} , respectively. We denote a crossed propuct Λ with factor sets $\{a_{\sigma,\tau}\}$ in $U(\mathfrak{D})$ by $(a_{\sigma,\tau}, G, \mathfrak{D})$. Then we shall prove in Theorem 1 that Λ is a hereditary order if and only if so is $(a_{\sigma,\tau}, H, \mathfrak{D}_{\mathfrak{P}_H})$ where $\mathfrak{P}_H = \mathfrak{P} \cap \mathfrak{D}_H$, and \mathfrak{D}_H is the integral closure of R in the inertia field \mathfrak{L}_H . Using this fact and the structure of hereditary orders [7], [8] we obtain the above results in [1], [2] and [11].

Furthermore, we shall show that Λ is hereditary if and only if \mathfrak{P} is tamely ramified under an assumptions that R/\mathfrak{p} is a perfect field.

Finally, we give a complete description of hereditary orders in a generalized quaternions over rationals in Theorem 3.

1. Reduction theorem

In this paper we always assume that R is a discrete rank one valuation ring with maximal ideal $\mathfrak p$ and $\mathfrak p$ in the characteristic of $R/\mathfrak p$. Let L be a finite Golois extension of the quotient field of R with Galois

¹⁾ The rank means the number of maximal two-sided ideals in Λ .

group G, and $\mathfrak D$ the integral closure of R in L. For a prime ideal $\mathfrak B$ in $\mathfrak D$ over $\mathfrak P$ we denote the decomposition group and the inertia group of $\mathfrak B$ by S and H and their fields and the integral closure by L_S , L_H and $\mathfrak D_S$, $\mathfrak D_H$ and so on.

We note that \mathfrak{D} is a semi-local Dedekind domain and hence, \mathfrak{D} is a principal ideal domain. Let $\{\mathfrak{P}_i\}_{i=1}^s$ be the set of prime ideals in \mathfrak{D} and S_i and H_i be decomposition group and inertia group of \mathfrak{P}_i . Let $\mathfrak{p}\mathfrak{D}=\Pi\mathfrak{P}_i^s=P^s$, where $P=\Pi\mathfrak{P}_i$. Since $(\mathfrak{P}_i,\mathfrak{P}_j)=\mathfrak{D}$ for $i\neq j, \mathfrak{D}/P^n=\mathfrak{D}/\mathfrak{P}_1^n\oplus\cdots\oplus\mathfrak{D}/\mathfrak{P}_s^n$. We note that $(\mathfrak{D}/\mathfrak{P}_i^n)^\sigma=\mathfrak{D}/(\mathfrak{P}_i^\sigma)^n$ for $\sigma\in G$. Then $\mathfrak{D}_{H_i}/\mathfrak{P}_{H_i}$ is the separable closure of R/\mathfrak{p} in $\mathfrak{D}/\mathfrak{P}_i$ and $\mathfrak{D}_{H_i}/\mathfrak{P}_{H_i}$ is a Galois extension of R/\mathfrak{p} with Galois group S_i/H_i , (see [10], p. 290).

Let Λ be a crossed product over $\mathfrak D$ with factor sets $\{a_{\sigma,\tau}\}$ in $U(\mathfrak D):\Lambda=(a_{\sigma,\tau},\,G,\,\mathfrak D)$. Since $P^{\sigma}=P$ for all $\sigma\in G,\,P^{n}\Lambda=\Lambda P^{n}$ is a two-sided ideal in Λ . Let $\bar{\Lambda}(n)=\Lambda/P^{n}\Lambda=(\bar{a}_{\sigma,\tau},\,G,\,\mathfrak D/P^{n})=\Sigma\oplus(\bar{a}_{\sigma,\tau},\,G,\,\mathfrak D/\mathfrak P_{i}^{n})$ as a module. We put $\bar{\Lambda}(S_{i},\,n)=(\bar{a}_{\sigma,\tau},\,S_{i},\,\mathfrak D/\mathfrak P_{i}^{n})$. Since $\bar{u}_{\sigma}^{-1}(\bar{u}_{\tau}\mathfrak D/\mathfrak P_{i}^{n})\bar{u}_{\sigma}=\bar{u}_{\sigma-1\tau\sigma}(\mathfrak D/\mathfrak P_{i}^{\sigma})^{n},\,\bar{u}_{\sigma}^{-1}\Lambda(S_{i},\,n)\bar{u}_{\sigma}=\bar{\Lambda}(S_{i}^{\sigma},\,n)$, where $S_{i}^{\sigma}=\sigma^{-1}S_{i}\sigma$. Thus we have

(1)
$$\bar{\Lambda}(S_i, n)\bar{u}_{\sigma} = \bar{u}_{\sigma}\Lambda(S_i^{\sigma}, n).$$

Let $G = \sigma_{i_1}S_i + \sigma_{i_2}S_i + \cdots + \sigma_{ig}S_i = S_i\sigma_{i_1} + \cdots + S_i\sigma_{ig}$, $\sigma_{i_1}S_i = S_i$, since G is a finite group. Then

where $S = S_1$.

Let p_{ij} be projections of $\bar{\Lambda}(n)$ to $\bar{u}_{\sigma_{ij}}\bar{\Lambda}(S_i,n)$. For a two-sided ideal \mathfrak{A} in $\bar{\Lambda}(n)$ we have $\mathfrak{A} \supseteq \Sigma p_{ij}(\mathfrak{A})$. Since $\bar{u}_{\sigma_{ij}}$ is unit, $p_{ij}(\mathfrak{A}) = u_{\sigma_{1i}}P_{i1}(\mathfrak{A})$ for all j. Let \bar{e} be the unit element in $\bar{\Lambda}(S,n)$. Then $\bar{\Lambda}(S_i,n)\bar{e}=0$ for $i \neq 1$ and $\bar{e}\bar{u}_{\sigma_{1j}}\Lambda(S,n) \supseteq \bar{u}_{\sigma_{1j}}\bar{\Lambda}(S^{\sigma_{1j}},n)\bar{\Lambda}(S,n)=0$ for $j \neq 1$. Hence, $\bar{e}\mathfrak{A}\bar{e}=p_{1i}(\mathfrak{A})$. Furthermore, since $S_i=S^{\sigma_{1j}}$, $h_{i,i}(\mathfrak{A})=\bar{u}_{\sigma_{i}}^{-1}p_{1i}(\mathfrak{A})\bar{u}_{\sigma_{ij}}=p_{1i}(\mathfrak{A})^{\sigma_{1i}}$. Therefore,

$$\mathfrak{A} = \sum_{i,j} u_{\sigma_{ij}} \mathfrak{A}_0^{\sigma_{1}i}$$

for a two-sided ideal of \mathfrak{A}_0 in $\overline{\Lambda}(S, n)$. Conversely, the above ideal is a two-sided ideal in $\overline{\Lambda}(n)$ for a two-sided ideal \mathfrak{A}_0 in $\overline{\Lambda}(S, n)$.

