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Mass Distributions on the Ideal Boundaries of Abstract
Riemann Surfaces, I11

By Zenjiro KURAMOCHI

In the previous paper we defined a function N(z, p) and ideal
boundary points and studied some properties of superharmonic functions
in R, but the mass distributions are only slightly discussed. In the
present article, we rewrite pages from 174 to 176 of IIV in more precise
form and continue the previous work. We use the same notations and
definitions as in II.

Theorem 1. Let p be a minimal point and v(p) be a neighbourhood
of p. Let VM) be a harmonic function in v(p) such that VM(z)=
min (M, N(z, p)) on Sv(p) and V™(z) has M.D.I. over v(p). Put V(z)=
IimVM(z) : M =sup N(z,p). Then N(z,p)—V(2)=N'(z,p) >0 and N'(z, p)

M=M
has the same properties as N(z, p).
Suppose sup N(z,p)=oo, ie. p is of capacity zero. Assume V(z)=

N(z, p). Then N(z, p)= S N(z, q)dp(g). Since N(z, p) is harmonic in
R-2()
R, V(z)= S Nz, q)dplg). If p is a point mass, N(z,p)=N(z,q): q ¢

B-v(p)
v(p), which implies p=q ¢ v(p). This is a contradiction. Hence g is not

a point mass. Therefore there exist two positive mass distributions g,
and p, such that g =g +u, and both V,(z) = SN(z, q)dp,(q) and V,(2) =
SN(z, q)dm,(q) are not multiples of N(z, p). Because, if every p; presents
a multiple of N(z, p) and whose kernel k; tends to a point g ¢ v(p).

Then 11=r°r°1 total m/; ;S of 7, represents N(z, p) =N(z, q) : ¢ £ v(p). This is
also a contradiction. Therefore N(z, p)— V,(z) C>0) and V,(z) C>0) are
superharmonic in R, whence N(z, p) is not minimal. Hence V()< N(z, p).
Next we show that V(z) has no mass at p in any canonical mass distri-
bution®. To the contrary, suppose V(z) has a positive mass at p. Then

1) Z. Kuramochi: Mass distributions on the ideal boundaries, II. Osaka Math. Jour.,

8, 1956.
2) At present we cannot prove the uniqueness of canonical mass distributions.
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V(z) = KN(z, p)+ U(z), where 0<_K<1 and U(z) is superharmonic in R.
Then U(z) =(1—K)N(z, p) on 9v(p) and superharmonic, whence Vig_,,,(2)
<V(2). Now V™(z) has M.D.I. over v(p) with value V*(z)=min (M, N(z, p))
on 9v(p), hence

V(@) = [VELxp(2)] = V™(2)

and
V(&) 2 Ve-wpla) = Um Vil 5(2) = lim V¥(2) = V(2)
whence
Vi-up(@) =V(2) = KNg_,,5(2, p) + Ug_y >(2) in 2(p)
ie.

V(z) = KV(2) + Ug_u () in o(p).
But V(2)<{N(z, p) and Ug_,,(2) <U(z). Hence
V(2) = KN(z, p) + U(z) > KV(2) + Ug_y p(2) =V(2) .

This is a contradiction. Hence V(z) has no mass at p.
Put N'(z, p)=N(z, p)— V(2). Then N'(z, p)=0
(P on 9v(p). Let G'yy=E[z€R: N'(z, p) =M] and
let v/(p) be a neighbourhood of p such that
v (p)Cv(p). Then

U' \p) , N(Z, p) g Nv/(P)(‘\G/M(zy p) +Nv’(p)mCG/M(z) q)
G Y y
= v’(p)ﬁG'M(z) p) + Vv/(p)mCG/M(z)
+Nv/(p)r'\CG/M(z’ b .
In page 158 (II), we proved that if p is of capacity
zero, V(2)—V ,(2) is superharmonic. If V,(z) >0,
Fig. 1 then V(z) has a positive mass at p. This is a

contradiction. Hence V ,(z)=0.
Since N'(z, p) =M on 9w(p) nCG’,,) and p is of capacity zero,

hm Nv’(p)r‘\CG,M(zy p) é hm (MO’(U,(P), Z) + Vv'(p)(z)) = O ’

vICh)>p vI(D)>p

where o(v/(p), 2) is C.P. (equilibrium potential) of 2/(p).
Hence Nz, p) gwg)nilevf( (% D) < N(z, p), whence
Nz, p) = Nycpynd (2, D) < Nycp(z, p) < Nz, p), (1)
Nz, p) = Nycpnd,, 2 D) < Ne (2, p) < N(z, p) . (2)

Suppose SC v(p) and let *V¥(z) be a harmonic function in v(p)—S such
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that *V¥(z) =min (M, V(2)) on 9S+9v(p) and has M.D.I. over v(p)—S.
Then by the definition of V(z), we have V(z)=li£n*V§”(z) and, for

N(z, p) we have by (1) and (2) the following
Nicpnd (2, p) = Nz, p) and lim N e (2, ) = N'(z, B)

where N'2% »~d (% D) is a harmonic function in v(p)— @'(p) NG') such
that N7 ,,~e,,(2 p) =min (M, N'(z, p)) on 9v(p)+9W (pNG'y) and
N’f,‘?(p)ﬁG/M(z, p) has ML.D.I over v(p)— @ (p)"G',). Hence we have the
following

Property 1. N'y,n¢,,(2 D) =N'yp\2, D) =N'¢ (2, p) =N'(z, p).

