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Let O be the integral closure of a discrete rank one valuation ring
R with maximal ideal p in a finite Galois extension L of the quotient
field of R. Auslander, Goldman and Rim have proved in [1] and [2]
that a crossed product A over O with trivial factor sets is a maximal
order in K, if and only if a prime ideal ¥ in © over p is unramified
and A is a hereditary if and only if P is tamely ramified. Recently
Williamson has generalized those results in [117] to a crossed product A
with any factor sets in U(D), where U(O) means the set of units in 2,
namely if P is tamely remified, then A is hereditary and the rank® of
A is determined.

In this paper, we shall modify the Williamson’s method by making
use of a property of crossed product over a ring.

Let G, S and H be the Golois group of L, decomposition group of
B and inertia group of %3, respectively. We denote a crossed propuct A
with factor sets {a,.} in U(D) by (a,., G,O). Then we shall prove in
Theorem 1 that A is a hereditary order if and only if so is (a,., H, Og,)
where Lur=PNOy, and Oy is the integral closure of R in the inertia
field £,. Using this fact and the structure of hereditary orders [7], [8]
we obtain the above results in [1], [2] and [11].

Furthermore, we shall show that A is hereditary if and only if P
is tamely ramified under an assumptions that R/p is a perfect field.

Finally, we give a complete description of hereditary orders in a
generalized quaternions over rationals in Theorem 3.

1. Reduction theorem

In this paper we always assume that R is a discrete rank one
valuation ring with maximal ideal p and p in the characteristic of R/p.
Let L be a finite Golois extension of the quotient field of R with Galois

1) The rank means the number of maximal two-sided ideals in A.
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group G, and O the integral closure of R in L. For a prime ideal B in
O over p we denote the decomposition group and the inertia group of
B by S and H and their fields and the integral closure by Ls, Ly and
s, Oy and so on.

We note that © is a semi-local Dedekind domain and hence, O is a
principal ideal domain. Let {$;}4., be the set of prime ideals in O and
S; and H; be decomposition group and inertia group of PB;. Let pO=
IIP;=P°, where P=11%%;. Since (B;, B,)=9 for i==j, O/P"=0/PD--D
O/Br. We note that (O/P) =0/(P7)" for o€ G. Then Oy, /Py, is the
separable closure of R/p in O/P; and Oy, /Py, is a Galois extension of
R/p with Galois group S;/H;, (see [10], p. 290).

Let A be a crossed product over O with factor sets {a,.} in U(D): A
=(a,., G,0). Since P’=P for all ¢ €G, P"A=AP” is a two-sided ideal
in A. Let A(n)=A/P"A=(a,, ., G, O/P")=2®(a, ., G, O/P}) as a module.
We put A(S;, n) = (a,,., Si, O/B}). Since @, (@0/B})d, = t,_.(O/B7)",
., 'A(S;, n)i,=NA(S7, n), where S¢=0¢"'S;06. Thus we have

(1) A(S;, n)a, = u,A(S?, n).

Let G:(T,'IS"“‘O','ZS,'“'"’+0',‘gs,':S,'O‘,'1+'”+S,'(T,'g, O‘,'IS,‘:S,', since G is
a finite group. Then

[—\(n) = 1_\(8’ n) + ﬂalll—X(S, n)+ e +ﬂ0‘1g[_\(SY n)
( 2) +Z&(Sz> n)+d,,22A(Sz, n) ot -\—d,,ng(Sz, n)

+A(S,, n)+ArguN(Sgy 1)+ + Ay /NS, 1),
where S=S5,.
Let p;; be projections of A(n) to #,,;,A(S;, n). For atwo-sided ideal
A in A(n) we have ADZp,; (A). Since #,,; is unit, p; (A)=u,,;P;,(A) for
all j. Let ¢ be the unit element in A(S, #). Then A(S;, n)e=0 for i==1
and ea, ;A(S, n) =, ;A(S™, n)A(S, n)=0 for j==1. Hence, &e=p,().

Furthermore, since S;=S", 4.(A)=u,; " p,,(W),,;= p.,(A)"1i. Therefore,
(3) A = D u,, A

for a two-sided ideal of U, in A(S, #). Conversely, the above ideal is a
two-sided ideal in A(n) for a two-sided ideal U, in A(S, »).
Thus, we have

Lemma 1. Let A(n) and A(S, n) be as above. Then we have a one-to-
one correspondence betueen two-sided ideals of A(n) and A(S, n) as above.