Thus, we have

Lemma 1. Let $\bar{\Lambda}(n)$ and $\bar{\Lambda}(S, n)$ be as above. Then we have a one-to-one correspondence between two-sided ideals of $\bar{\Lambda}(n)$ and $\bar{\Lambda}(S, n)$ as above.

We note that the above correspondence preserves product of ideals.

Next we shall consider $\Lambda_S = (a_{\sigma,\tau}, S, \mathfrak{D})$ ($\subseteq \Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$), where S is the decomposition group of \mathfrak{P} . Since \mathfrak{D}_S is contained in the center of Λ_S , we may regard Λ_S as an order over \mathfrak{D}_S . Let \mathfrak{P}_S be the prime ideal in \mathfrak{D}_S over \mathfrak{p} . Then $\mathfrak{D}_{\mathfrak{P}_S}/\mathfrak{P}_{\mathfrak{P}_S}^n = \mathfrak{D}/\mathfrak{P}^n$. If we set $\Gamma = (a_{\sigma,\tau}, S, \mathfrak{D}_{\mathfrak{P}_S}) = (\Lambda_S)_{\mathfrak{P}_S}$, $\Gamma(n) = \Gamma/\mathfrak{P}^n \Gamma \approx \overline{\Lambda}(S, n)$. In Γ we may regard $K = L_S$ and $\mathfrak{D} = \mathfrak{D}_{\mathfrak{P}_S}$. Let H be the inertia group of a unique prime ideal \mathfrak{P} in \mathfrak{D} . Then H is a normal subgroup of S, (see [10], p. 290) and we have $S = H + \sigma_2 H + \cdots + \sigma_f H$. Let $\Gamma_H = (a_{\sigma,\tau}, H, \mathfrak{D})$, then $\Gamma \mathfrak{P}^n \cap \Gamma_H = \Gamma_H \mathfrak{P}^n$. Hence $\Gamma = \overline{\Gamma}(n) = \Gamma/\mathfrak{P}^n \Gamma \supseteq \overline{\Gamma}_H(n) = \overline{\Gamma}_H$. Furthermore,

$$\Gamma = \Gamma_{\!\!H} + \bar{u}_{\sigma_2} \Gamma_{\!\!H} + \, \cdots \, + \, \bar{u}_{\sigma_f} \bar{\Gamma}_{\!\!H} \, .$$

By a similar argument as above, we have $\bar{u}_{\sigma}^{-1}\Gamma_{H}\bar{u}_{\sigma}=\Gamma_{H}$. We denote this automorphism by f_{σ} . Then the restriction of f_{σ} on $\mathbb{D}/\mathfrak{P}^{n}$ conincides with σ . Let \mathfrak{R}_{H} be the radical of Γ_{H} . Then $\mathfrak{R}_{H} \supseteq \mathfrak{P}\Gamma_{H}$. We put $\mathfrak{R}=\mathfrak{R}_{H}+u_{\sigma_{2}}\mathfrak{R}_{H}+\cdots+u_{\sigma_{f}}\mathfrak{R}_{H}$, then \mathfrak{R} is a two-sided ideal of Γ and $\mathfrak{R}^{m}=\mathfrak{R}_{H}^{m}+\cdots+u_{\sigma_{f}}\mathfrak{R}_{H}^{m}\subseteq \mathfrak{P}^{n}\Gamma$ for some m. $\Gamma/\mathfrak{R}=\Gamma_{H}/\mathfrak{R}_{H}+\tilde{u}_{\sigma_{2}}\Gamma_{H}/\mathfrak{R}_{H}+\cdots+\tilde{u}_{\sigma_{f}}\Gamma_{H}/\mathfrak{R}_{H}$ and $\Gamma_{H}/\mathfrak{R}_{H}\supseteq \mathfrak{D}/\mathfrak{R}$. Now we consider a crossed product of $\Gamma_{H}/\mathfrak{R}_{H}$ with automorphisms $\{f_{\sigma}\}$ and factor sets $\{\tilde{a}_{\sigma,\tau}\}$. We define a two-sided $\Gamma_{H}/\mathfrak{R}_{H}$ module $\Gamma_{H}/\mathfrak{R}_{H}$ as follows: for \tilde{x} , $\tilde{y} \in \Gamma_{H}/\mathfrak{R}_{H}$ $\tilde{x}*\tilde{y}=x^{f_{\sigma}y}$ and $\tilde{y}*\tilde{x}=\tilde{y}x$, and denote it by $(\sigma,\Gamma_{H}/\mathfrak{R}_{H})$. Since $\Gamma_{H}/\mathfrak{R}_{H}$ is semi-simple, $(\sigma,\Gamma_{H}/\mathfrak{R}_{H})$ is completely reducible. Furthermore, $\{\sigma\}$ is the complete set of automorphisms of $\mathfrak{D}/\mathfrak{P}$ (see [10], p. 290). Hence $\{f_{\sigma}\}$ is a complete outer-Galois, namely for any two-sided $\Gamma_{H}/\mathfrak{R}_{H}$ -module $A \supseteq B$ in $(\sigma,\Gamma_{H}/\mathfrak{R}_{H})$ A/B is not isomorphic to some of those forms in $(1,\Gamma_{H}/\mathfrak{R}_{H})$ if $\sigma \neq 1$. Therefore, for any two-sided ideal \mathfrak{A} in Γ/\mathfrak{R} we have by [3], Theorem 48.2

$$\mathfrak{A} = \Sigma \tilde{u}_{\sigma_{\mathbf{i}}} \mathfrak{A}_{0},$$

where \mathfrak{A}_0 is a twe-sided ideal in Γ_H/\mathfrak{N}_H and $\mathfrak{A}_0^{f_{\sigma}}=\mathfrak{A}_0$ for all f_{σ} , and it is a one-to-one correspondence. Hence, Γ/\mathfrak{N} is semi-simple, and \mathfrak{N} is the radical of Γ . From the definition of f_{σ} we have

$$(4) \qquad \qquad (\tilde{u}_{\tau}\lambda)^{f_{\sigma}} = \tilde{u}_{\sigma^{-1}\tau\sigma}\tilde{\lambda}^{\sigma}a_{\sigma,\tau}/a_{\sigma,\sigma^{-1}\tau\sigma}$$

for $\sigma \in S$, $\tau \in H$, $\tilde{\lambda} \in \mathfrak{D}/\mathfrak{P}$, and $\tilde{u}_{\tau} \in \Gamma_H/\mathfrak{N}_H$.

Furthermore, let $\Gamma_H/\mathfrak{N}_H=\mathfrak{A}_1\oplus\cdots\oplus\mathfrak{A}_k$, where the \mathfrak{A}_i 's are simple components of Γ_H/\mathfrak{N}_H . If we classify those ideals $\mathfrak{A},\mathfrak{B}$ by a relation

(5)
$$\mathfrak{A} \sim \mathfrak{B}$$
 if and only if $\mathfrak{A}^{f_{\sigma}} = \mathfrak{B}$ for some f_{σ} ,

then the number of maximal two-sided ideals in Γ/\mathfrak{N} is equal to this class number.

