On Integral Basis of Algebraic Function Fields with Several Variables

By Nobuo Nobusawa

Let K be an algebraic function field with two variables and w a discrete valuation of rank 2 of K. Let L be a finite extension of K and w_1, w_2, \dots, w_g all the extensions of w in L. We denote the valuation rings of w in K and of w_i in L by o_0 and o_i . It is clear that $o = \bigcap_{i=1}^{n} o_i$ is the integral closure of o_0 in L. The structure of o as an o_0 -module will be determined in this paper. Let $(e_1^{(i)}, e_2^{(i)})$ be the value of ramification of w_i : $w_i(a) = (e_1^{(i)}, e_2^{(i)})w(a)$ for $a \in K$. The main theorem given in this paper is that o is a direct sum of $n_0(=\sum_i e_1^{(i)}f_i)$ o_0 -modules of rank 1 and of $n-n_0$ \mathfrak{o}_0 -modules of infinite rank where n=[L:K]. From this we can easily conclude that L/K has integral basis with respect to w in the classical sense when and only when $e_2^{(i)}=1$ for every $i^{(i)}$. In order to get the theorem, some lemmas on the independence of valuations of rank 2 will be required, which are proved generalizing naturally the well-known proofs in case of rank 1. Then we construct concretely n linearly independent basis of L/K which are a generalization of the classical integral basis, having the following property: If u_1, u_2, \dots, u_n are those generalized integral basis and $\sum c_i u_i \in \mathfrak{o}$ with c_i in K, then $c_i u_i \in \mathfrak{o}$ for each i.

The above mentioned results will be inductively generalized in general case. Let K be an algebraic function field with several variables and w a discrete valuation of K. Let L be a finite extension of K. We must assume that there holds a fundamental equality with respect to the extensions of w in $L: \sum_i e_i f_i = n$ where e_i are the ramification indices of w_i and f_i are the relative degrees of w_i . This equality holds when rank $w + \dim w = n$. (See Roquette [4]. p. 43. Second Criterion.) In this case the main theorem is proved to be true, although we do not discuss the general case in this paper.

¹⁾ We express $w_i(a)$ and w(a) in the normal exponential form and the order of value group will be determined by the last non-zero difference of components (contrary to the usual sense. [5]).

²⁾ For the definition of integral basis, see [1],

1. Lemmas on valuations.³⁾

Let us denote a discrete valuation w of rank 2 of a field K in the normal exponential form:

$$w(a) = (\alpha_1, \alpha_2)$$
 for non zero elements a of K ,

where α_i range over all rational integers. The order of the value group is defined such as $(\alpha_1, \alpha_2) > (\beta_1, \beta_2)$ if $\alpha_2 > \beta_2$ or if $\alpha_2 = \beta_2$ and $\alpha_1 > \beta_1$. From this valuation w, we get a valuation $w^{(2)}$ of rank 1 putting $w^{(2)}(a) = \alpha_2$.

Let v_1, v_2, \dots, v_n be a set of discrete valuations of rank 1 and of rank 2 satisfying the next condition:

(A)
$$\begin{cases} &\text{i)} &\text{if both } v_i \text{ and } v_j \text{ are of rank 1, then } v_i \! + \! v_j, \\ &\text{ii)} &\text{if } v_i \text{ is of rank 1 and } v_j \text{ of rank 2, then } v_i \! + \! v_j^{(2)}, \\ &\text{iii)} &\text{if both } v_i \text{ and } v_j \text{ are of rank 2, then } v_i \! + \! v_j \text{ and } v_i^{(2)} \! = \! v_j^{(2)}. \end{cases}$$

Lemma 1. Let v_1, v_2, \dots, v_n be a set of discrete valuations of rank 1 and of rank 2 satisfying (A) and let o_i be the valuation rings of v_i . Then $o_i \subseteq o_i$ for $i \neq j$.