We note that the above correspondence preserves product of ideals.
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Next we shall consider As=(a, ., S, O) (=EA=(a,., G, D)), where S
is the decomposition group of PB. Since Os is contained in the center
of Ag, we may regard Ag as an order over Os. Let B be the prime
ideal in ©g over p. Then Qs_gs/%%:D/iB". If we set I'=(a, ., S, Ogg)
=(Ag)ps, D(m)=I'/P"I'~A(S, n). InI we may regard K= Ls and O=Og;.
Let H be the inertia group of a unique prime ideal P in ©. Then H
is a normal subgroup of S, (see [10], p. 290) and we have S=H+o,H+
w-+oH. Let I'y=(a,,, H, O), then I'P""I'y=0IyP". Hence I'=1(n)=
/P roly(n)=Iy. Furthermore,

= FH+ZZ¢2FH+ e +a“fFH'

By a similar argument as above, we have @, 'U'y%,=0y;. We denote this
automorphism by f,. Then the restriction of f, on /9" conincides
with . Let M, be the radical of I'y;. Then N,2oPI'y. We put N=
Ry+ e, Ryp+ -+ +u, Ny, then N is a two-sided ideal of I' and N"=NZ+

ctu, N =P for some m. LU/N=Lp/Ny+d,,Uy/Ry+ o+, L/ Ny
and 1I'y/N;20O/B. Now we consider a crossed product of 1'y/My with
automorphisms { f,} and factor sets {4, .}. We define a two-sided I'y/M;~

module 1'y/N; as follows: for %, J € l'y/Ny x*ji:% and y*X=yx, and
denote it by (o, I'y/Iy). Since 1'y/Ny, is semi-simple, (o, U'y/Ny) is
completely reducible. Furthermore, {c} is the complete set of automor-
phisms of O/ (see [10], p. 290). Hence {f,} is a complete outer-Galois,
namely for any two-sided I'y/9;-module A2B in (o, I'y/Ny) A/B is not
isomorphic to some of those forms in (1, I'y/MNy) if o=1. Therefore,
for any two-sided ideal % in I'/9% we have by [3], Theorem 48.2

(3) 91:27'1@;910;

where 9, is a twe-sided ideal in I'y/My and A/-=9Y, for all f,, and it is
a one-to-one correspondence. Hence, I’/ is semi-simple, and N is the
radical of I From the definition of f, we have

( 4 ) (ﬂT)')fo- = ﬁw_lﬂ'oj"a-au,'r/ao-,o-—lm

for c€S, re H, A€ O/, and i, € 'y/Ny.
Furthermore, let I'py/MNy=,PD--- BA,, where the A/ s are simple com-
ponents of 1'y/MNy. If we classify those ideals A, B by a relation

(5) A~B if and only if Ae=B for some f,,

then the number of maximal two-sided ideals in '/ is equal to this
class number.
Thus, we have
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Lemma 2. Let L be a Galois extension of the field K with Galois
group G such that S=G, I'=(a, ., S, 9O), and I'y=(a, ., H,O). If we denote
the radicals of I and Ty by R, Ny, then, W =Za,Ny (mod P"T") for some
t<nm, and there exists a ome-to-one correspondence between two-sided ideals
in U'/N and Ty/Ny which is given by (3) and (4).

Lemma 3. Let Q be an order over R in a central simple K-algebra
S, and N the radical of Q. Then Q is hereditary if and only if N=aQ
=0a for some t >0 and ac 3.

Proof. If *=aQ, then the left (right) order of =0, and NI 'a~!
=0. Hence N is inversible in Q, which implies that Q is hereditary by
[7], Lemma 3.6. The converse is clear by [7], Theorem 6. 1.

Theorem 1. Let R be a discrete rank one valuation ring and K its
quotient field, and L a Galois extension of K with group G. Let S and
H be decomposition group and inertia group of a prime ideal P in the
integral closure O of R in L. Let A=(a,,, G, D), As=(a, ., S, Og), and
Ay=(a, ., H, Ogy). Then the following statement is equivalent

1) A is hereditary,

2) Ag is hereditary,

3) Ay is hereditary.