As in page 153 (I) N'¢,,(z, p) =lir{1 N'a yynra(2, p) and N'¢/ | ga(2, )
=lim &, ,.(z, p), where N, ,.(z, p) is a harmonic function in R,—R,—
(G’,:r\R,,) (m—>mn) such that N, ,.(z, p)=N'(z, p)

0 N, ..(z,p)=0 on OR,,. Let V,(2)

ns 5}:[ . v(p)
be a harmonic function in »(p) such that V,(2)

=N¢,,~rs2, p) on Sv(p) and V,(2) has M.D.L
over v(p). Then V,(2) :—-li'}ln »V..(2), where ,V,.(2)

is a harmonic function in v(p)~"R, such that /
LV..(2)=V(2) on 9v(p) "R, and éa—,,Vm(z)=O on |
n

on G'yNR

OR,, N v(p). R
Since M=N(z, p)— V() =N'(z, p) on °G',,,

wG'u-e =E[2€R: N, (2, p)—,V,.(2) > M—¢€)>

(R,NnG'yy=E[z€R: N(z, p)—V(2) >M]) for ORm

sufficiently large number m(E, ) for any given Fig. 2
positive number & and #.

Since 27z | %Nn,mw,mds: [ %N,,,mw,mdsgzﬂ—e and

OmG'M e R,
g L Vala)ds = S 2. V,(2)ds =0,
OmG M -2 9(p)~ORm
2r = S O (N, 2, )=, Vl2)) = 2—.
on
OmG' M ¢

Thus vap)—mG,Mﬁg(Nn.m(z7 p)_—an(z)) ——_<—.27Z(M—6)'
Let m— < and #—>co. Then {N,,.(z, p)—,V,.(2)} = {N(z, p)— V(2)} and
let €&—0. Then

Dv(p) (min (M N/(Z, ﬁ)) _—g_ 27tM-
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On the other hand, since §Nn,m(z, P = g_,,vm(z)=o on OR,N(p),
n n

Dv(p)(min (M Nn(z) p) —nV(Z)) —2—= Dv(p)—mG/M_E(Nn,m(z7 p)——an(z))
> 27— (M—¢) .

Hence D, (min (M, N'(z, p)) = (2z—&)(M—¢). Thus we have
Property 2. Dy p(min (M, N'(z, p)) = 2z M, M<_ oo .

Now N(z, p) has the same properties 1 and 2 as N(z, p). Therefore
we can use N'(z, p) in stead of N(z, p) in R. As in case of sup N(z, p)
= oo we have next.

If sup N(z, p)< > and minimal, we have more easily the properties
1 and 2.

Another definition of the value of a superharmonic function at a
minimal point.

In the previous paper, we defined the value of a superharmonic
function U(z) at a minimal point p by

— 1 1 a 3
U(p) = lim 2—”o§u Ule)S - Niz, p)ds

where M’ =sup N(z,p) and C,,=E[z€R: N(z, p)=M] is regular i.e.
S ;N(z, pds=2m.
Cp n

Above definition is inconverient in the sense as follows : every regular
curve C,y encloses a neighbourhood v(p) but v(p) des not necessarily contain
the set E[2€ R: N(z, p) >M] for any large number M. In the above
definition U(p) depends on a larger set than v(p). It is better to define
U(p) on the behaviour of U(z) in v(p). Therefore we shall give more
useful definition of U(p). N’(z, p) in v(p) in Theorem 1 has the pro-
perties. We can prove as in case of N(z, p) that there exists a set E
in the interval (0, M) (M=sup N’(z, p)) such that mes E=0 and E 3

implies that Cy=E[z€R: N'(z, p)=0] is regular i.e. S%N’(z, p)ds

=2, s

Theorem 2. Let U(2) be a superharmonic function in R and let v(p)
be a meighbourhood of p. Let N'(z,p) be the function in Theorem 1.

3) In II we defined for N(z, p), but the same facts hold for U(z). It is easily seen that

Up)= S N(p, ¢)du(q), where U(z)= S N(z, p)du(q), i.e., p is a canonical distribution of U(2).

By By
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Thern U*(z)= lim 1 S U(z)iN’(z, p)ds exists and
pru’ 2w A n
Up) = U*(p),
where M’ =sup N'(z, p) and Cy is a regular curve of N'(z, p).

Lemma 1. Let U(z) be a harmonic function in RNE[z € R: N(z, p) >
(=V(p) with continuous boundary value on V(p). Then

U(p) = U*(p) .

Suppose C,=E[z€R: N(z, p) =«
and Cg=E[z€eR: N'(z, p)=8B] are re-
gular. Let US(2) be a harmonic function
in R,n V(p) such that U7 (z)=min(U(z), S)

, =R

on 9V(p)nR, and ;U,,,S(z)=0 on OR, Nz p)

n
NV(p). Then Us(z)—>US(2) in mean and v(p)
US(z) t U(z) as S— oo.