Thus, we have

- Lemma 2. Let L be a Galois extension of the field K with Galois group G such that S = G, $\Gamma = (a_{\sigma,\tau}, S, \mathfrak{D})$, and $\Gamma_H = (a_{\sigma,\tau}, H, \mathfrak{D})$. If we denote the radicals of Γ and Γ_H by \mathfrak{R} , \mathfrak{R}_H , then, $\mathfrak{R}^t \equiv \Sigma \tilde{u}_{\sigma} \mathfrak{R}^t_H \pmod{\mathfrak{P}^n \Gamma}$ for some t < n, and there exists a one-to-one correspondence between two-sided ideals in Γ/\mathfrak{R} and Γ_H/\mathfrak{R}_H which is given by (3) and (4).
- **Lemma 3.** Let Ω be an order over R in a central simple K-algebra Σ and \Re the radical of Ω . Then Ω is hereditary if and only if $\Re^t = \alpha \Omega = \Omega \alpha$ for some t > 0 and $\alpha \in \Sigma$.
- Proof. If $\mathfrak{N}^t = \alpha \Omega$, then the left (right) order of $\mathfrak{N} = \Omega$, and $\mathfrak{N}\mathfrak{N}^{t-1}\alpha^{-1} = \Omega$. Hence \mathfrak{N} is inversible in Ω , which implies that Ω is hereditary by [7], Lemma 3.6. The converse is clear by [7], Theorem 6.1.
- **Theorem 1.** Let R be a discrete rank one valuation ring and K its quotient field, and L a Galois extension of K with group G. Let S and H be decomposition group and inertia group of a prime ideal $\mathfrak P$ in the integral closure $\mathfrak D$ of R in L. Let $\Lambda=(a_{\sigma,\tau},G,\mathfrak D)$, $\Lambda_S=(a_{\sigma,\tau},S,\mathfrak D_{\mathfrak P_S})$, and $\Lambda_H=(a_{\sigma,\tau},H,\mathfrak D_{\mathfrak P_H})$. Then the following statement is equivalent
 - 1) Λ is hereditary,
 - 2) Λ_s is hereditary,
 - 3) Λ_H is hereditary.

In this case the rank of Λ is equal to that of Λ_S and is equal or less than that of Λ_H .

- Proof. 1) \rightarrow 2). Let \mathfrak{N} , \mathfrak{N}_S be the radicals of Λ and Λ_S and P be the product of the prime ideals as in the beginning. Then $\mathfrak{N}^t = P\Lambda$. For n > t we have $\mathfrak{N}_S^t \equiv \mathfrak{P}\Lambda_S$ (mod $\mathfrak{P}^n\Lambda_S$) by Lemma 1 and remark after that. Hence $\mathfrak{N}_S^t = \mathfrak{P}\Lambda_S$ since $\mathfrak{N}_S^t \equiv \mathfrak{P}^n\Lambda_S$. Therefore, Λ_S is hereditary by Lemma 3. The remaining parts are proved similarly by using Lemmas 1, 2, and 3, and a remark before Lemma 2.
- If (|H|, p)=1, then $\Lambda/\mathfrak{P}\Lambda$ is separable by [11], Theorem 1, (see Lemma 4 below) and hence Λ is herediatry, where |H| means the order of group H. Therefore, we have
- **Corollary 1.** ([11]). If \mathfrak{P} is tamely ramefied, i.e. (|H|, p)=1, then $\Lambda=(a_{\sigma,\tau},G,\mathfrak{D})$ is hereditary of the same rank as that of $\Lambda_S=(a_{\sigma,\tau},S,\mathfrak{D}_{\mathfrak{P}_S})$ and its rank is equal to the class number of ideals defined by (5).
- **Corollary 2.** ([1, 2]). If $\{a_{\sigma,\tau}\}=\{1\}$, then Λ is hereditary if and only if a prime ideal $\mathfrak P$ in $\mathfrak D$ over $\mathfrak P$ is tamely ramified. In this case the rank of Λ is equal to the ramification index of $\mathfrak P$.
 - Proof. $\{a_{\sigma,\tau}\} = \{1\}$, then $\Sigma = (a_{\sigma,\tau}, G, L) = K_n$. We assume that Λ is

hereditary, then Λ_H is also hereditary by Theorem 1. $\Lambda_H L = (L_H)_h$, where h = |H|, $(\mathfrak{D}_H)_h$ is a maximal order in $\Lambda_H L$. Furtheremore, the composition length of left ideals of $(\mathfrak{D}_H)_h$ modulo the radical $(\mathfrak{P}_H)_h$ is equal to h, which is invariant for hereditary orders in $\Lambda_H L$ by [8], Corollary to Lemma 2.5. On the other hand $[\Lambda_H/\mathfrak{P}\Lambda_H: \mathfrak{D}/\mathfrak{P}] = h$. Hence, $\mathfrak{P}\Lambda_H$ is the radical and $\Lambda_H/\mathfrak{P}\Lambda_H$ is semi-simple which is a group ring of H over $\mathfrak{D}/\mathfrak{P}$. Therefore, (|H|, p) = 1. In this case $\mathfrak{A} = (\sum_{\sigma \in H} u_\sigma) \cdot \mathfrak{D}/\mathfrak{P}$ is a two-sided ideal in $\Lambda_H/\mathfrak{P}\Lambda_H$ which is invariant under automorphisms f_σ of (4). \mathfrak{A} is a minimal two-sided ideal in $\Lambda_H/\mathfrak{P}\Lambda_H$ which is invariant under f_σ . Hence, $\Lambda_S/\mathfrak{M} \approx \sum_{(\sigma H)} u_{\sigma H} \mathfrak{A}$ for some maximal ideal \mathfrak{M} in Λ_S . Furtheremore, since Λ_S is principal²⁾, $\Lambda_S/\mathfrak{M} \approx \Lambda_S/\mathfrak{M}'$ for any maximal ideal \mathfrak{M}' in Λ_S by [8], Theorem 4.1. Therefore, there exists h two-sided ideals in $\Lambda_H/\mathfrak{P}\Lambda_H$ which is invariant under f_σ , since $[\mathfrak{A}: \mathfrak{D}/\mathfrak{P}] = 1$.

By the same argument as in the proof of Theorem 1 we have

Proposition 1. We assume that R/\mathfrak{P} is a perfect field, and we use the same notations as in Theorem 1. Let V be the second ramification group^{2} and $\Lambda_V = (a_{\sigma,\tau}, V, \mathfrak{D}_{\mathfrak{P}_V})$. Then Λ is hereditary if and only if so is Λ_V .

