On a Two-Dimensional Space of Projective Connection Associated with a Surface in R_{3}

By Matsuji Tsuboko

Denote by \boldsymbol{R}_{n} an n-dimensional space of projective connection. First, in this paper, we treat the development of a curve in \boldsymbol{R}_{2} by a method analogous to the theory on an ordinary projective plane curve. Next, we associate \boldsymbol{R}_{2} with a surface S in \boldsymbol{R}_{3} by a method of projection and investigate some properties of $\boldsymbol{R}_{\mathbf{2}}$ and othet relations between $\boldsymbol{R}_{\mathbf{2}}$ and \boldsymbol{R}_{3}.

1. Let \boldsymbol{R}_{n} be an n-dimensional space of projective connection, in which a moving point is determined by a system of coordinates (u^{i}). If a natural frame ${ }^{1)}$ of reference $\left[A_{0} A_{1} \cdots A_{n}\right.$] is associated with the moving point A_{0} in the tangential space of n dimensions at A_{0} of \boldsymbol{R}_{n}, the infinitesimal displacement of the frame is given by

$$
\begin{equation*}
d A_{\alpha}=\omega_{\alpha}^{\beta} A_{\beta}, \quad \omega_{\alpha}^{\beta}=\prod_{\alpha k}^{\beta} d u^{k}, \tag{1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{c}
\omega_{0}^{0}=0, \quad \omega_{0}^{i}=d u^{i}, \tag{2}\\
\prod_{i k}^{i}=0, \quad \prod_{{ }_{\beta 0}}^{\alpha}=\prod_{o \beta}^{\alpha}=\delta_{\beta}^{\alpha},
\end{array}\right.
$$

where we denote by Greek letters α, β, etc. the indices which take the values $0,1, \cdots, n$, and by Latin letters i, j, etc. those which take $1,2, \cdots, n$.

Consider a curve C passing through A_{0} of \boldsymbol{R}_{n}, where u^{i} are functions of a parameter t. Then we have along C

$$
\begin{equation*}
\frac{d A_{\alpha}}{d t}=p_{\alpha}^{\beta} A_{\beta}, \quad \omega_{\alpha}^{\beta}=p_{\alpha}^{\beta} d t \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
\frac{d^{2} A_{0}}{d t^{2}}= & p_{0}^{i} p_{i}^{0} A_{0}+\left(\frac{d p_{0}^{i}}{d t}+p_{0}^{h} p_{h}^{i}\right) A_{i} \\
\frac{d^{3} A_{0}}{d t^{3}}= & \left\{\frac{d}{d t}\left(p_{0}^{i} p_{i}^{0}\right)+p_{k}^{0}\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right)\right\} A_{0} \\
& +\left\{\frac{d}{d t}\left(\frac{d p_{0}^{i}}{d t}+p_{0}^{h} p_{h}^{i}\right)+p_{0}^{i} p_{0}^{h} p_{h}^{0}+p_{k}^{i}\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right)\right\} A_{i},
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{4} A_{0}}{d t^{4}}= & \left\{\frac{d}{d t}\left[\frac{d}{d t}\left(\frac{d p_{0}^{2}}{d t}+p_{0}^{h} p_{h}^{s}\right)+p_{0}^{i} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{i}\right]\right. \\
& +\left[\frac{d}{d t}\left(p_{0}^{h} p_{h}^{0}\right)+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{0}\right] p_{0}^{t} \\
& \left.+\left[\frac{d}{d t}\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right)+p_{0}^{k} p_{0}^{h} p_{h}^{p}+\left(\frac{d p_{0}^{l}}{d t}+p_{0}^{h} p_{h}^{\imath}\right) p_{l}^{k}\right] p_{k}^{i}\right\} A_{i} \\
& +(\quad) A_{0} .
\end{aligned}
$$