In this case the rank of A is equal to that of Ag and is equal or less
than that of Ag.

Proof. 1)—2). Let N, N be the radicals of A and Ag and P be the
product of the prime ideals as in the beginning. Then *=PA. For
n_>t we have N;=PAg (mod P"Ag) by Lemma 1 and remark after that.
Hence Ni=PAg since N=P"As. Therefore, Ag is hereditary by Lemma
3. The remaining parts are proved similarly by using Lemmas 1, 2,
and 3, and a remark before Lemma 2.

If (|H|, p)=1, then A/PBA is separable by [11], Theorem 1, (see
Lemma 4 below) and hence A is herediatry, where | H| means the order
of group H. Therefore, we have

Corollary 1. ([117]). If B is tamely ramefied, ie. (|H|, p)=1, then
A=(a, ., G, D) is hereditary of the same rank as that of As=(a,,.,S, Op)
and its rank is equal to the class number of ideals defined by (5).

Corollary 2. ([1, 2]). If {a,.}=1{1}, then A is hereditary if and only
if a prime ideal P in O over p is tamely ramified. In this case the rank
of A is equal to the ramification index of P.

Proof. {a,.}={1}, then ==(a, ., G, L)=K,. We assume that A is
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hereditary, then A is also hereditary by Theorem 1. AyL=(Ly),, where

=|H|, (Oy), is a maximal order in A,L. Furtheremore, the composi-
tion length of left ideals of (D), modulo the radical (), is equal to
h, which is invariant for hereditary orders in AyL by [8], Corollary to
Lemma 2.5. On the other hand [Ag/PBAy: O/P]=h Hence, PAy is
the radical and A,/PBA, is semi-simple which is a group ring of H over
O/B. Therefore, (|H|, p)=1. In this case %Iz(%;u(,)-D/SB is a two-

sided ideal in A /PBA, which is invariant under automorphisms f, of (4).
A is a minimal two-sided ideal in Ap/$A, which is invariant under f.
Hence, Ag/M~ EH)%HQI for some maximal ideal M in Ag. Furtheremore,
since Ag is prin(cipal”, Ag/M~Ag/M for any maximal ideal M’ in Ag
by [8], Theorem 4.1. Therefore, there exists % two-sided ideals in
Ay/BA, which is invariant under f,, since [2: O/P]=1.

By the same argument as in the proof of Theorem 1 we have

Proposition 1. We assume that R/b is a perfect field, and we use
the same notations as in Theorem 1. Let V be the second ramification
group® and Ay,=(a, ., V,On,). Then A is hereditary if and only if so
is Ay.

Proof. By virtue of Theorem 1 we may assume G=H. Let G=
V+oV+ - +pV. Then A=A, +u,Ay+ -~ +u,A,. Since V is a normal
subgroup of G by [10], p. 295, an inner-automorphism by #, in A reduces
an automorphism f, in A,. Let M, be the radical of A, and N=N,+
u,Ny+ - +u,Ny,. We shall show that N is the radical of A. By assump-
tion that R/p is perfect, A,=A, /N, is separable. Therefore, there exist
%;, ¥; in Ay such that >7x;y,=1 and 20 QyF =21 x:Q(y:\)*, where

y—y* gives an anti-isomorphism of A to A*, Furthermore, we note that
|G/ V| =t is relative prime to p by [10], p. 296. Let 0=1/t(2 azh-1d,x;

Q (d,-yS1) = 1/H( S a7t —12u %; @ (y/)*a*-1). Then 1/t(2a

2a.xd.-y )=1. We show that {(Q1*)—(1®%*)} =0 for any 5 €A.
Let y bein Ay. (y®1%)0=1/t(X a7 -1a.97%:Q(#,-19,/~)*) and (1Qv*)0=
(X a2, Q@ o)) =1/ (X @7 -dt.2:Q (957 y)*a%-1). We can

naturally define {f,} on A,®QA} by setting (YyQv'*)e=(yQv”/+*). Since
20 Q= 21x:Q(yiv)*, we obtain 3o, (/) =31 x,Q( . y)*.
Therefore, {(v®1%)—(1Qv*)}0=0. (#,Q1)0=1/t(a;% 10,42, Qu, -1y 1)*
= 1/8( 247518, 8, % Q (@,1977)%). (L Qa6 =1/t a7, ®