Proof. When one of v_i and v_j is of rank 1, Lemma 1 is clear from the theory of valuations of rank 1 by (A) i) and ii). For, there exists an element a such that $v_i^{(i)}(a) = \alpha$ and $v_j^{(i)}(a) = \beta$ for any rational integers α and β . Here we denote, by $v_i^{(i)}$, $v_i^{(2)}$ when v_i is of rank 2 and v_i when v_i is of rank 1. Next suppose both v_i and v_j are of rank 2. Put $\mathfrak{o}_i' = \{a \in K | v_i(a) = (\alpha, 0), \alpha \geq 0\}$ and $\mathfrak{p}_i' = \{b \in K | v_i(b) = (\beta, 0), \beta > 0\}$. If $\mathfrak{o}_i \leq \mathfrak{o}_j$, we have $\mathfrak{o}_i' \leq \mathfrak{o}_j'$ by (A) iii), and $\mathfrak{p}_i' = \mathfrak{o}_i' \cap \mathfrak{p}_j'$, since $\mathfrak{o}_i' \cap \mathfrak{p}_j'$ is a proper prime ideal of the semi-group $\mathfrak{o}_i'^{4}$ and \mathfrak{p}_i' is the unique proper prime ideal of \mathfrak{o}_i' . If c is an element such that $v_i(c) = (\gamma, 0)$ with $\gamma < 0$, then $c^{-1} \in \mathfrak{p}_i'$ and hence $c^{-1} \in \mathfrak{p}_j'$. Therefore $v_j(c) = (\delta, 0)$ with $\delta < 0$, which implies $\mathfrak{o}_i' \geq \mathfrak{o}_j'$, and hence $\mathfrak{o}_i = \mathfrak{o}_j$ by (A) iii), that is, $v_i = v_j$.

Lemma 2. Let v_1, v_2, \dots, v_n be a set of discrete valuations satisfying (A). Then there exists an element x such that

$$v_1(1-x) > 0$$
, $v_2(x) > 0$, ..., $v_n(x) > 0$.

Proof. We shall prove Lemma 2 by induction. First assume n=2. By Lemma 1 there exists an element a such that $v_1(a) \ge 0$ and $v_2(a) < 0$.

³⁾ The proofs in this paper are, as stated in the introduction, generalizations of the classical ones and we shall follow [3] for this purpose.

⁴⁾ If we put $\mathfrak{g}_i = \{a \in K | v_i^{(2)}(a) = 0\}$, then $\mathfrak{g}_i = \mathfrak{g}_j$ by (A) iii) and $\mathfrak{g}_i = \{\mathfrak{d}_i', \mathfrak{d}_i'^{-1}\}$. Then $\mathfrak{d}_i' \cap \mathfrak{p}_j' = \emptyset$ implies that $\{\mathfrak{d}_i', \mathfrak{d}_i'^{-1}\} \cap \mathfrak{p}_j' = \emptyset$ which is a contradiction.

Put $x_1=1/a$ if $v_1(a)=0$ and $x_1=1/(1+a)$ if $v_1(a)>0$. Then $v_1(x_1)=0$ and $v_2(x_1)>0$. Similarly there exists x_2 such that $v_1(x_2)>0$ and $v_2(x_2)=0$. $x=x_1/(x_1+x_2)$ is then a required element. Assume that Lemma 2 is true for n-1, and there exist x_1 and x_2 such that

$$v_1(1-x_1) > 0$$
, $v_3(x_1) > 0$, $v_4(x_1) > 0$, ..., $v_n(x_1) > 0$,

and

$$v_1(1-x_2) > 0$$
, $v_2(x_2) > 0$, $v_4(x_2) > 0$, ..., $v_n(x_2) > 0$.

Then it is easy to show the following element x is a required one:

- 1) $x = x_1 x_2$ if $v_2(x_1) \ge 0$ and $v_3(x_2) \ge 0$,
- 2) $x = x_1/(1+x_1(1-x_1))$ if $v_2(x_1) < 0$,
- 3) $x = x_2/(1+x_2(1-x_2))$ if $v_2(x_1) \ge 0$ and $v_3(x_2) < 0$.

Lemma 3. Let w_1, w_2, \dots, w_g be g distinct discrete valuations of rank 2 of K. If $w_1(a) = 0$ with some element a, then there exists an element a' such that $w_1(a-a') > 0$, $w_2(a') > 0$, $\dots, w_g(a') > 0$.