Proof. By virtue of Theorem 1 we may assume G=H. Let G= $V + \sigma V + \cdots + \rho V$. Then $\Lambda = \Lambda_V + u_\sigma \Lambda_V + \cdots + u_\rho \Lambda_V$. Since V is a normal subgroup of G by [10], p. 295, an inner-automorphism by u_{σ} in Λ reduces an automorphism f_{σ} in Λ_{V} . Let \mathfrak{R}_{V} be the radical of Λ_{V} and $\mathfrak{R}=\mathfrak{R}_{V}+$ $u_{\sigma}\mathfrak{N}_{V}+\cdots+u_{\rho}\mathfrak{N}_{V}$. We shall show that \mathfrak{N} is the radical of Λ . By assumption that R/\mathfrak{p} is perfect, $\bar{\Lambda}_V = \Lambda_V/\mathfrak{N}_V$ is separable. Therefore, there exist x_i, y_i in $\bar{\Lambda}_V$ such that $\sum_i x_i y_i = 1$ and $\sum_i \lambda x_i \otimes y_i^* = \sum_i x_i \otimes (y_i \lambda)^*$, where $y \rightarrow y^*$ gives an anti-isomorphism of Λ to Λ^* . Furthermore, we note that
$$\begin{split} |G/V| = t \text{ is relative prime to } p \text{ by } [10], \text{ p. 296.} \quad \text{Let } \theta = 1/t (\sum_{\tau,i} \bar{a}_{\tau,\tau^{-1}}^{-1} \bar{u}_{\tau} x_i \\ \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*) = 1/t (\sum_{\tau} \bar{a}_{\tau,\tau^{-1}}^{-1} \sum_{i} \bar{u}_{\tau} x_i \otimes (y_i^{f_{\tau^{-1}}})^* \bar{u}_{\tau^{*-1}}^*). \quad \text{Then } 1/t (\sum_{\tau} \bar{a}_{\tau,\tau^{-1}}^{-1} \bar{u}_{\tau} x_i \otimes (y_i^{f_{\tau^{-1}}})^* \bar{u}_{\tau^{*-1}}^*). \end{split}$$
 $\sum \bar{u}_{\tau} x_i \bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}} = 1$. We show that $\{(\eta \otimes 1^*) - (1 \otimes \eta^*)\} \theta = 0$ for any $\eta \in \bar{\Lambda}$. Let γ be in $\bar{\Lambda}_V$. $(\gamma \otimes 1^*)\theta = 1/t(\sum \bar{a}_{\tau,\tau^{-1}}^{-1}\bar{u}_{\tau}\gamma^{f_{\tau}}x_i\otimes(\bar{u}_{\tau^{-1}}y_i^{f_{\tau^{-1}}})^*)$ and $(1\otimes \gamma^*)\theta =$ $1/t(\sum_{i,\tau}\bar{a}_{\tau,\tau^{-1}}^{-1}\bar{u}_{\tau}x_{i}\otimes(\bar{u}_{\tau^{-1}}y_{i}^{f_{\tau^{-1}}}\gamma)^{*})=1/t(\sum_{i,\tau}\bar{a}_{\tau,\tau^{-1}}^{-1}\bar{u}_{\tau}x_{i}\otimes(y_{i}^{f_{\tau^{-1}}}\gamma)^{*}\bar{u}_{\tau^{*-1}}^{*}). \quad \text{We can}$ naturally define $\{f_{\sigma}\}$ on $\bar{\Lambda}_{V} \otimes \bar{\Lambda}_{V}^{*}$ by setting $(\gamma \otimes \gamma'^{*})^{f_{\sigma}} = (\gamma \otimes \gamma'^{f_{\sigma}}^{*})$. Since $\sum \gamma^{f_{\tau}} x_i \otimes y_i^* = \sum x_i \otimes (y_i \gamma^{f_{\tau}})^*$, we obtain $\sum \gamma^{f_{\tau}} x_i \otimes (y_i^{f_{\tau}-1})^* = \sum x_i \otimes (y_i^{f_{\tau}-1}\gamma)^*$. Therefore, $\{(\gamma \otimes 1^*) - (1 \otimes \gamma^*)\}\theta = 0$. $(\bar{u}_{\sigma} \otimes 1)\theta = 1/t(\sum_{\bar{u}_{\tau,\tau}^{-1}} \bar{u}_{\sigma}\bar{u}_{\tau}x_{i} \otimes u_{\tau^{-1}}y_{i}f_{\tau^{-1}})^*$ $=1/t(\sum \bar{a}_{\tau,\tau^{-1}}^{-1}\bar{a}_{\sigma,\tau}\bar{u}_{\sigma\tau}x_{i}\otimes(\bar{u}_{\tau^{-1}}y_{i}^{f_{\tau^{-1}}})^{*}). \quad (1\otimes \bar{u}_{\sigma}^{*})^{6}=1/t(\sum \bar{a}_{\tau,\tau^{-1}}^{-1}\bar{u}_{\tau}x_{i}\otimes)$

²⁾ See the definition in [10].

 $\begin{array}{ll} (\bar{u}_{\tau^{-1}}y_{i}{}^{f_{\tau^{-1}}}\bar{u}_{\sigma})^{*})=1/t(\sum\bar{a}_{\tau,\tau}^{-1}-_{1}\bar{u}_{\tau}x_{i}\otimes(\bar{a}_{\tau^{-1},\sigma}(y_{i}{}^{f_{\tau^{-1}}\sigma})^{*}u_{\tau^{-1}\sigma}^{*}). & \text{However, we obtain } \bar{a}_{\tau,\tau^{-1}}^{-1}\bar{a}_{\sigma,\tau}=\bar{a}_{\sigma\tau,(\sigma\tau)^{-1}}^{-1}\bar{a}_{\tau^{-1},\sigma} & \text{by the relation of } \bar{a}_{\sigma,\tau}. & \text{Hence } \{(\bar{u}_{\sigma}\otimes 1)^{*}-(1\otimes\bar{u}_{\sigma}^{*})\}\theta=0. & \text{Therefore, } \{(\bar{u}_{\sigma}\gamma\otimes 1^{*})-(1\otimes(\bar{u}_{\sigma}\gamma)^{*})\}\theta=(\bar{u}_{\sigma}\otimes 1^{*})(\gamma\otimes 1-1\otimes\gamma^{*})\theta+(1\otimes\gamma^{*})(\bar{u}_{\sigma}\otimes 1-1\otimes\bar{u}_{\sigma}^{*})\theta=0. & \text{Thus we have proved that } \mathfrak{A} & \text{is the radical of } \Lambda. & \text{We can prove the proposition similarly to Theorem 1 by Lemma 3.} \end{array}$

2. Tamely ramification

In this section we always assume that R/\mathfrak{p} is a perfect field.