2) See the definition in [10].
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G-y 0, )%) = 1/t (X @75 -1.2: (@1 (/7o) *u*-1,). However, we ob-
tain a@;%-1d, .= @} n-1d.-1, by the relation of @,.. Hence {(#,Q1)*—
(1®u¥)}0=0. Therefore, {(#,7yQ1*)—(1Q(#,7)*)} 0 =(#,R1*)yQ®1—-1Q7*)¢
+AR7")#,81—-1KQa*)0=0. Thus we have proved that N is the radical
of A. We can prove the proposition similarly to Theorem 1 by Lemma 3.

2. Tamely ramification
In this section we always assume that R/p is a perfect field.

Theorem 2. Let L be a Galois extension of K with Golois group G,
and A=(a,., G, O) a crossed product with a factor set {a,.} in UD). We
assume R[p is a perfect field. Then A is hereditary if and only if every
prime ideal B in O over p is tamely ramified, where U(D) is the set of
unit elements in 0.

Proof. If B is tamely ramified, then A is hereditary by Corollary
1. We assume that A is hereditary. Then by virtue of Proposition 1
we may assume that G is equal to the second ramification group V.
Since the elements of G operate trivially on O/P, A=A/PA=0+#,O+
- 4+%,0 is a generalized group ring. Furthermore, from a relation on

a factor set we have alf.=A/A//A,., where A’=1a,,. Since R/p=
PEG

/B is perfect and G is a p-group by [10], p. 296, we have 4, .= A,A./A,.,
A,€Q. Therefore, A is a group ring of G over O. As well known
(see [5], p. 435), the radical ;¢ of A is equal to 3)(1—#%,)O and A/N=29.
Hence A is a unique maximal order by [2], Theorem 3.11. Let & be
an element in G. (u,)i=wu,C,i; C,ie UO). Hence, if we replace a basis
{u,} by {u}; uli=(u,y, and u.=u, if v¢ (), we may assume @i, i=1 if
i+j<|o|=n and a,i,j=a if i+j=n, where a is a unit element in O.
It is clear that ¢ is an element of the (o)-fixed subfield L., of L. Since
N=3"1—-4,)0, A—u)eN. A—u,)A+u,+uz+ - +u,-1))=1—aeN.
Hence 1—aeNNO.,,=P,,. Furthermore, every one-sided ideal in A is
a two-sided ideal and a power of M by [2], Theorem 3.11. Since
A—u)AEPBA, A—u ) ADBA. Put B=(»). Then ==>1—u,) > 4%, =
Nuo(Xp—%,-1,2, ,-1,). Hence, x,—x,-1a==, x,=x,=x,2=+-=%,-1. There-
fore, x,(1—a)==. However, (1—a)=0 (mod B,,). Therefore, P is un-
ramified over B, which implies || =1. Hence V=(1), which has proved
the theorem.

Corollary 3. Let A=(a, ., G, O). Then A is hereditary if and only
if AJPA is sime-simple, where P=1I%;.

Proof. It is clear from Theorems 1 and 2 and the proof of Pro-
position 1.



SoME CRITERIA FOR HEREDITARITY OF CROSSED PRODUCTS 75

Proposition 2. Let A=(a, ., G, Q) and t the ramification index of a
maximal order Q in AK :(N(QY=pQ). We assume that R/p is perfect. If
A is a hereditary order of rank r, then the ramification index of P is
equal to rt, where N(Q) means the radical of Q.

Proof. If A is hereditary, then N(A)=PA by Corollary 3. Hence,
N(A)Y=pA. Therefore, e=r¢t by [7], Theorem 6. 1.

Corollary 4. Let A=(a, ., G, O) be a hereditary order. Then A=I
=(b,., G, O) if and only if AK~IK.

Proof. Since A is hereditary, {3 is tamely ramified. If AK~IK,
then A~1" by Proposition 2 and [8], Corollary 4. 3.

Corollary 5. Let A=(a,., G, O) and ¢ the ramification index of P
over . Then A is a hereditary order of rank e if and only if (e, p)=1
and a maximal order in AK is unramified.

Corollary 6. We assume A=(a, ., H, O) is hereditary and a maximal
order in AK is unrvamified. Then A is a minimal hereditary order®.