Consequently the point on the image Γ of C corresponding to $t+d t$ is given by

$$
A_{0}+\frac{d A_{0}}{d t} d t+\frac{1}{2!} \frac{d^{2} A_{0}}{d t^{2}}(d t)^{2}+\cdots=\rho\left(A_{0}+x^{i} A_{i}\right)
$$

where
(4)

$$
\begin{aligned}
x^{i}= & p_{0}^{t} d t+\frac{1}{2}\left(\frac{d p_{0}^{i}}{d t}+p_{0}^{h} p_{j}^{i}\right)(d t)^{2} \\
+ & \frac{1}{6}\left\{\frac{d}{d \bar{t}}\left(\frac{d p_{0}^{i}}{d \bar{t}}+p_{l}^{h} p_{h}^{i}\right)-2 p_{c}^{i} p_{1}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{i}\right\}(d t)^{3} \\
+ & \frac{1}{24}\left\{\frac{d}{d t}\left[\frac{d}{d t}\left(\frac{d p_{0}^{i}}{d t}+p_{0}^{h} p_{h}^{i}\right)+p_{0}^{i} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{i}\right]\right. \\
& +\left[\frac{d}{d t}\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right)+p_{0}^{h} p_{h}^{0} p_{0}^{k}+\left(\frac{d p_{0}^{l}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{l}^{k}\right] p_{k}^{i} \\
& -3\left[\frac{d}{d t}\left(p_{0}^{h} p_{h}^{0}\right)+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{0}\right] p_{0}^{k} \\
& \left.-6 p_{0}^{h} p_{h}^{0}\left(\frac{d p_{0}^{i}}{d t}+p_{0}^{k} p_{k}^{i}\right)\right\}(d t)^{4}+\cdots .
\end{aligned}
$$

2. In the case of $n=2$, by means of (4), the image Γ can be expressed by the equation, referred to the frame [$A_{0} \cdot A_{1} A_{2}$] of reference,

$$
\begin{equation*}
x^{2}=\sum_{m=1}^{\infty} \frac{a_{m}}{m!\left(p_{0}^{1}\right)^{m}}\left(x^{1}\right)^{m}, \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1}= & p_{0}^{2}, \\
a_{2}= & \frac{d p_{0}^{2}}{d t}+p_{0}^{h} p_{h}^{2}-\frac{p_{0}^{2}}{p_{0}^{1}}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right), \\
a_{3}= & \frac{d}{d t}\left(\frac{d p_{0}^{2}}{d t}+p_{0}^{h} p_{h}^{2}\right)+p_{0}^{2} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{2} \\
& \quad-\frac{p_{0}^{2}}{p_{0}^{1}}\left[\frac{d}{d t}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right)+p_{0}^{1} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{1}\right] \\
& -3 \frac{1}{p_{0}^{1}}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right) a_{2} \\
= & \frac{d a_{2}}{d t}+\frac{1}{p_{0}^{1}}\left\{\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right)\left(-2 a_{2}-p_{0}^{i} p_{i}^{2}+\frac{p_{0}^{2}}{p_{0}^{1}} p_{0}^{i} p_{i}^{1}\right)\right. \\
& \left.\quad+\frac{d p_{0}^{1}}{d t} p_{0}^{h} p_{h}^{2}-\frac{d p_{0}^{2}}{d t} p_{0}^{h} p_{h}^{1}\right\},
\end{aligned}
$$

$$
\begin{aligned}
a_{4}= & -\frac{d}{d t}\left[\frac{d}{d t}\left(\frac{d p_{0}^{2}}{d t}+p_{0}^{h} p_{h}^{2}\right)+p_{0}^{2} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{2}\right] \\
& +\left[\frac{d}{d t}\left(\frac{d p_{0}^{l}}{d t}+p_{0}^{h} p_{h}^{h}\right)+p_{0}^{h} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{h}\right] p_{l}^{2} \\
- & -\frac{p_{0}^{2}}{p_{0}^{1}}\left\{\frac{d}{d t}\left[\frac{d}{d \bar{t}}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right)+p_{0}^{1} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{1}\right]\right. \\
& \left.+\left[\frac{d}{d t}\left(\frac{d p_{0}^{l}}{d t}+p_{0}^{h} p_{h}^{h}\right)+p_{0}^{l} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{l}\right] p_{l}^{1}\right\} \\
& -\frac{6}{p_{0}^{1}}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right) a_{3} \\
& -\frac{a_{2}}{\left(p_{0}^{1}\right)^{2}}\left\{3\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right)^{2}\right. \\
& \left.+4 p_{0}^{1}\left[\frac{d}{d t}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right)-\frac{1}{2} p_{0}^{1} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{h}^{k}\right) p_{k}^{1}\right]\right\} .
\end{aligned}
$$