Proof. We may assume that $w_1^{(2)}=w_2^{(2)}=\cdots=w_i^{(2)}$ and $w_1^{(2)}+w_{i+1}^{(2)}$ for $j\ge 1$. All the distinct valuations in $w_1,\cdots,w_i,w_{i+1}^{(2)},\cdots,w_g^{(2)}$ will be denoted $v_1(=w_1),v_2,\cdots,v_n$. Then v_1,v_2,\cdots,v_n satisfy (A) and hence there exists an element x by Lemma 2 such that $v_1(1-x)>0, v_2(x)>0,\cdots,v_n(x)>0$. Put $a'=ax^m$ with a sufficiently large number m. Then we have

$$v_1(a-a') = v_1(a) + v_1(1-x^m) \ge v_1(1-x) > 0$$

and

$$v_b(a') = v_b(a) + mv_b(x)$$
 for $k \neq 1$.

When v_k is of rank 1, $v_k(a) + mv_k(x) > 0$ with a sufficiently large number m. When v_k is of rank 2, $v_k^{(2)}(a) = v_1^{(2)}(a) = 0$, and hence we have also $v_k(a') > 0$ with a sufficiently large numer m.

Lemma 4. When v_1, v_2, \dots, v_n are a set of discrete valuations satisfying (A), there exist x_i for every i such that

$$v_i(x_i) = \left\{ egin{array}{ll} if \ v_i \ is \ of \ rank \ 1 \ , \ \ (1, \ 0) \ if \ v_i \ is \ of \ rank \ 2 \ , \ \ v_i(x_i) = 0 \ for \ j = i \ . \end{array}
ight.$$

Proof. We may prove the existence of x_1 . If v_1 is of rank 1, we choose an element a such that $v_1(a)=1$ and $v_i^{(i)}(a)=0$ for $i \neq 1$. This can be done by the theory of valuations of rank 1. If v_1 is of rank 2, we choose an element a with $v_1(a)=(1,0)$, when it is seen $v_i^{(2)}(a)=0$ with v_i of rank 2. Let x be an element in Lemma 2 and put

$$x_1 = ax^m + (x-1)^m$$

with a sufficiently large natural number m. Then

$$v_1(x_1) = v_1(ax^m + (x-1)^m) = v_1(ax^m) = v_1(a) + mv_1(x) = v_1(a),$$

and

$$v_i(x_1) = v_i(ax^m + (x-1)^m) = v_i((x-1)^m) = 0$$
,

since $v_i(ax^m) = v_i(a) + mv_i(x) > 0$ with sufficiently large m.

Lemma 5. Let v_1, v_2, \dots, v_n be a set of discrete valuations satisfying (A) and let α_i be any rational integers. Then there exists an element x such that

$$v_i(x) = \left\{ egin{array}{ll} lpha_i & if \ v_i \ is \ of \ rank \ 1 \ , \ & (lpha_i, \ 0) & if \ v_i \ is \ of \ rank \ 2 \ . \end{array}
ight.$$

Proof. We may put $x = \prod x_{i}^{\alpha}$ with x_{i} in Lemma 4.

Lemma 6. Let w_1, w_2, \dots, w_g be g distinct discrete valuations of rank 2. When l, m and l' are any rational integers, there exist such elements $x_{lm}^{(i)}$ for every i that $w_i(x_{lm}^{(i)}) = (l, m)$ and $w_i(x_{lm}^{(i)}) \geq (l', m)$ for $j \neq i$.

Proof. We may prove Lemma 6 for i=1. We define v_1, v_2, \cdots, v_n from w_1, w_2, \cdots, w_g as in Lemma 3. Assume that v_1, v_2, \cdots, v_i are of rank 2 and that v_{i+1}, \cdots, v_n are of rank 1. Then there exists an element a such that $v_1^{(2)}(a) = \cdots = v_i^{(2)}(a) = m$ and $v_{i+j}^{(2)}(a) > m$ for $j \ge 1$. When $v_k(a) = (\alpha_k, m)$ for $1 \le k \le i$, put $\beta_1 = l - \alpha_1$ and $\beta_k > l' - \alpha_k$ for $2 \le k \le i$. By Lemma 5 we can choose an element b such that $v_k(b) = (\beta_k, 0)$ for $1 \le k \le i$ and $v_{i+j}(b) \ge 0$ for $j \ge 1$. $v_{im}^{(1)} = ab$ is a required element.