Proof. Let Q be a maximal order in AK. Put Q/N(Q)=A,, and
[A: R/p]=s, where A is a division ring. Since N(Q)i/N(Q)i"'~Q/N(£2),
we obtain m’s=[Q/pQ: R/p|=[A/pA: R/p]=|H|?>. The ranker of A<m
by [8], Corollary to Lemma 2.5. Hence 7=|H|=m\/s >7\/s by
Proposition 2. Therefore, s=1 and m=|H|=r. Hence, A is minimal
by [8], Corollary to Lemma 2.5.

REMARK 1. If R is complete and R/p is finite, then we obtain, as
well known (cf. [6]), that the ramification index of a maximal order in
S=(a,., G, L) is equal to the index of X.

Finally we shall generalize Corollary 2.

The following lemma is well known. However we shall give a proof
for a completeness, (cf. [11], Theorem 1).

Lemma 4. Let K be a commutative ring and G a finite group which
operates on K trivially. {a,.} is a factor set in the unit elements of K.
Then a generalized group ring (a, ., G, K) is separable over K if and only
if Kn=K, where n=|G|.

Proof. Let ¢ be a K~homomorphism of A to AQA*=A°:
Y(u,) = Zu.Quik(e, v, p), klo, 7, p)EK.
Then 4 is left A°~homomorphic if and only if

3) See the definition in [8], § 2.
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a’lﬂ'k((r’ Ty P) = aw,Pk("/‘77 N, P)
@, k(o, T, p) = @, k(om, T, pp) for any 5€G.

(6)

From (6) we have k(1, =, p)=a; k(pT, p7, p7). If A is separable over K,
then there exists a A°~-homomorphism v of A to A’ such that @y=1,
where @: A°—A; p(xQy*)=xy. Hence 1=pY(1)=>u,a, k1, T, p)=
A pZIaT,pa;}k(l, 1,1). If we replace p, o and = by 57, » and %' in the

relation of factor sets, then we have a,,-1=a,-,, where we assume
a,,=a,,=1. Hence 1=nk(1,1,1). The converse is given by [11], Theorem
1. (cf. the proof of Proposition 1).

Proposition 3. We assume that A=(a,., G,9O) is an order in a
matric K-algebra over K and R|p is not necessarily perfect. Then A is
hereditary if and only if B is tamely ramified. In this case the rank of
A is equal to the ramification index of P.

Proof. We assume that A is hereditary. Since {a,.} is similar to
the unit factor set in L, Ay=(a, ., H,O) is in (K) ;. We know similarly
to the proof of Corollary 2 that N(A,)=pA,. Hence, Ag=Ag4/pA, =
O+a,0+-+u,0 is semi-simple. However, since Q/N(Q)=(R/p)y for
a maximal order Q in (K)u, A=%(R/P)»; by [7], Theorem 4.6. Hence,
A is separable. Therefore, (|H|, p)=1 by Lemma 4.

3. Hereditary orders in a generalized quaternions

Finally, we shall determine all the hereditary orders in a generalized
quatenions. Let Z be the ring of integers and K the field of rationals.
Let d be an integer which is not divided by any quadrate and L=K(/ d).
Then the Galois group G={l1, g} and (/d ) =—+/d. For any integer
a we have Z=(a, G, L)=K+Kg+K\/d +Kg\/'d with relations g’=gq,
(vVd)=d,and g/ d =—+/dg We have determined all hereditary orders
in [9], Theorem 1.2 in the case a=—1.

We use the same argument here as that in [9], §1.

First we shall determine the types of maximal orders over Zp.

Proposition 4. Let R be the ring of p-adic integers, L=K(\/d) and
A=(a, G, O). We denote the radical of A by N and A/N by A. Then

1) If p=2, d=1 (mod 4), then A is a maximal order such that
A=(R/2),.

2) If p=2, d=2,3 (mod 4), then A is not hereditary.

3) If p==2, d=E0 (mod p), then A is a maximal order such that
KZ(R/p)z

4) If p=2, d=0 (mod p),
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a) (a/p)’=1, then A is a herediary order of rank two.
b) (a/p)=—1, then A is a unique maximal order.

Proof. We shall consider the following three cases.