Let VZ(2) be a harmonic function in Nz p =«
v(p) "R, such that V}(z) =min (L, N(z, p)) -
Fig. 3

on R,N2v(p) and ;V,%(z)———o on 9R,N
n

v(p). Then VE(z) »VZ(2) in mean and VZ(z) } V(z). Let NZ(z, p) be a
harmonic function in (E[z€R: Nz, p) >a]—E[z€R: N'(z, p) >B]"R,
such that NZi(z, p)=a on C,nR,, Ni(z, p) =8+ VE(z) on CsnR, and
a%N,%(z, =0 on OR,N(E[z€R: Nz, #)>a]—E[z€R: N'(z, $)>8B]).

Then Ni(z, p)—Vi(z)=N'7(z, p) and N;i(z, p)—N*(z, p), N'k(z, p)—
N',(z, p) in mean and N*(z, p) t N(z, p), N'*(z, p) } N'(z, p).
Now it is proved (similarly as page 151 (II)) that C, and C,; are also

regular for N%(z, p) and N'%(z, p) respectively, i.e. S U(2) —a-Nk(z, pds —
2 2 -

[ v 2 Nee, pas and | U@ 2 NG pds— | U(2) 2 N'-(z, p)ds.

Co n Og n g on

Apply the green’s formula to U3(z) and NEi(z,p) in E[z2€ R: N(z, p) >a]

—v(p). Then

Use) 2 Ni pds= | Nie 2. Us@)ds.
Catv(PH)HMR, n Ca+dv(p)ME, n
[C - . 9 17s —
. By S n Us(2)ds = g o U3 (2)ds=0,

CaMER, AR, MHB(ZER : N (2, >8) Mp(h)
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[ vpa) S NEe pds= | (VEG 2D _USE) — Usta) S NEGz, p)ds,
¢ MR an (MR, an
o (3)
Next

USa) (2 NeG, p) — S VE@)ds= | NGz )

(Cﬂ—i-av(PJJﬁR (03 +ov()ME,

VL(z)) Us(z)ds

By | Zusa=

C'ﬂf_\R"
UP(a) o (NG, p) = Vi ds = | (Nbta ) 0 USta)
CgMER, " WNE,
9 e} (e}
—Vala) 5 - Ui(e) — U(2) 5 Nz, p) + US(2) 5~ Vii(2)}ds . (4)
n on on

But S V,f(z)3 Us(z)ds= S U,,S(z)-g VE(z)ds, hence the term on
CgME, n OgME on
the left hand side of (4) =the term on the right hand side of (3).
Since 0<_Ug(2) <S and by the regularity of C, and Cs;, we have by
letting #— o> and then L — c and then S— oo, we have

3 e
U = | U@ 2 Nz, pds = | U@ S N'(z, prds = U* ().
o n A on
Proof of the theorem. Let U(z) be superharmonic in R. In every
V(p) =E[z€R: Nz, p) >a] there exists a v(p) C V(p). Let UV(z) be a
Tlarmonic function in RN V(p)* with value U¥(z) =U(z) on 2V(p) and

* —
let U(z) be harmonic in Rno(p) with value U®(z) = U(z) on 2v(p).
Then U®(z) <UY(z). Hence by Lemma 1

UY(p) = U*"(p) < U*(p) . (5)

Clearly UC(p)= | U(z)—a—N’(z nas< | Ut —a—N’(z ds< U (p) for
C' cﬂ/
regular C; and CB (B<B’) by the superharmomclty of U(z), where
Gs—E[z€R: N'(z, $)>8]. Hence lim SU(z) N'(z, p)ds exists. We
pru’
:
4) If U(z)=l}i=m U (z), we say U(z) is *harmonic in G, where U¥(z)=(min (M, U(2))
on 0G and UX(z) has M.D.L. over G.
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define U*(z) by this limit. Thus
Up) < U*(p).

Next we show U(p)= U*(p). We suppose U*(p)< co. Then by
definition of U*(p), there exist v(p), N'(z, p) and a regular curve C of
N’(z, p) for any given positive number & such that

vxp—¢ < 1 (U0 2 N'e, pras.
2z ) on

Let U,(2) be the lower envelope of superharmonic functions in
R larger than U(z) on A. Then by the superharmonicity of Ul(z),
Ucsrynry(@) 1 Uckp(2) =U"P(2) as n—oco. Vylp)=E[z€R: N(z, p) >M]
clusters at the ideal boundary as M} sup N(z, p). Therefore we can find
a number #, and M such that

vip-2e< | U2 NG pds mzn
27 CAR, on
and (R—R, ) > Vy(p) for the same &>0. Vi
Since (Co(p)NR,)CCo(p)+CV (D) Ucup
ral?) < UCu(p)+CVM(p)<z) and U*(p)—26<

CINY
%AJ@WWMM%N@Mﬁ for
every Vu(p) such that Vi, C(R—R,).
Now N'(z, p):N(_z, p)— V(z), where V(2)
is- harmonic in Rnv(p) such that V(2)

=N(z, p) on 9v(p), i.e. V(2) =Ny (2, p)

Vm (D)

in U(P)- Hence NCVM(p)+Cv(p)(z) p) T U(p)
Neup(2, p) = V(2) as Vy(p) —0.