Theorem 2. Let L be a Galois extension of K with Golois group G, and $\Lambda = (a_{\sigma\tau}, G, \mathfrak{D})$ a crossed product with a factor set $\{a_{\sigma,\tau}\}$ in $U(\mathfrak{D})$. We assume R/\mathfrak{p} is a perfect field. Then Λ is hereditary if and only if every prime ideal \mathfrak{P} in \mathfrak{D} over \mathfrak{p} is tamely ramified, where $U(\mathfrak{D})$ is the set of unit elements in \mathfrak{D} .

Proof. If \mathfrak{P} is tamely ramified, then Λ is hereditary by Corollary 1. We assume that Λ is hereditary. Then by virtue of Proposition 1 we may assume that G is equal to the second ramification group V. Since the elements of G operate trivially on $\mathfrak{D}/\mathfrak{P}$, $\bar{\Lambda} = \Lambda/\mathfrak{P}\Lambda = \bar{\mathfrak{D}} + \bar{u}_{\sigma}\bar{\mathfrak{D}} +$ $\cdots + \bar{u}_r \bar{\Sigma}$ is a generalized group ring. Furthermore, from a relation on a factor set we have $a_{\sigma,\tau}^{|G|} = A_{\sigma}' A_{\tau}' / A_{\sigma\tau}'$, where $A' = \prod_{\sigma \in \sigma} \bar{a}_{\rho,\sigma}$. Since $R/\mathfrak{p} =$ $\mathfrak{D}/\mathfrak{P}$ is perfect and G is a p-group by [10], p. 296, we have $\bar{a}_{\sigma,\tau} = A_{\sigma}A_{\tau}/A_{\sigma\tau}$, $A_{\sigma} \in \overline{\mathbb{D}}$. Therefore, $\overline{\Lambda}$ is a group ring of G over $\overline{\mathbb{D}}$. As well known (see [5], p. 435), the radical $\overline{\mathfrak{R}}$ of $\overline{\Lambda}$ is equal to $\sum (1-\overline{u}_{\sigma})\overline{\mathfrak{Q}}$ and $\overline{\Lambda}/\overline{\mathfrak{R}}=\overline{\mathfrak{Q}}$. Hence Λ is a unique maximal order by [2], Theorem 3.11. Let σ be an element in G. $(u_{\sigma})^i = u_{\sigma}^i C_{\sigma}^i$; $C_{\sigma}^i \in U(\mathfrak{D})$. Hence, if we replace a basis $\{u_{\rho}\}$ by $\{u'_{\rho}\}$; $u'_{\sigma}i=(u_{\sigma})^i$, and $u'_{\tau}=u_{\tau}$ if $\tau\notin(\sigma)$, we may assume $a_{\sigma}i_{\sigma}j=1$ if $i+j < |\sigma| = n$ and $a_{\sigma^i,\sigma^j} = a$ if $i+j \ge n$, where a is a unit element in \mathfrak{O} . It is clear that a is an element of the (σ) -fixed subfield $L_{(\sigma)}$ of L. Since $\overline{\mathfrak{R}} = \sum (1 - \bar{u}_{\sigma}) \overline{\mathfrak{D}}, \quad (1 - u_{\sigma}) \in \mathfrak{R}. \quad (1 - u_{\sigma}) (1 + u_{\sigma} + u_{\sigma^2} + \cdots + u_{\sigma^{-1}}) = 1 - a \in \mathfrak{R}.$ Hence $1-a \in \mathfrak{R} \cap \overline{\mathfrak{D}}_{(\sigma)} = \mathfrak{P}_{(\sigma)}$. Furthermore, every one-sided ideal in Λ is a two-sided ideal and a power of \Re by $\lceil 2 \rceil$, Theorem 3.11. Since $(1-u_{\sigma})\Lambda \subseteq \mathfrak{P}\Lambda, \ (1-u_{\sigma})\Lambda \supseteq \mathfrak{P}\Lambda. \quad \text{Put} \ \mathfrak{P}=(\pi). \quad \text{Then} \ \pi=(1-u_{\sigma})\sum u_{\tau}x_{\tau}=$ $\sum u_{\rho}(x_{\rho}-x_{\sigma^{-1}\rho}a_{\sigma,\sigma^{-1}\rho})$. Hence, $x_1-x_{\sigma^{-1}}a=\pi$, $x_1=x_{\sigma}=x_{\sigma^2}=\cdots=x_{\sigma^{-1}}$. Therefore, $x_1(1-a) = \pi$. However, $(1-a) \equiv 0 \pmod{\mathfrak{P}_{(\sigma)}}$. Therefore, \mathfrak{P} is unramified over $\mathfrak{P}_{(\sigma)}$ which implies $|\sigma|=1$. Hence V=(1), which has proved the theorem.

Corollary 3. Let $\Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$. Then Λ is hereditary if and only if $\Lambda/P\Lambda$ is sime-simple, where $P = \Pi \mathfrak{P}_i$.

Proof. It is clear from Theorems 1 and 2 and the proof of Proposition 1.

Proposition 2. Let $\Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$ and t the ramification index of a maximal order Ω in $\Lambda K : (N(\Omega)^t = \mathfrak{p}\Omega)$. We assume that R/\mathfrak{p} is perfect. If Λ is a hereditary order of rank r, then the ramification index of \mathfrak{P} is equal to rt, where $N(\Omega)$ means the radical of Ω .

Proof. If Λ is hereditary, then $N(\Lambda)=P\Lambda$ by Corollary 3. Hence, $N(\Lambda)^e=\mathfrak{p}\Lambda$. Therefore, e=rt by [7], Theorem 6.1.

Corollary 4. Let $\Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$ be a hereditary order. Then $\Lambda \approx \Gamma = (b_{\sigma,\tau}, G, \mathfrak{D})$ if and only if $\Lambda K \approx \Gamma K$.

Proof. Since Λ is hereditary, $\mathfrak P$ is tamely ramified. If $\Lambda K \approx \Gamma K$, then $\Lambda \approx \Gamma$ by Proposition 2 and [8], Corollary 4.3.

Corollary 5. Let $\Lambda = (a_{\sigma,\tau}, G, \mathbb{O})$ and e the ramification index of \mathfrak{P} over \mathfrak{p} . Then Λ is a hereditary order of rank e if and only if (e, p) = 1 and a maximal order in ΛK is unramified.

Corollary 6. We assume $\Lambda = (a_{\sigma,\tau}, H, \mathfrak{D})$ is hereditary and a maximal order in ΛK is unramified. Then Λ is a minimal hereditary order³.

Proof. Let Ω be a maximal order in ΛK . Put $\Omega/N(\Omega) = \Delta_m$ and $[\Delta: R/\mathfrak{p}] = s$, where Δ is a division ring. Since $N(\Omega)^i/N(\Omega)^{i+1} \approx \Omega/N(\Omega)$, we obtain $m^2s = [\Omega/\mathfrak{p}\Omega: R/\mathfrak{p}] = [\Lambda/\mathfrak{p}\Lambda: R/\mathfrak{p}] = |H|^2$. The ranker of $\Lambda \leqslant m$ by [8], Corollary to Lemma 2.5. Hence $r = |H| = m\sqrt{s} \gg r\sqrt{s}$ by Proposition 2. Therefore, s = 1 and m = |H| = r. Hence, Λ is minimal by [8], Corollary to Lemma 2.5.