2. The structure of \mathfrak{o} .

Let K be an algebraic function field with two variables and w a discrete valuation of rank 2 of K. We denote the valuation ring and the valuation ideal of w by \mathfrak{o}_0 and \mathfrak{p}_0 . Let L be a finite extension of K and w_1, w_2, \cdots, w_g all the extensions of w in L. We denote the valuation rings and the valuation ideals of w_i by \mathfrak{o}_i and \mathfrak{p}_i . Let $(e_1^{(i)}, e_2^{(i)})$ be defined such as $w_i(a) = (e_1^{(i)}, e_2^{(i)})w(a)$ for $a \in K$. $e_i = e_1^{(i)}e_2^{(i)}$ is the ramification index. $f_i = \left[\mathfrak{o}_i/\mathfrak{p}_i:\mathfrak{o}_0/\mathfrak{p}_0\right]$ is the relative degree of w_i . Then $\sum_{i=1}^g e_i f_i = [L:K]$ by Roquette [4]. Let $\overline{t}_{ij}(j=1,2,\cdots,f_i)$ be $\mathfrak{o}_0/\mathfrak{p}_0$ -basis of $\mathfrak{o}_i/\mathfrak{p}_i$ and let t_{ij} be representatives of \overline{t}_{ij} chosen by Lemma 3 such as

(1)
$$w_k(t_{ij}) \ge 0$$
 for every k .

By lemma 6 we can choose $x_{im}^{(i)}$ such that

(2)
$$w_i(x_{lm}^{(i)}) = (l, m) \text{ and } w_i(x_{lm}^{(i)}) \ge (e_1^{(j)}, m) \text{ for } j = i,$$

where $l=0, 1, \dots, e_1^{(i)}-1$ and $m=0, 1, \dots, e_2^{(i)}-1$.

Lemma 7. If $a = \sum_{i,j,l,m} c_{ijlm} t_{ij} x_{lm}^{(i)}$ with $c_{ijlm} \in K$ such that $w_i^{(2)}(a) \ge e_2^{(i)}$ for every i and $w^{(2)}(c_{i;lm}) \ge 0$, then $w^{(2)}(c_{i;lm}) > 0$.

Proof. Assume that $w^{(2)}(c_{ijlm}) = 0$ for some c_{ijlm} and put

(3)
$$b = \sum_{i,j,l,m} c_{ijlm} t_{ij} x_{lm}^{(i)}$$

where \sum' denotes the sum of all c_{ijlm} such that $w^{(2)}(c_{ijlm})=0$. It is clear $w_i^{(2)}(b) \ge e_2^{(i)}$ for every i. Let m_0 be the smallest of m with $c_{ijlm} \ne 0$ in (3), and let $c = c_{i_0j_0l_0m_0}$ be one of c_{ijlm_0} having the smallest value with respect to w. Then

$$bc^{-1} = \sum_{\substack{m \geq m_0 \\ i,j,l}} b_{ijlm} t_{ij} x_{lm}^{(i)} \text{ with } b_{ijlm} = c_{ijlm} c^{-1},$$

where $w_i^{(2)}(bc^{-1}) \ge e_2^{(i)}$, $b_{ijlm_0} \in \mathfrak{o}_0$ and $b_{i_0j_0l_0m_0} = 1$. We shall show that all $b_{i_0jlm_0} \in \mathfrak{p}_0$. We have, by (1) and (2),

$$w_{i_0}^{(2)}(b_{ijlm}t_{ij}x_{lm}^{(i)}) > m_0 \quad \text{for } m > m_0$$
 ,

and

$$w_{i_0}(b_{ijlm_0}t_{ij}x_{lm_0}^{(i)}) \ge (e_1^{(i_0)}, m_0) \quad \text{for } i \neq i_0.$$