Hence the niveau curve C’'=E[z€R: ORn
Nz, p) —NCVM(I,HC,@)(Z; p)=Fk] tend to Fig. 4

E[z€R: N(z, p)— V(2) =Fk] and further,
%(N(z, D)—Ncv,picup(?, p)) on C’ tends to %N’(z, p) on C as M1
sup N(z, p). Hence there exists M’>M such that '

2
U*(p)—2¢ éziﬂ S UCD(p)-!—CVM,(p)(z)a

CAR,

N'(z, p)ds
9
= UC:)([;H—CVM/([;) (2) o (N(z, ) —NCv(p)»I-CVM/(p)(z) phds+¢,

o
U*(p)—3¢ _ﬁ_z—” g UC:J(p)+CVM/(p) (2)871 (N(z, p) —NCv(p)—FCVM/([;)(z; plds, (6)

c*
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where C*=E[z€R; Nz, p)— Nevpicvy/ o2 .0) =Ek].
Next suppose v(p) + Vi O V' O Vyyr(M”>M’) and V,»=E[2 € R: N(z, p)
—>M"7] and 2V, is regular. Then similarly it is proved that

2
21—7:65* UCv(p)—l—CVM/(Z) on (N(z, p)—NCv(p>+cvM/(Z, P)ds
__21 g UcVM//(Z) (N(Z b — Nev, (2, pP)ds, (7)
7t &ve

01/

where C* and C” are regular niceau curves of N(z, p) —Ncy,» +cv (2, D)
and N(z, p)—NCVM//(z, p) respectively. Since Nz, p)— Ney, (2, p) =
Nz, p)—M”. Hence by letting &—0, the last term of (7)=

1 (&)
= S U5, Nz p) <UD,

whence U(p) = U*(p) .

In case U*(p) =0, we can prove similarly.

Properties of functiontheoretic equilibrium potential.

Let G be a non compact domain in R—R, and let o, ,,;(2) be a
harmonic function in R,,;,— (GN (R,,+; R ) such that o, ,.;(z) =0 on °R,,

0, ,+:(2)=1 on 9(GN (R, ;,—R,)) and a’”‘*'( 2)=0 on 9R,.;,—G. Then
n

it is proved (pp, 145 and 154) that o, ,.;(2) >®,(2) in mean as 7— oo
and ,(2) »>®(2) in mean as #— o and that o(z) is superharmonic func-
tion in R. We call w(z) the (functiontheoretic) equilibrium potential of
the ideal boundary (BNG) determined by G. Let F be a closed set.

Put F,,=E[z€R: 8(z, F) g%ﬁ-] and ©,,(2) C.P. (equilibrium potential) of
F,. Then o,(2) >®(2) in mean.

Lemma 2. If w(2), C.P. of (GNB) determined by G is not zero,
sup (2) =1." Put Gy=E[z€R: 0(2)<1—08], 6>>0. Then (BNGNG;) is

2c@
of capacity zevo.

Since ®,(2) > ®(2) in mean, o(z) =«’,(2), where o’,(2) is a harmonic
function in R—R,— ((R—R,)nG) such that «’,(2) =w(2) on 9(GN (R—R,))
and o’,(2) has M.D.I.® Suppose ?é.l@p o(z) < K<1. Let o, ,.;(2) be a

harmonic function in R, ;,—R,—(GN(R—R,)) such that o', ,..(2) =®(2)
on 9R,+9(GN (R—R,)) and aga)’,,,,,ﬁ(z):O on 2R, ;—G. Then
n

Km‘n.n+i(z) g w/n.n+i(z) .

5) We abbreviate minimal Dirichlet integral by M.D.L



Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, III 127

Let {— o and #— . Then
Ko(z) > o' ,(2) = o(2) ,

whence o(z) =0. This is a contradiction.
Next let «®(2z) be C.P. of (BNGNG;). Then o?(z) <w(z) and sup o?(2)
<1-—38. This implies »®(z)=0. Hence we have Lemma 2. e

Let w(2) be C.P. of closed set F. Then w(2) is superharmonic in R
and the value of w(z) is defined in R(=(R+B)) (see Theorem 1) and it
is proved that o(z) is lower semicontinuous in R. (see II).

Theorem 3. Let F be a closed set of positive capacity and let »(2)
be C.P. of F. Then w(z) =1 except at most an F, of capacity zero.

Lemma 3. Let »(z) be C.P. of F of positive capacity. Then sup o(2)
2611'

=1.
Since F=/\F,, and F,, can be considered as a non compact domain, it is
m >0
clear sup w(2) =1 for every #, but our assertion is not clear. If F has
ZEF

a closed subset F’ of F of positive capacity in R, our assertion is trivial.
Hence we suppose FCB. Put Gy=E[2€R: o(z2)< K< 1]. Then GxknR
is an open set. Let G’x be a component of G,. Assume that G has a
positive distance from OR;, then w(z)< K in G’x"R and ©(2) =K on 9G'x
NR. But by the superharmonicity of ®(z), o(z) = H(2) =K, where H(2) is

ik)armonic in RNG’yx such that H(z) =K on 9G'x,nR and H(z) has M.D.I.
On the other hand, »(2)< K in G’%, whence o(2)=K in G'x. But o(2)
is a non constant is K. This is a contradiction. Hence G’y has a subset
of OR, as its boundary. Now 0< ®(2)< ¢ in a neighbourhood of °R,
for any positive number £>0. Therefore G'x has OR, in its boundary
which implies that Gx consists of only one component.