1) H=1. Then i) p=P.B, and S=H, ii) p=P and S=G. Since P
is unramified, A is maximal order by Theorem 1. In the case i) O/pO
=O/P,+9O/B,, and A is a maximal order such that A/pA=(R/p),. The
case ii) A/PA=D/P+gO/P. Since G=S, A/pA is not commutative and
hence, A is not a unique maximal.

2) G=S=H, p=2 and a=1 (mod 2). In this case 2 is remified and
hence, A is not hereditary by Theorem 3.

3) G=S=H, and p=2. Then p=P* and A/PA=R/p+(R/p)g. Since
B is tamey ramefied, PA=N by the remark before Corollary 1, and A
is hereditary. Let U be a two-sided ideal in A. If A is proper, then
A=(1+52)R/p and a5*=1 for some y€ O=R/p, and conversely. There-
fore, if (¢/p)=1 then A is a hereditary order of rank 2 and if (a/p)=—1,
then A is a unique maximal order. The proposition is trivial from the
well known facts of quadratic field.

If we set g=:¢ and /4 =J, then Z=(a, G, L) is a generalized quater-
nions over the field K of rationals. For any element x=x,+ %, + X,j +%,ij
we define

N(x) = x}—axi—dxi+adx}.

Let © be a maximal order over R with basis u,, «,, #, and »,. We
call an element x=3x;u; in Q normalized if (x,, ---, x,)=1.

We note that if S contains at least two maximal orders, then 3 is
a matrix ring over K where A means the completion with respect to b,
(cf. [9], Lemma 1. 4).

In order to use the same argument as in the proof of [97], Theorem
1.2 we need

Lemma 6. 1) If either p=2, d=3 (mod 4) and a=1 (mod 4) or
p=2, d=2 (mod 4), and a=1 (mod 8), then there exists a maximal order
Q such that O=(R/2),. 2) If p=2, d=2 (mod 4), a=1 (mod 4) and
a==1 (mod 8), them there exists a unique maximal order. 3) If p==2,
d=0 (mod p) and (a/p)=1, then there exists a maximal ovder Q such that
O=(R/p),, where O means the factor ring of Q modulo its radical.

Proof. Let O=90+(1/2)1+2)O=R+Rj+R1/2(1+1)+R(A/2)(j+1j),
where i=g and j=+/d. We denote (1/2)(1+:i) and (1/2)(j+ij) by &
and /. Then we obtain by the direct computations that

4) Legendre’s symbol,
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jh=i—1l, kj =1, jl=d(1—h), lj = dh, hl = [+jr, lh

7
(7) = —rj, " =h+r and I’ = dr,

where a=1+4r, r€ R.

1) d=3 (mod 4). Let N(Q) be the radical of Q and X=2x,+Z%,j+ %,k
+zl€ N(Q)/2Q. Then %j+jx=%d+x,j. If x,==0 (mod 2), then we may
assume 1+j€N(Q). Then O0=1+j)/+I/1+j)=d (mod 2), which is a
contradiction. Hence, we know N(Q)=2Q by the similar argument for
X, X,. Since Q/N(Q) is not commutative by (7), Q/N(Q)=(R/2), and O
is a maximal order (cf. [9], Lemma 1. 3).

2) d=2 (mod 4). From (7) we obtain N(Q)=Aj. If r=0 (mod 2),
then Q/N(Q)=(R/2)h+(R/2)1+hk). Hence Q is a hereditary order of
rank two. Let Q=R+Rj+Rh+R(1/2). It is clear that Q,=2A and Q,
is aring. Hence Q, is a maximal order by [7], Theorems 1.7 and 3.3.
If »==0 (mod 2), then Q/N(Q) is a field and hence Q is a unique maximal
order.

3) In this case A is hereditary. Let Q=R+ Ri+Rj+R(1/p)(j+yij),
where ay’=1+px, x€ R. 1t is clear that Q=2A. We shall show that Q
is a ring. ((1/p)(j+yij)=(d/p)x€Q, and (1/p)(j+yij)i= —(x/y)j—
A/yp)(G+yi))eQ, and (1/p)(F+yif)j=(d/p)(1+Eky)€ Q. Therefore, Q is
a maximal order as above.

Next, we consider a case of ¢==1 (mod 4) and p=2.