REMARK 1. If R is complete and R/\mathfrak{p} is finite, then we obtain, as well known (cf. [6]), that the ramification index of a maximal order in $\Sigma = (a_{\sigma,\tau}, G, L)$ is equal to the index of Σ .

Finally we shall generalize Corollary 2.

The following lemma is well known. However we shall give a proof for a completeness, (cf. [11], Theorem 1).

Lemma 4. Let K be a commutative ring and G a finite group which operates on K trivially. $\{a_{\sigma,\tau}\}$ is a factor set in the unit elements of K. Then a generalized group ring $(a_{\sigma,\tau}, G, K)$ is separable over K if and only if Kn=K, where n=|G|.

Proof. Let ψ be a K-homomorphism of Λ to $\Lambda \otimes \Lambda^* = \Lambda^e$:

$$\psi(u_{\sigma}) = \sum u_{\tau} \otimes u_{\rho}^* k(\sigma, \tau, \rho), \qquad k(\sigma, \tau, \rho) \in K.$$

Then ψ is left Λ^e -homomorphic if and only if

³⁾ See the definition in [8], § 2.

(6)
$$a_{\eta,\tau}k(\sigma, \tau, \rho) = a_{\eta,\rho}k(\eta\sigma, \eta\tau, \rho) a_{\rho,\eta}k(\sigma, \tau, \rho) = a_{\sigma,\eta}k(\sigma\eta, \tau, \rho\eta) \text{ for any } \eta \in G.$$

From (6) we have $k(1, \tau, \rho) = a_{\rho,\tau}^{-1} k(\rho \tau, \rho \tau, \rho \tau)$. If Λ is separable over K, then there exists a Λ^e -homomorphism ψ of Λ to Λ^e such that $\varphi \psi = I$, where $\varphi : \Lambda^e \to \Lambda$; $\varphi(x \otimes y^*) = xy$. Hence $1 = \varphi \psi(1) = \sum_{\tau,\rho} u_{\tau,\rho} a_{\tau,\rho} k(1,\tau,\rho) = u_1(\sum_{\tau \rho = 1} a_{\tau,\rho} a_{\rho,\tau}^{-1} k(1,1,1)$. If we replace ρ , σ and τ by η^{-1} , η and η^{-1} in the relation of factor sets, then we have $a_{\eta,\eta^{-1}} = a_{\eta^{-1},\eta}$, where we assume $a_{\eta,1} = a_{1,\eta} = 1$. Hence 1 = nk(1,1,1). The converse is given by [11], Theorem 1. (cf. the proof of Proposition 1).

Proposition 3. We assume that $\Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$ is an order in a matric K-algebra over K and R/\mathfrak{p} is not necessarily perfect. Then Λ is hereditary if and only if \mathfrak{P} is tamely ramified. In this case the rank of Λ is equal to the ramification index of \mathfrak{P} .

Proof. We assume that Λ is hereditary. Since $\{a_{\sigma,\tau}\}$ is similar to the unit factor set in L, $\Lambda_H=(a_{\sigma,\tau},H,\mathfrak{D})$ is in $(K)_{|H|}$. We know similarly to the proof of Corollary 2 that $N(\Lambda_H)=\mathfrak{p}\Lambda_H$. Hence, $\bar{\Lambda}_H=\bar{\Lambda}_H/\mathfrak{p}\Lambda_H=\bar{\mathfrak{D}}+\bar{u}_\sigma\bar{\mathfrak{D}}+\cdots+\bar{u}_\rho\bar{\mathfrak{D}}$ is semi-simple. However, since $\Omega/N(\Omega)=(R/\mathfrak{p})_{|H|}$ for a maximal order Ω in $(K)_{|H|}$, $\bar{\Lambda}=\Sigma(R/\mathfrak{p})_{m_i}$ by [7], Theorem 4.6. Hence, $\bar{\Lambda}$ is separable. Therefore, (|H|,p)=1 by Lemma 4.

3. Hereditary orders in a generalized quaternions

Finally, we shall determine all the hereditary orders in a generalized quatenions. Let Z be the ring of integers and K the field of rationals. Let d be an integer which is not divided by any quadrate and $L=K(\sqrt{d})$. Then the Galois group $G=\{1,g\}$ and $(\sqrt{d})^g=-\sqrt{d}$. For any integer a we have $\Sigma=(a,G,L)=K+Kg+K\sqrt{d}+Kg\sqrt{d}$ with relations $g^2=a$, $(\sqrt{d})^2=d$, and $g\sqrt{d}=-\sqrt{d}g$. We have determined all hereditary orders in $\lceil 9 \rceil$, Theorem 1.2 in the case a=-1.

We use the same argument here as that in [9], §1.

First we shall determine the types of maximal orders over $Z_{\mathfrak{p}}.$

Proposition 4. Let R be the ring of \mathfrak{p} -adic integers, $L=K(\sqrt{d})$ and $\Lambda=(a,G,\mathfrak{D})$. We denote the radical of Λ by \mathfrak{N} and Λ/\mathfrak{N} by $\overline{\Lambda}$. Then

- 1) If $\mathfrak{p}=2$, $d\equiv 1 \pmod 4$, then Λ is a maximal order such that $\bar{\Lambda}=(R/2)_2$.
 - 2) If $\mathfrak{p}=2$, $d\equiv 2$, 3 (mod 4), then Λ is not hereditary.
- 3) If $\mathfrak{p} \neq 2$, $d \not\equiv 0 \pmod{\mathfrak{p}}$, then Λ is a maximal order such that $\bar{\Lambda} = (R/\mathfrak{p})_2$.
 - 4) If $\mathfrak{p} + 2$, $d \equiv 0 \pmod{\mathfrak{p}}$,

- a) $(a/\mathfrak{p})^{4}=1$, then Λ is a herediary order of rank two.
- b) $(a/\mathfrak{p})=-1$, then Λ is a unique maximal order.

Proof. We shall consider the following three cases.