Hence

$$(4) w_{i_0}(\sum_{i,l} b_{i_0jlm_0} t_{i_0j} x_{lm_0}^{(i_0)}) \ge (e_1^{(i_0)}, m_0).$$

We have also

$$w_{i_0}(b_{i_0jlm_0}t_{i_0j}x_{lm_0}^{(i_0)}) > (0, m_0)$$
 for $l > 0$,

and hence by (4)

$$w_{i_0}(\sum_{i} b_{i_0 j_0 m_0} t_{i_0 j} x_{0 m_0}^{(i_0)}) > (0, m_0),$$

from which we get

$$w_{i_0}(\sum_i b_{i_0 j_0 m_0} t_{i_0 j}) > 0$$
 ,

that is, $b_{i_0j_0m_0} \in \mathfrak{p}_0$ for all j. Therefore

(5)
$$w_{i_0}(b_{i_0j_0m_0}) \ge (e_1^{(i_0)}, 0).$$

Next we have, by (1), (2) and (5),

$$w_{i_0}(b_{i_0\, i\, l\, m_0}t_{i_0\, i}x_{i\, m_0}^{(i_0)}) > (1,\, m_0) \qquad \text{for } l \neq 1$$
 ,

and hence, by (4),

$$w_{i_0}(\sum_i b_{i_0 j_1 m} t_{i_0 j} x_{1 m_0}^{(i_0)}) > (1, m_0)$$

that is,

$$w_{i_0}(\sum_i b_{i_0 j_1 m_0} t_{i_0 j}) > 0$$
.

Thus $b_{i_0j_1m_0} \in \mathfrak{p}_0$ for all j. Continuing the same procedure, we get that $b_{i_0i_1m_0} \in \mathfrak{p}_0$ for all j and l. But this contradicts $b_{i_0j_0l_0m_0} = 1 \notin \mathfrak{p}_0$.

Lemma 8. If $a = \sum_{i,j,l} c_{jjl0} t_{ij} x_{i0}^{(i)}$ with $c_{ijl0} \in K$ is an element of o, then all $c_{ijl0} \in o_o$.

Proof. Assume that $c_{ijl0} \notin \mathfrak{o}_0$ for some c_{ijl0} . Let $c = c_{i_0j_0l_00}$ be one of c_{ijl0} having the smallest value with respect to w. Then by assumption $c \notin \mathfrak{o}_0$ and hence $c^{-1} \in \mathfrak{p}_0$. Then

$$ac^{-1} = \sum_{i,j,l} b_{ijl0} t_{ij} x_{l0}^{(i)}$$

with $b_{ijl_0} \in \mathfrak{o}_0$ and $b_{i_0j_0l_00} = 1$. We have

$$w_{i_0}(ac^{-1}) \ge w_{i_0}(c^{-1}) \ge (e_1^{(i_0)}, 0)$$
.

As in the proof of Lemma 7, we can show $b_{i_0jl_0} \in \mathfrak{p}_0$ for all j and l, which is a contradiction.

Theorem 1. If $a = \sum_{i \neq lm} c_{ijlm} t_{ij} x_{lm}^{(i)} \in \mathfrak{o}$ with $c_{ijlm} \in K$, then $c_{ijlm} t_{ij} x_{lm}^{(i)} \in \mathfrak{o}$.

Proof. First we shall prove $w^{(2)}(c_{ijlm}) \ge 0$. Assume on the contrary that $w^{(2)}(c_{ijlm}) < 0$ for some c_{ijlm} . Let $c_{i_0j_0l_0m_0} = c$ be one of c_{ijlm} having the smallest value with respect to w. By assumption $c^{-1} \in \mathfrak{p}_0$. Then

$$ac^{-1} = \sum_{i,l,m} b_{ijlm} t_{ij} x_{lm}^{(i)}$$

with $b_{ijlm}=c_{ijlm}c^{-1}\in\mathfrak{o}_0$ and $b_{i_0j_0l_0m_0}=1$, and also $w_i^{(2)}(ac^{-1})\geq w_i^{(2)}(c^{-1})\geq e_2^{(i)}$. Then, by Lemma 7, we have $w^{(2)}(b_{ijlm})>0$ for all i,j,l and m, which contradicts $b_{i_0j_0l_0m_0}=1$. Thus we have $c_{ijlm}t_{ij}x_{lm}^{(i)}\in\mathfrak{o}$ for m>0 and for all i,j,l. We may now assume that $a=\sum\limits_{i,j,l}c_{ijl0}t_{ij}x_{l0}^{(i)}$. In this case, by Lemma 8, we can say that $c_{ijl0}\in\mathfrak{o}_0$ and hence $c_{ijl0}t_{ij}x_{lm}^{(i)}\in\mathfrak{o}$, which completes the proof.