Assume o(p) =K(< 1) and that p(€ R+ B, has a positive distance
from Gx. Then there exists a neighbourhood v(p) C CGxn R. Then

i =L (i @ A
K= (p)g%og @2 Nz, pds > K,

by the non-constancy of w(z) in R. Hence every point p € (R+ B,) such
that o(p) =K is a limit point of a sequence {z;} (2; € Gy).

Let p€ (R+B,) such that o(p) =K. Then p€GxC Gg,s (closure of
Gk.s), where Gg,s=E[z€R: w(z)<K+38] for any given positive number
6>0. Since w(z) is lower semicontinuous, there exists a neighbourhood
v(p) (CF,) such that w(2) >K—¢&: ze€v(p) for any given positive number

E>0.
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1 9 2
oz (| e@lNepds+ [ o@l NGpds) o (8)

CMGg+8 0MCe gty

Assume S %N’(z, pds>=. Then

M0,y

o(p) = —1——(K—8)7t+(K—8)7r = 8;6+K.
27 2

This is acontradittion for 8<—g—. Hence we have the following assertion.

Let pe B,+R with w(p) =K< 1. Then for any 6_>0, we can find a
v(p) in F,, such that whose N'(z, p) satisfies the following condition

O N'(z, pyds = (9)
on

CMGgag

for every regular curve C of N'(z, p).

Put Hy=E[z€ R: () <K]. Then Hy is closed by the lower semi-
continuity of »(z). Then Fn Hg is also closed. We show that FnHy is
a set of capacity zero. Let v,(2) be a superharmonic function in R—R,
such that ©,(2) =0 on 9R,, ®,(2) =1 on F,,NGg,s"(R—R,) and o,,(2)
has M.D.I. Then o,,(2) — »’'(2), where »’(z) is C.P. of the boundry deter-
mined by ,,[>\1F'"[\GK+8 (m=1,2,--:). Hence by Lemma 2, «'(z)=0.

lm . Then
2

Qw,,:
Choose a sequence m,, m,, --+ such that S —gl'-'i (ds <

n
3R,

() = 3] w,u(2) < o0
and
lim w*(2) = = as z tends to F inside of Gg,s.

ImpﬂﬂﬁﬂﬁmTMang%SMmgN@ﬁWMmew
n
c

(9) w*(p) =0 and the lower semicontinuity of «»*(2),

lim w¥*(2) = o
2—)4€(Fmﬂﬂ—)

B, (set of non minimal points) is a sum of closed sets of capacity zero.
We can construct as above a superharmonic function «**(z) such that
lim o**(2) = oo,

2 >GEB,
Proof of Lemma 3. Suppose o (2) <K<'1. Then Ilim &(o*(2)+
ZEF Z>gCF

w¥*(z)) =co for any &€>0. Put A,=E[z€R: &w*(2)+o**(2)) <2].
Then A, is also closed and A,nF =0, which implies dist (A.F)>d, >0.
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Put F,,=E[z€R: 6(z, F) <d.]. Let w.(z) be CP. of F,,. Then
E(w*(2) + 0**(2)) = we(2) = (2) .

By letting €—0. We have »(z2)=0.

This a contradiction. Hence sup o(z) =1.
ZcF

Proof of Theorem 3. Let w,(2) be CP.of E,=E[z€ (RNF): 0(2) <
1-—%] (k=1,2,--). Then w,(2) <w(z), whence sup wk(z)gl—%. Hence

ZeH,

by lemma 3 E, is a set of capacity zero. Then E=\J E, is an F, of

. k>0
capacity zero.

Theorem 4. Let w(z) be C.P. of a closed set F of positive capacity.
R—F consists at most enumerably infinite number of domains. Let G be
one containing OR, in its boundary. Then o(2)< 1 in G except at most
capacity zero.

Since w(z) is harmonic in R—F, »(z)< 1 in GNR. Suppose p is a
point in (BNGN B,).® Then there exists a neighbourhood »(p) such that
v(p) CG. Then

_1 9,
o(p) = 2”ngco(z)?nz\/ 2, pds< 1

because »(z) is non constant harmonic in G—F, i.e. (z) has M D.I. over
v(p). On the other hand, B, is a set of capacity zero. Hence we have
the theorem.

Mass distribution on R. We have seen that N(z, p) and N'(z, p)
have the esser_ltial properties of the logarithmic potential : lower semi-
continuity in R, symmetry and superharmonicity in the sense as follow :

N(q, p)gZ%SN(z, q)éa—nN’(z, p)ds for every wv(p) of p€R+B,, where
c

N’(z, p) is the function in »(p) in Theorem 1. But there exists a fatal
difference between our space and the euclidean space, that is, in our
space there may exist points of B, where we cannot distribute any #frue
mass. A distribution x on B, may be called a pseudo distribution in the
sense that # can be replaced, by Theorem 8 of II, by a canonical

distribution on B,+R without any change of Ul(z) =SN(z, pdu(p).