- 1) H=1. Then i) $\mathfrak{p}=\mathfrak{P}_1\mathfrak{P}_2$ and S=H, ii) $\mathfrak{p}=\mathfrak{P}$ and S=G. Since \mathfrak{P} is unramified, Λ is maximal order by Theorem 1. In the case i) $\mathfrak{D}/\mathfrak{p}\mathfrak{D}=\mathfrak{D}/\mathfrak{P}_1+\mathfrak{D}/\mathfrak{P}_2$, and Λ is a maximal order such that $\Lambda/\mathfrak{p}\Lambda=(R/p)_2$. The case ii) $\Lambda/\mathfrak{p}\Lambda=\mathfrak{D}/\mathfrak{P}+g\mathfrak{D}/\mathfrak{P}$. Since G=S, $\Lambda/\mathfrak{p}\Lambda$ is not commutative and hence, Λ is not a unique maximal.
- 2) G=S=H, $\mathfrak{p}=2$ and $a\equiv 1\pmod 2$. In this case 2 is remified and hence, Λ is not hereditary by Theorem 3.
- 3) G=S=H, and $\mathfrak{p}=2$. Then $\mathfrak{p}=\mathfrak{P}^2$ and $\Lambda/\mathfrak{P}\Lambda=R/\mathfrak{p}+(R/\mathfrak{p})g$. Since \mathfrak{P} is tamey ramefied, $\mathfrak{P}\Lambda=\mathfrak{N}$ by the remark before Corollary 1, and Λ is hereditary. Let \mathfrak{A} be a two-sided ideal in $\overline{\Lambda}$. If \mathfrak{A} is proper, then $\mathfrak{A}=(1+\bar{y}\bar{g})R/\mathfrak{p}$ and $\bar{a}\bar{y}^2=1$ for some $\bar{y}\in\overline{\mathfrak{D}}=R/\mathfrak{p}$, and conversely. Therefore, if $(a/\mathfrak{p})=1$ then Λ is a hereditary order of rank 2 and if $(a/\mathfrak{p})=-1$, then Λ is a unique maximal order. The proposition is trivial from the well known facts of quadratic field.

If we set g=i and $\sqrt{d}=j$, then $\Sigma=(a,G,L)$ is a generalized quaternions over the field K of rationals. For any element $x=x_1+x_2i+x_3j+x_4ij$ we define

$$N(x) = x_1^2 - ax_2^2 - dx_3^2 + adx_4^2$$
.

Let Ω be a maximal order over R with basis u_1, u_2, u_3 and u_4 . We call an element $x = \sum x_i u_i$ in Ω normalized if $(x_1, \dots, x_4) = 1$.

We note that if Σ contains at least two maximal orders, then $\hat{\Sigma}$ is a matrix ring over \hat{K} where \wedge means the completion with respect to \mathfrak{p} , (cf. [9], Lemma 1.4).

In order to use the same argument as in the proof of [9], Theorem 1.2 we need

Lemma 6. 1) If either $\mathfrak{p}=2$, $d\equiv 3\pmod 4$ and $a\equiv 1\pmod 4$ or $\mathfrak{p}=2$, $d\equiv 2\pmod 4$, and $a\equiv 1\pmod 8$, then there exists a maximal order Ω such that $\bar{\Omega}=(R/2)_2$. 2) If $\mathfrak{p}=2$, $d\equiv 2\pmod 4$, $a\equiv 1\pmod 4$ and $a\equiv 1\pmod 8$, then there exists a unique maximal order. 3) If $\mathfrak{p}=2$, $d\equiv 0\pmod \mathfrak{p}$ and $(a/\mathfrak{p})=1$, then there exists a maximal order Ω such that $\bar{\Omega}=(R/\mathfrak{p})_2$, where $\bar{\Omega}$ means the factor ring of Ω modulo its radical.

Proof. Let $\Omega = \mathbb{Q} + (1/2)(1+g)\mathbb{Q} = R + Rj + R1/2(1+i) + R(1/2)(j+ij)$, where i=g and $j=\sqrt{d}$. We denote (1/2)(1+i) and (1/2)(j+ij) by h and l. Then we obtain by the direct computations that

⁴⁾ Legendre's symbol,

(7)
$$jh = i-l, hj = l, jl = d(1-h), lj = dh, hl = l+jr, lh$$

$$= -rj, h^2 = h+r \text{ and } l^2 = dr,$$

where a=1+4r, $r \in R$.

- 1) $d\equiv 3\pmod 4$. Let $N(\Omega)$ be the radical of Ω and $\bar{x}=\bar{x}_1+\bar{x}_2j+\bar{x}_3h+\bar{x}_4l\in N(\Omega)/2\Omega$. Then $\bar{x}j+j\bar{x}=\bar{x}_4\bar{d}+\bar{x}_3j$. If $x_3\equiv 0\pmod 2$, then we may assume $1+j\in N(\Omega)$. Then $0\equiv (1+j)l+l(1+j)\equiv d\pmod 2$, which is a contradiction. Hence, we know $N(\Omega)=2\Omega$ by the similar argument for x_1, x_2 . Since $\Omega/N(\Omega)$ is not commutative by (7), $\Omega/N(\Omega)=(R/2)_2$ and Ω is a maximal order (cf. [9], Lemma 1.3).
- 2) $d \equiv 2 \pmod{4}$. From (7) we obtain $N(\Omega) = \Lambda j$. If $r \equiv 0 \pmod{2}$, then $\Omega/N(\Omega) = (R/2)h + (R/2)(1+h)$. Hence Ω is a hereditary order of rank two. Let $\Omega_0 = R + Rj + Rh + R(1/2)$. It is clear that $\Omega_0 \supseteq \Lambda$ and Ω_0 is a ring. Hence Ω_0 is a maximal order by [7], Theorems 1.7 and 3.3. If $r \equiv 0 \pmod{2}$, then $\Omega/N(\Omega)$ is a field and hence Ω is a unique maximal order.
- 3) In this case Λ is hereditary. Let $\Omega = R + Ri + Rj + R(1/p)(j+yij)$, where $ay^2 = 1 + px$, $x \in R$. It is clear that $\Omega \supseteq \Lambda$. We shall show that Ω is a ring. $((1/p)(j+yij))^2 = (d/p)x \in \Omega$, and $(1/p)(j+yij)i = -(x/y)j (1/yp)(j+yij) \in \Omega$, and $(1/p)(j+yij)j = (d/p)(1+ky) \in \Omega$. Therefore, Ω is a maximal order as above.

Next, we consider a case of $a \equiv 1 \pmod{4}$ and $\mathfrak{p}=2$.

Lemma 7. We consider the following conditions

- i) $a \equiv 3 \pmod{8}$, $d \equiv 2 \pmod{4}$, but $d \equiv 2 \pmod{8}$.
- ii) $a \equiv 3 \pmod{8}$, and $d \equiv 2 \pmod{8}$.
- iii) $a \equiv 7 \pmod{8}$, and $d \equiv 2 \pmod{4}$, but $d \equiv 2 \pmod{8}$.
- iv) $a \equiv 7 \pmod{8}$, and $d \equiv 2 \pmod{8}$.
- v) $a \equiv 1 \pmod{4}$, and $d \equiv 3 \pmod{4}$.

If one of i) and iv) is satisfied, then there is a maximal order Ω such that $\Omega/N(\Omega)=(R/2)_2$. If one of ii), iii) and v) is satisfied, then there exists a unique maximal order.

Proof. We shall show this lemma by a direct computation. Thus, we give here only a sketch of the proof.