Corollary 1. $t_{i,j}x_{lm}^{(i)}$ are linearly independent over K.

Proof. If $0 = \sum c_{ijlm} t_{ij} x_{lm}^{(i)}$, then $c_{ijlm} t_{ij} x_{lm}^{(i)} \in \mathfrak{o}$ by Theorem 1. Since we may suppose that c_{ijlm} take any small values with respect to w, $c_{ijlm} t_{ij} x_{lm}^{(i)} \in \mathfrak{o}$ imply $c_{ijlm} = 0$.

Theorem 2. If we put $\mathfrak{o}_{ijlm} = \mathfrak{o} \cap \{ct_{ij}x_{im}^{(i)} \text{ with } c \in K\}$, then $\mathfrak{o} = \sum_{i,j,l,m} \mathfrak{o}_{ijlm}$ (direct).

Proof. This is a direct consequence of Theorem 1 and Corollary 1.

Corollary 1. If $e_2^{(i)} = 1$ for every i, then v_0 is a finite v_0 -module and has n linearly independent basis with respect to v_0 .

Proof. Note $\mathfrak{o}_{ijl0} = \mathfrak{o}_0 t_{ij} x_{lm}^{(i)}$.

Corollary 2. If $e_2^{(i)} \neq 1$ for some i, then o is not a finite o_0 -module.

Proof. It is sufficient to show that \mathfrak{o}_{ijlm} is not a finite \mathfrak{o}_0 -module if m>0. Assume on the contrary that \mathfrak{o}_{ijlm} is a finite \mathfrak{o}_0 -module. Then there exists a minimal value of w(c) where $ct_{ij}x_{lm}^{(i)}\in\mathfrak{o}_{ijlm}$. For, if $c_1t_{ij}x_{lm}^{(i)}$, $c_2t_{ij}x_{lm}^{(i)}$, \cdots , $c_pt_{ij}x_{lm}^{(i)}$ constitute \mathfrak{o}_0 -basis of \mathfrak{o}_{ijlm} , take $w(c)=\min_{s>0}(w(c_s))$. If it is $w(c_0)$, then $w^{(2)}(c_0)\geq 0$, since

$$w_i(c_0t_{i,i}x_{l,m}^{(i)}) = w_i(c_0) + (l, m) \ge 0$$
.

Therefore $w_k(c_0t_{ij}x_{lm}^{(i)}) \ge (\alpha, 1)$ for every k with some integer α , since $m \ge 1$. Let c' be an element of K such that $w(c') = (\alpha', 0)$ with $\alpha' < 0$. Then

$$w_k(c'c_0t_i,x_{lm}^{(i)}) \geq (\alpha+\beta_k, 1) > 0$$
 for all k ,

where $\beta_k = e_1^{(k)}\alpha'$, that is $c'c_0t_{ij}x_{lm}^{(i)} \in \mathfrak{o}_{ijlm}$ and $w(c'c_0) < w(c_0)$, which contradicts the minimality of c_0 .

(Received March 17, 1959)

References

- [1] C. Chevalley: Introduction to the theory of algebraic functions of one variable, New York (1951).
- [2] I. S. Cohen and O. Zariski: A fundamental inequality in the theory of extensions of valuations, Illinois J. of Math. 1, (1957) 1-8.
- [3] K. Iwasawa: Theory of algebraic function fields, (in Japanese) Tokyo (1952).
- [4] P. Roquette: On the prolongation of valuations, Trans. Amer. M. S. 88 (1958) 42-56.
- [5] O. F. G. Schilling: The theory of valuations, New York (1950).