If we denote by K_{2} the osculating conic at A_{0} of Γ on the plane $A_{0} A_{1} A_{2}, K_{2}$ is expressed by the equation

$$
p_{0}^{1} x^{2}-p_{0}^{2} x^{1}=\sum_{i, j=1}^{n} C_{i j} x^{i} x^{j} \quad\left(C_{i j}=C_{j i}\right)
$$

where

$$
\begin{aligned}
C_{11} & =\frac{1}{18 p_{0}^{1}\left(a_{2}\right)^{3}}\left\{3\left(a_{2}\right)^{2}\left[3\left(a_{2}\right)^{2}-2 a_{1} a_{3}\right]+\left(a_{1}\right)^{2}\left[3 a_{2} a_{4}-4\left(a_{3}\right)^{2}\right]\right\}, \\
C_{12} & =\frac{1}{18\left(a_{2}\right)^{3}}\left\{a_{3}\left[3\left(a_{2}\right)^{2}-a_{1} a_{3}\right]-a_{1}\left[3 a_{2} a_{4}-5\left(a_{3}\right)^{2}\right]\right\}, \\
C_{22} & =\frac{p_{0}^{1}}{18\left(a_{2}\right)^{3}}\left\{3 a_{2} a_{4}-4\left(a_{3}\right)^{2}\right\} .
\end{aligned}
$$

We put

$$
\begin{aligned}
& B_{0}=A_{0}, \quad B_{1}=p_{0}^{i} A_{i} \\
& B_{2}=\frac{3 a_{2} a_{4}-5\left(a_{3}\right)^{2}}{18\left(a_{2}\right)^{2}} A_{0}-\frac{p_{0}^{1} a_{3}}{3 a_{2}} A_{1}+\frac{3\left(a_{2}\right)^{2}-a_{1} a_{3}}{3 a_{2}} A_{2}
\end{aligned}
$$

The points B_{1} and B_{2} lie on the tangent and the osculating conic K_{2} at A_{0} of Γ respectively and the line $B_{0} B_{2}$ is the polar of B_{1} with respect to K_{2}.

If we associate the frame constituted by the points B_{0}, B_{1}, B_{2} with the point $A_{0}\left(=B_{0}\right)$ of the development Γ of C, we get by means of (3)

$$
\left\{\begin{array}{l}
\frac{d B_{0}}{d t}=B_{1} \tag{6}\\
\frac{d B_{1}}{d t}=k B_{0}+h B_{1}+B_{2} \\
\frac{d B_{2}}{d t}=\Theta B_{0}+k B_{1}+2 h B_{2}
\end{array}\right.
$$

where

$$
\begin{align*}
h= & \frac{a_{3}}{3 a_{2}}+\frac{1}{p_{0}^{1}}\left(\frac{d p_{0}^{1}}{d t}+p_{0}^{h} p_{h}^{1}\right), \\
k= & p_{0}^{h} p_{h}^{0}-\frac{3 a_{2} a_{4}-5\left(a_{3}\right)^{2}}{18\left(a_{2}\right)^{2}}, \\
\Theta= & \frac{d}{d t}\left(\frac{3 a_{2} a_{4}-5\left(a_{3}\right)^{2}}{18\left(a_{2}\right)^{2}}\right)-\frac{3 a_{2} a_{4}-5\left(a_{3}\right)^{2}}{9\left(a_{2}\right)^{2}} h \tag{7}\\
& -\frac{a_{3}}{3 a_{2}} p_{0}^{h} p_{h}^{0}+p_{2}^{0} a_{2} .
\end{align*}
$$

Thus. we get the equation for Γ

$$
\begin{align*}
z^{2}= & \frac{1}{2}\left(z^{1}\right)^{2}+\frac{\Theta}{20}\left(z^{1}\right)^{5}+\frac{1}{120}\left(\frac{d \Theta}{d t}-3 h \Theta\right)\left(z^{1}\right)^{6} \tag{8}\\
& +\frac{1}{840}\left\{3 \Theta K+\frac{7}{6 \Theta}\left(\frac{d \Theta}{d t}-3 h \Theta\right)^{2}\right\}\left(z^{1}\right)^{7}+\cdots, \\
K= & k-\frac{d h}{d t}+\frac{1}{2}(h)^{2}+\frac{1}{3}\left\{\frac{1}{\Theta} \frac{d^{2} \Theta}{d t^{2}}-\frac{7}{6}\left(\frac{1}{\Theta} \frac{d \Theta}{d t}\right)^{2}\right\},
\end{align*}
$$