Lemma 7. We consider the following conditions

i) a=3 (mod 8), d=2 (mod 4), but d=£2 (mod 8).

ii) a=3 (mod 8), and d=2 (mod 8).

iii) a=7 (mod 8), and d=2 (mod 4), but d==2 (mod 8).

iv) a=7 (mod 8), and d=2 (mod 8).

v) a==1 (mod 4), and d=3 (mod 4).
If one of i) and iv) is satisfied, then there is a maximal order Q such
that Q/N(Q)=(R/2),. If one of ii), iii) and v) is satisfied, then there
exists a unique maximal order.

Proof. We shall show this lemma by a direct computation. Thus,
we give here only a sketch of the proof.
Put i=g, j=/d and H=1/2(1+i+j), L=1/2(G+i+ij). Let A=R+Ri+
RH+RL. If we set a=1+42r, d=2+ 4k where r=1 (mod 4), k==0 (mod 2),
we have

*=1+2r, H*=k+(1+7)/2+H, ’=—1/2)1+7r)—(1+27)k+ L,
iH=L+r, Hi=1+4+r+i—L, iL=—ri+(1+27)H, Li=1+2r

(8) +(L+7)i—(1+2)H. LH=r+((1+7)/2+k)i—rH+L, and
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HL=—(k+1+7)/2)i+(1+7)H.

In cases i) and iv) we can show directely that N(A)=A(i+1) and
A/A(1+4i)~(R/2)H D (R/2)(1+H), H1+H)=0, where A=A/2A. Since
A—2)(1+i)=1—a= —27, r==0 (mod 2), A(1+i)22A. Hence N(A)=A1+7),
which implies that A is a hereditary order of rank two. Therefore,
there exists a maximal order as in the lemma.
In cases ii) and iii) we obtain similarly that A/AQ+i)~(R/2)H+
(R/2)A+H) and H*=1+H, (1+Hy=H, H1+H)=1. Hence, A is a
unique maximal order.
In case v) we put t=1/2(1+i+j+ij) and A=R+Ri+Rj+Rt. Then by
the same argument in [9], Lemma 1.3 we can show that N(A)=A(1+1)
and A/A(1-+17) is a field. Hence, A is a unique maximal order.

From Proposition 4, Lemmas 6 and 7 and the proof of [9], Theorem
1.2 we have

Theorem 4. Let R be a ving of y-adic integers, K the field of
rationals and L=K(\/d). For a unit element a in R, 2=(a, G, L) is a
generalized quaternions and A=(a, G, O). Then every herveditary order
over R in 2 is isomorphic to one of the following :

1) A (unique maximal) if =2, d=0 (mod p), (a/p)=—1.
2) O=R+RV/d+RQ1/2)(1+g)+1/2)/d +gv d)
(unique maximal) if p=2, d=2 (mod 4), a=1 (mod 4)
and a==1 (mod 8).

3) A (maximal), Ana~'Ax

if either a) p=2, d=1 (mod 4) or

b) p==2, d==0 (mod p).

4) Q (maximal), ')=R+Rg+ RH+ RL,

if one of i) and iv) in Lemma 8 is valid.
5) I, (unique maximal)

if one of ii), iii) and iv) in Lemma 8 is valid.
6) Q,=R+Rg+R\/d +Rt (unique maximal)

if p=2, d=3 (mod 4), and a=£1 (mod 4).
7 Q=R+RVd~+R1/2)1+2)+R(1/4)\d +&v'd)

(maximal),
I=R+RV'd +R(1/2)1+8)+R(1/2)(\/d +&v'd)

if =2, d=0 (mod 4), and a=1 (mod 8).
8) Q, (maximal), O,Nna'Q

if either a) =2, d=3 (mod 4) a=1 (mod 4) or

b) p=2, d=2 (mod 4) and a=1 (mod 8).
9) Q,=R+Rg+R\V/d+R(1/p)/d +ygv/ d) (maximal),
A if p=+2, d=0 (mod p) and (a/p)=1.
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Where O means the integral closur of R in L and « is a normalized
element with respect to the basis of a maximal order and N(&)= pq, (p_,_ q)
=1 and ay’=1 (mod p), H=1/2)1+gv/d), L=1/2Y1+vd +gV d)

:_;.mgwmg«m, and p=(p).

REMARK 2. A maximal order Q in 4) is any ring which contains
properly A,
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