Hence it is sufficient to consider only canonical distributions.

6) G is open with respect to Martin’s topology, whence G may contain points of the ideal
boundary.
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Energy integral I(x) of a canonical mass distribution on R+ B, is
defined as

149 = {| Mg, pdps(pdnta)

kS —
Capacity (potentialtheoretic) of a closed set F' in R is defined by

.J—, where p is a canonical distribution of Fn (R+ B,) of total mass
inf I(w)
unity.

Lemma 4. Cap (F) >0 implies E‘ap (F)>0 for every closed subset F
of R.

In fact, if Cap (F) >0, there exists C.P. of F such that o(z) =wg(2)
and ox(2) is represented by a mass distribution x on F. g~ r.p,5(2) <
0p(2) L @0prepH(2) +©p,(2). But g (2) =0 by Theorem 8 in (II), hence
©(2) =g~ r+pp(2) and o(2) is represented by a canonical distribution on

Fn(R+ B, and the total mass is given by S —g? (2)ds. Since sup w(z)
n
*
=1, I(g)< co. This implies Cap (F)_>0.

3R,

Theorem 5. Let u be a canonical distribution on a closed set F of
capacity zero such that its potential U(z) =Ugp(2) >0. Then sup U(z) = co.
2611'
It is clear sup U(z) = oo, but our assertion is not so clear. Suppose
2R

sup U(z) <M. Let p be a point in (R+B,)

2eF

NF. Then

1 a ,
5 § Ula) - N'(z, p)ds < M

for every regular curve of N'(z, p).

Let p., p,, -+, p; be points in Fn (R+B,)
and put D,=E[zeR: > c¢;N(z p;) >N\],
where ¢;>0 and 3 ¢; =total mass of wu.

Let UPr(z) be a harmonic function in D,
such that UPxr(z) =U(z) on 9D, and UPx(2)
has M.D.I. over D.. Then UPxr(z) < U(2).

Similarly as in Theorem 2 and by g aa~ Se;N(z, p,)ds < 27X ¢c;,
n

BD)\

Fig. 5

n i
A T

1 2 1 5 B
27:S UGa) o (S NGz, p))ds = -3 S U@ S Nz p)ds < M,

D

where I'; is a regular curve of N(z, p;) and contained in D,. By the
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continuity of N(z, p) there exists a linear form > ¢/,N(z, p.): pr € FN
(R+B,) such that |U(z)— >\ ¢/,N(z, p) |<E: z€R,, for any given R,, and
€>0. Hence there exists a sequence {U,(z)} of the above linear form

such that U,(z)—U(z) in R— R, Now Uj(z)—~U{z) implies ~ U, ()~ 2-U(@)
n n

in Rand C{=E[z€R: U;(z2)=2\] tends to Cx=E[2€R: U(z)=)\]. Then
by Fatou’s lemma

e, M=> 1_1;55 U(z)%Uj(z)dsgS U(z)aa—nU(z)ds, for every A (10)

J 4
C/\ A

On the other hand, U(z) = Ug(2) =Up,(2) implies U(z) =\w(2), where
w(g) is C.P. of D,. Hence for almost all A

S o U(z)ds = total mass of u,
on

Ca

A=00
A

whence lim S Uz) ai U(z)ds = oo (11)
\ n

(10) contradicts to (11). Hence we have the theorem.
At present, we cannot prove the uniqueness of canaonical mass

distribution but we shall prove

Theorem 6. Let U(z) be a superharmonic function in R such that
U(z) = Up(2). Then U(z) = S Nz, p)du(p). The mass distribution

FM(R+B)
cannot be replaced by any other canonical distribution on F’ such that

dist (F, F’) >0 without any change of U(z).

As for the part of p on R, the uniqueness of mass distribution is clear.
We suppose both F and F’ are contained in B. We cover F by a finite
number of closed discs i, B., -+, B, with diameter <—i- Put p=p,+
fo,+ -+ +p; , where s, is the restriction of x on %;. Hence there exist
s and §, such that | Niz, pdu,(p) = /(SN(z, p)dp,.(p))>o. We denote

F

%, and z; by &, and g, respectively. As above we chosse %, and g, such

that >0, dia §(C )< and  ({Ne pdu(p) = | N, pdn(p)> 0.

%;2
Hence we can find sequences {7%’} and §, DO, - such that N\F,=p¢€
(R+B,)nF, where m; is the total mass of ;. Since <SN(z, p)d;&,-(p))
F!
=SN(z, pdu(p), %SN(Z, p)dp, is represented by a mass distribution
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p¥ on F’/. There exists a subsequence {u%/} such that {#%/} converges
to w* on F’. On the other hand, {%} tends to a point mass N(z, p).
Hence '
NG, #) = | Nz, dur(@) : dist (', p) >0.
2
Now we can prove as in Theorem 1 that N(z, p) is not minimal. This
is a contradiction. Hence we have the theorem.