z^{1}, z^{2} being the nonhomogeneous coordinates of a point referred to the frame $\left[B_{0} B_{1} B_{2}\right]$.
3. When we make the transformation of coordinates ${ }^{2)}$

$$
\begin{equation*}
\bar{u}^{i}=\bar{u}^{i}\left(u^{1}, \cdots, u^{n}\right), \quad(\nu)^{n+1}=\frac{\partial\left(\bar{u}^{1}, \cdots, \bar{u}^{n}\right)}{\partial\left(u^{1}, \cdots, u^{n}\right)} \neq 0, \tag{9}
\end{equation*}
$$

we have the following relations for the vertices of the natural frame and the parameters of connection :

$$
\begin{align*}
\bar{A}_{\alpha} & =\nu Q_{\alpha}^{\beta} A_{\beta}, \quad \nu A_{\alpha}=P_{\alpha}^{\beta} \bar{A}^{\beta} \\
\bar{\Pi}_{\alpha i}^{\beta} & =P_{\lambda}^{\beta}\left(Q_{\alpha}^{\sigma} Q_{i}^{\tau} \Pi_{\sigma \tau}^{\lambda}+\frac{\partial Q_{\alpha}^{\alpha}}{\partial \bar{u}^{i}}\right), \tag{10}\\
\bar{\Pi}_{{ }_{\alpha}^{\alpha}}^{\beta} & =\bar{\Pi}_{\alpha 0}^{\beta}=P_{\lambda}^{\beta} Q_{\alpha}^{\sigma} Q_{0}^{\tau} \Pi_{\sigma \tau}^{\lambda}=\delta_{\alpha}^{\beta},
\end{align*}
$$

where we put

$$
\begin{array}{llll}
P_{0}^{0}=1, & P_{i}^{j}=-\frac{\partial \log \nu}{\partial u^{i}}, & P_{0}^{i}=0, & P_{j}^{i}=\frac{\partial \bar{u}^{i}}{\partial u^{j}}, \\
Q_{0}^{0}=1, & Q_{i}^{0}=\frac{\partial \log \nu}{\partial \bar{u}^{i}}, & Q_{0}^{i}=0, & Q_{j}^{i}=\frac{\partial u^{i}}{\partial \bar{u}^{j}} .
\end{array}
$$

Hence we have for the vertices of the frame $\left[B_{0} B_{1} B_{2}\right.$] and the quantities h, k, Θ, K

$$
\left\{\begin{array}{l}
\bar{B}_{0}=\nu B_{0}, \tag{11}\\
\widetilde{B}_{1}=\nu\left(\frac{d \log \nu}{d t} B_{0}+B_{1}\right), \\
\widehat{B}_{2}=\nu\left\{\frac{1}{2}\left(\frac{d \log \nu}{d t}\right)^{2} B_{0}+\frac{d \log \nu}{d t} B_{1}+B_{2}\right\},
\end{array}\right.
$$

$$
\begin{aligned}
& \bar{k}=k-\frac{d \log \nu}{d t} h-\frac{1}{2}\left(\frac{d \log \nu}{d t}\right)^{2}+\frac{d^{2} \log \nu}{d t^{2}} \\
& \bar{h}=h+\frac{d \log \nu}{d t} \\
& \bar{\Theta}=\Theta, \bar{K}=K
\end{aligned}
$$

If we make the transformation $\bar{t}=f(t)$, we get

$$
\begin{align*}
\bar{B}_{n} & =B_{0}, \quad \bar{B}_{1}=\frac{1}{f^{\prime}} B_{1}, \quad \bar{B}_{2}=\frac{1}{\left(f^{\prime}\right)^{2}} B_{2}, \\
\bar{h} & =\frac{1}{f^{\prime}}\left(h-\frac{f^{\prime \prime}}{f^{\prime}}\right), \quad \bar{k}=\frac{1}{\left(f^{\prime}\right)^{2}} k, \tag{12}\\
\bar{\Theta} & =\frac{1}{\left(f^{\prime}\right)^{3}} \Theta, \quad \bar{K}=\frac{1}{\left(f^{\prime}\right)^{2}} K .
\end{align*}
$$

Therefore (11) and (12) show that $\Theta(d t)^{3}$ and $K(d t)^{2}$ are invariant for the transformation of coordinates (9) and the change of parameter $\bar{t}=f(t)$.