Put i=g, $j=\sqrt{d}$ and H=1/2(1+i+j), L=1/2(i+i+ij). Let $\Lambda=R+Ri+RH+RL$. If we set a=1+2r, d=2+4k where $r=1 \pmod 4$, $k\equiv 0 \pmod 2$, we have

$$i^2 = 1 + 2r, \; H^2 = k + (1+r)/2 + H, \; L^2 = -(1/2)(1+r) - (1+2r)k + L, \ iH = L + r, \; Hi = 1 + r + i - L, \; iL = -ri + (1+2r)H, \; Li = 1 + 2r + (1+r)i - (1+2r)H. \; LH = r + ((1+r)/2 + k)i - rH + L, \; \; and$$

$$HL = -(k+(1+r)/2)i+(1+r)H.$$

In cases i) and iv) we can show directly that $N(\bar{\Lambda}) = \bar{\Lambda}(\bar{i}+\bar{1})$ and $\bar{\Lambda}/\bar{\Lambda}(1+i) \approx (R/2)\bar{H} \oplus (R/2)(\bar{1}+\bar{H})$, $\bar{H}(\bar{1}+\bar{H})=\bar{0}$, where $\bar{\Lambda}=\Lambda/2\Lambda$. Since (1-i)(1+i)=1-a=-2r, $r \equiv 0 \pmod 2$, $\Lambda(1+i) \supseteq 2\Lambda$. Hence $N(\Lambda)=\Lambda(1+i)$, which implies that Λ is a hereditary order of rank two. Therefore, there exists a maximal order as in the lemma.

In cases ii) and iii) we obtain similarly that $\Lambda/\Lambda(1+i)\approx (R/2)\bar{H}+(R/2)(\bar{1}+\bar{H})$ and $\bar{H}^2=\bar{1}+\bar{H},\ (\bar{1}+\bar{H})^2=\bar{H},\ \bar{H}(\bar{1}+\bar{H})=\bar{1}.$ Hence, Λ is a unique maximal order.

In case v) we put t=1/2(1+i+j+ij) and $\Lambda=R+Ri+Rj+Rt$. Then by the same argument in [9], Lemma 1.3 we can show that $N(\Lambda)=\Lambda(1+i)$ and $\Lambda/\Lambda(1+i)$ is a field. Hence, Λ is a unique maximal order.

From Proposition 4, Lemmas 6 and 7 and the proof of [9], Theorem 1.2 we have

Theorem 4. Let R be a ring of \mathfrak{p} -adic integers, K the field of rationals and $L=K(\sqrt{d})$. For a unit element a in R, $\Sigma=(a,G,L)$ is a generalized quaternions and $\Lambda=(a,G,\mathfrak{D})$. Then every hereditary order over R in Σ is isomorphic to one of the following:

- 1) Λ (unique maximal) if $\mathfrak{p}=2$, $d\equiv 0 \pmod{\mathfrak{p}}$, $(a/\mathfrak{p})=-1$.
- 2) $\Omega_1 = R + R\sqrt{d} + R(1/2)(1+g) + (1/2)(\sqrt{d} + g\sqrt{d})$ (unique maximal) if $\mathfrak{p}=2$, $d \equiv 2 \pmod{4}$, $a \equiv 1 \pmod{4}$ and $a \equiv 1 \pmod{8}$.
- 3) Λ (maximal), $\Lambda \cap \alpha^{-1} \Lambda \alpha$

if either a)
$$\mathfrak{p}=2$$
, $d\equiv 1 \pmod{4}$ or b) $\mathfrak{p}+2$, $d\equiv 0 \pmod{\mathfrak{p}}$.

- 4) Ω (maximal), $\Gamma_1 = R + Rg + RH + RL$, if one of i) and iv) in Lemma 8 is valid.
- 5) $\Gamma_{\scriptscriptstyle 1}$ (unique maximal)

if one of ii), iii) and iv) in Lemma 8 is valid.

- 6) $\Omega_2 = R + Rg + R\sqrt{d} + Rt$ (unique maximal) if $\mathfrak{p}=2$, $d \equiv 3 \pmod{4}$, and $a \not\equiv 1 \pmod{4}$.
- 7) $\Omega_3 = R + R\sqrt{d} + R(1/2)(1+g) + R(1/4)(\sqrt{d} + g\sqrt{d})$ (maximal),

$$\Gamma_2 = R + R\sqrt{d} + R(1/2)(1+g) + R(1/2)(\sqrt{d} + g\sqrt{d})$$

if $\mathfrak{p} = 2$, $d \equiv 0 \pmod{4}$, and $a \equiv 1 \pmod{8}$.

- 8) Ω_1 (maximal), $\Omega_1 \cap \alpha^{-1}\Omega\alpha$
 - if either a) $\mathfrak{p}=2$, $d\equiv 3 \pmod{4}$ a $\equiv 1 \pmod{4}$ or b) $\mathfrak{p}=2$, $d\equiv 2 \pmod{4}$ and $a\equiv 1 \pmod{8}$.
- 9) $\Omega_4 = R + Rg + R\sqrt{d} + R(1/p)(\sqrt{d} + yg\sqrt{d})$ (maximal), Λ if $\mathfrak{p} = 2$, $d \equiv 0$ (mod \mathfrak{p}) and $(a/\mathfrak{p}) = 1$.

Where $\mathfrak D$ means the integral closur of R in L and α is a normalized element with respect to the basis of a maximal order and $N(\alpha)=pq$, (p,q)=1 and $ay^2\equiv 1\pmod{\mathfrak p}$, $H=(1/2)(1+g\sqrt{d})$, $L=(1/2)(1+\sqrt{d}+g\sqrt{d})$, $t=\frac{1}{2}(1+g+\sqrt{d}+g\sqrt{d})$, and $\mathfrak p=(p)$.

Remark 2. A maximal order Ω in 4) is any ring which contains properly Λ .

References

[1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.

- [3] M. Auslander and D. S. Rim: Ramification index and multiplicity, Illinois J. Math. 7 (1963), 566-581.
- [4] G. Azumaya and T. Nakayama: Daisugaku, (Japanese), Iwanami, Tokyo, 1954.
- [5] E. W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, New York, 1962.
- [6] M. Deuring: Algebren, Berlin, 1935.
- [7] M. Harada: *Hereditary orders*, Trans. Amer. Math. Soc. **107** (1963), 283–290.
- [8] ——: Structure of herditary orders over local rings, J. Math. Osaka City Univ. 14 (1963), 1-22.
- [9] —: Hereditary orders in generalized quaternions D_{τ} , J. Math. Osaka City Univ. 14 (1963), 71-81.
- [10] O. Zariski and P. Samuel: Commutative algebra, vol. 1, Van Nostrand, 1958.
- [11] S. Williamson: Crossed products and hereditary orders, Nagoya Math. J. 23 (1963), 103-120.