Lemma 5. Lef u be a mass distribution and let pc be its canonical
distribution (on R+ B,), 1 S N(z, p)du(p) = S N(z, pYdpc(p). Then I(p) =

B R+B,
I(zc). Hence I(i) does not depend on a choise of partzcular distribution.

Suppose p and and ¢ are not minimal. Then N(z, p) = S N(z, a)dp (@)

and N(z, q) = SN(z, B)dp,(B), where « and B€ R+B,. ? (12)
B

Then 1s) = [Ny, @) du(p) duta) = | | | Net, g) s diu(p) diuta)
7 » @
ggggma B) dp (@) dn () dys(p) dps(@) = | | N8, @) { di () ()
¢ paB o B »
x (| duo(B)dui@ = | | N, ) dute au(d) = 10,
q @ B

because (12) means that a unit mass on p is replaced by pu,(@) on «,

whence | dps,(@) du(p) = du(e) and | du,(8) duia) = du().
Lem:na 6. If p,—p, then I(x) < lim I(s,).

1) =lim [ [ N3, @) dyu() dptq) < Tim lim ([ N5, @) du(p) duta)

<tim [ N8, g dpu(p) dintq) = lim 11,

Theorem 7. (Fundamental theorem 1). Let F be a closed set in R
of positive *capacity. Then there exists a unit mass canonical distribution
won F (on FN(R+ B)) whose energy integral is minimal and its potential
U(2) satisfies the following conditions :

1) U(z)=V in F except at most a set of *capacity zero.
2) U(z) <V in F* (kernel of u).

3) UR)=Ve(2)

4) U=V on F*NR
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where V=I(1¢) and «(2) is C.P. of F.

In our space, the potential N(z, p) is continuous in R—p and lower
semicontinuous in R but N(z, p) is not necessarily continuous in R—p
and the continuity principle cannot be proved. Therefore we cannot
prove the above theorem in usual manner.

Let {#,} be a sequence of canonical distributions on F such that
I(p,) | V, where V is the infinimum of energy integrals of all canonical
distributions on F of total mass unity. Put /bzlinm t#,. Then by Lemma

6, I(x) =V. If p is not canonical, we replace by a canonical distribution
pc. Then also by Lemma 5, I(xc)=V. Assume that there exists a

closed set & in CF such that SN(z, pdp”’(p) >0, where p’’ is the re-

¥
striction of pc on §. Then p” cannot be replaced by any canonical
distribution on F by Theorem 6. Hence every canonical distribution
which is equivalent to # has a positive mass on §. This contradicts to
/b=1i£n #,. Hence such g has no mass except on F. Thus there exists

a canonical distribution # of total mass unity on F such that I(x)=V.
Let F* be the kernel of the distribution w. Then clearly F* CF

and closed. By symmetry of N(p, q), I(x) = S U(p)du(p) and U(z)=V—¢
on F*, because I(z) =V. Hence there exists a point p,€ F* such that
U(p,) >V—¢& and there exists a neighbourhood »(p,) such that U(z) >

V—¢€ (zev(p,)) by the lower semicontinuity of U(z) and that the restric-
tion of g in v(p,) has a positive mass m in v(p,). Assume U(z) <V—2¢

on a set F’ of positive >(k:apacity in F. We define a new canonical mass
distribution % on F’ whose energy integral is finite and whose total
mass is m. Define another distribution o as follows :

o= —p on v(p), o= on F’ and ¢ =0 outside of v(p,) and F’.

Then p+ho >0 for #< 1 and the total mass is unity. Then the variation

6] = I(p+ho)—I(w) =0 and
6] = 2h S U(p)du(p) + W 1(o) < 2h [m(V—28)—m(V—8&) ]+ W(o)
= —h[2m—-his)].
This is a contradiction for sufficiently small 2. Hence by letting &—0,
we have (1).
sk
Put F'=E[zeF: U(z) £V—&]. Then F’ is closed and Cap (F’') =0

and the restriction of g’ on F’ has no mass, because I(g') <I(u) <V.

Hence 4+ has no mass on a set E[z€F: U(z) <V+¢] for any €>0.
Next assume g has a positive mass m on a set E[z€ F: U(2) >V +€&].
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Then I(#) >V. This also a contradiction. Hence by letting €—0, U(2)
=V where the mass is distributed. Thus U(z) =V on F* by the lower
semicontinuity of U(z), whence we have (2).

R—F consists of at most enumerably infinite number of domains
G,, G,, ---, where G, is the domain containing 9R, in its boundary. At
first, consider U(z2) in G,. U(z)=V on F* except at most a set F’ of

3 .
capacity zero (by Lemma 4, capacity zero). Hence the exists a super-

harmonic function *(2) in R (as in Theorem 3) such that lim w*(2)=cc.
25pCF’

Hence as in case of Lemma 3, U(z) >Vw(z) in G,. Let G, be one of
other domains. Then 9G,CF. 9G,NR consists of continum boundary
' ¢4=1,2,---) and others I'*. Put G,+I*=G,*. Then G,* is also a
domain. Since for every point p€I';nR, there exists a neighbourhood
v(p) which is conformally equivalent to a disc in the z-plane. Hence
the continuity principle is valid in »(p), whence U(z)=V on T';nR.
Then by the superharmonicity of U(z), U(z) = Ucs,x(2)=V in G,*, whence
U(z) = Vw(2) in G,, because w(z) is clearly=V in G,. Hence in every G;
@=3,4,---) Uk =Vw(z). Uiz)=V on F except a set capacity zero.
Similarly as in Lemma 3, U(z) = Vw(z). By considering sequences {z;} :
2; € R which clusters at B, we have U(2) >Vw(z2) in B. Thus we have
U(z) = Vo(z) in R and we have (3). Clearly by the continuity principle,
U(z)=V on FNR. Hence we have (4).

We know the property of U(z) very little, i.e. at present we don’t
know whether U(z) is bounded in R or not. We shall prove the next

Theorem 8. (Fundamental theorem 2)
U(z) = Vo(z) in R and
I(#) = D(U(2)) = D(Vw(2)) = V.

Lemma 7. Let U(2) be a function in Theorem 7. Put G,=E[z¢€ R: U(z)
>V+a] (@>0) and G¥=E[z€R: 5(z,F*)<%]. Then g,=G,NG¥ is
open. Let «*7(z) be C.P. of g,. Then lim o*"(z) =0.

Let {3;} be a sequence of closed subsets of g, such that ;1 g,.
Let «»%i(2) be C.P. of ¥;. Then ®%i(2) t ©**(2) in mean (see page 154,
II). Hence »®*(2) is superharmonic in K. Put H.=E[z€R: o%i(2)=1]
and H,=E[z€R: »**(2)=1]. Then H; and H, are closed. Clealy by
Theorem 3 and 4 w?ﬂ’i(z)zm’ﬁ'(z), where oi(z) is C.P. of H:. By the

superharmonicity of ©”(2), »*(z) = o™ (2), where of7(z) is C.P. of H,.
On the other hand, o¥i(z) <of”(2) for every i. Hence ®7(z2) = ofn(z).
Thus

0(2) = o™(z) .
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Clearly «®7(z) = o®*(z) (g, is the closure
of g). By (4) of Theorem 7, F*ng,n
R=0. Hence the complementary set
Cg, of g, consists of only one component
containing 2R, in its boundary. Hence
by Theorem 4 of7(z) <w®7(z)< 1 in Cg,
except at most a subset of Cg, of capa-
city zero, whence H,C g, except a subset
of H, of capacity zero.

Next 0**(2) | 0(2)(g= [}\l g,) in mean

as n—>o and H,|H and HCg,C F*.
Assume «®(2) >0. Then «®(z)=1 on H Fig. 6

except a subset of H of capacity zero,

whence by Theorem 4 there exists at least a point z,€ F* such that
o®(z)=1. Since F D F*,

U(2) = Ups(2) = (V+a)o®(2) and Ule) = (V+a)o®(2),

where F¥ =FE[z€R: 8(z, F*) g-}i—]. Hence U(z) = (V+a): z,€ F*.

This contradicts to (2) of Theorem 7. Hence »*(z)=0.
Lemma 8. Put GN=E[z€R: U(z)>>N]. Then Jgi_m Ugn(2) =0.

By the superharmonicity of U(z), U(z) = NwG¥(2), where «G”(2) is C.P.
of G¥. Hence }tm 0 (2) =0. ie. NG¥=G; is a set of capacity zero.

Assume }rizn Ugr(2) = U*(2) >0. Then U*(2) is represented by a cano-

nical distribution g* on Gs; and the kernel k* of p* is closed and
CGs. Hence k* is a set of capacity zero and U#%«(2) =U*(2). Suppose
dist (F*, k*) >0. Then by Theorem 6, wx* cannot be replaced by a
distribution of F*. On the other hand, U(z)— U, (2) is superharmonic
(see p. 158, II), whence U(z) has w* on k*, which implies k* C F*. Now
by Theorem 5, zsg;z U%x(2) = co. Hence there exists a point z, in k% C F*

for any large number N such that

U(zo) > Uk* (zo) > N.

This contradicts to (2) of Theorem 7. Hence U*(z)=0.

Proof of theorem 8. Let Ug~(2) be function in Lemma 8. Then
there exists a number N such that Ugw(z,)< € for given number & >0
and a point z,. Put G;=E[z€R: U(z) >V+98] and Ff=E[z€R:

8(z, F*) g%] and g,=F¥nG;s. Let o**(z) and %" (z2) be C.P. of g, and
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F¥ respectively. Then since F* C F¥,
U(2) = Ugx(2) < 8+ Vo (2) + No®»(2) + Ugr (2) .
Let # —oco. Then No*#(z) -0, by Lemma 8, Hence
Ulz)) <8+ Vof*(2) +E < 8+ Vw(2) + €.
Then by letting §—0 and then 8—0, we have
Uz) < Vol(z,) .
On the other hand, U(z) >Vw(z), hence we have U(z) =Vw(z) and

9w

B
D(U(z) = D(Vo(a) =V* S -

By

(2)ds =V?D(w(2)) =V = I(p) .

By Theorem 8 we have the following
%
Corollary. Cap (F)=Cap (F), and
%
Cap (F) >0 implies Cap (F) >0.
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