By means of (8), the osculating conic K_{2} is represented by

$$
z^{2}=\frac{1}{2}\left(z^{1}\right)^{2}
$$

The projective normal ${ }^{3)}$ at B_{0} of Γ is the line joining B_{0} with the point

$$
\left(\frac{d \Theta}{d t}-3 h \Theta\right) B_{1}+3 \Theta B_{2}
$$

The cubic K_{3} which has a contact of the sixth order with Γ at B_{0} and meets the projective normal at B_{0} of Γ at the conjugate points with respect to K_{2} is represented by the equation $\left\{z^{2}-\frac{1}{2}\left(z^{1}\right)^{2}\right\}\left(1+a z^{1}+b z^{2}\right)=\frac{\Theta}{5} z^{1}\left(z^{2}\right)^{2}+\left\{\frac{1}{15}\left(\frac{d \Theta}{d t}-3 h \Theta\right)+\frac{2}{5} \Theta a\right\}\left(z^{2}\right)^{3}$, a, b satisfying the relation

$$
\frac{1}{6 \Theta}\left(-\frac{d \Theta}{d t}-3 h \Theta\right)^{2}+a\left(\frac{d \Theta}{d t}-3 h \Theta\right)+3 \Theta b=0
$$

from which we get

$$
\begin{aligned}
z^{2}= & \frac{1}{2}\left(z^{1}\right)^{2}+\frac{\Theta}{20}\left(z^{1}\right)^{5}+\frac{1}{120}\left(\frac{d \Theta}{d t}-3 h \Theta\right)\left(z^{1}\right)^{6} \\
& +\frac{1}{720 \Theta}\left(\frac{d \Theta}{d t}-3 h \Theta\right)^{2}\left(z^{1}\right)^{7}+\cdots
\end{aligned}
$$

Hence we can say as follows.
Let B be a point which does not lie on the tangent $B_{0} B_{1}$ of Γ, and P, P_{1}, P_{2}, P_{3} be the points of intersection of a line passing through B
with $B_{0} B_{1}, \Gamma, K_{2}, K_{3}$ respectively in the neighbourhood of B_{0}. Then the principal parts of the anharmonic ratios $\left[B P P_{1} P_{2}\right],\left[B P P_{2} P_{3}\right]$ are

$$
\frac{\Theta}{10}(d t)^{3}, \quad \frac{K}{14}(d t)^{2}
$$

respectively. ${ }^{3), ~ 4)}$
By means of (11) and (12), we can choose the system of coordinates (u^{1}, u^{2}) and the parameter t in such a way that we have $h=k=0$ for C. Then we have from (7)

$$
\begin{gather*}
\frac{d}{d t}\left(\frac{d p_{0}^{i}}{d t}+p_{0}^{h} p_{k}^{h}\right)+p_{0}^{i} p_{0}^{h} p_{h}^{0}+\left(\frac{d p_{0}^{k}}{d t}+p_{0}^{h} p_{n}^{k}\right) p_{k}^{i}=0, \tag{13}\\
(i=1,2)
\end{gather*}
$$

4. Consider another two-dimensional space $\boldsymbol{R}_{2}{ }^{\prime}$ of projective connection, where the infinitesimal displacement of the natural frame is given by

$$
d A_{\alpha}{ }^{\prime}=\omega_{\beta}^{\tau} A_{\beta^{\prime}},
$$

and the coordinates of a moving point are $\left(u^{i}\right)$. Suppose that the corresponding points of $\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{\mathbf{2}}{ }^{\prime}$ have the same value of u^{i}, the corresponding curve C, C^{\prime} in $\boldsymbol{R}_{2}, \boldsymbol{R}_{2}^{\prime}$ are defined by $u^{i}=u^{i}(t)$, and the homologous points A_{0} and A_{0}^{\prime} correspond to $\left(u^{i}\right)_{0}=u^{i}(0)=0$. Then we have

$$
u^{i}(t)=p_{0}^{i} t+\frac{1}{2} \frac{d p_{0}^{i}}{d t}(t)^{2}+\cdots
$$

We develop $\boldsymbol{R}_{\mathbf{2}}, \boldsymbol{R}_{\mathbf{2}}{ }^{\prime}$ along C, C^{\prime}, such as $A_{0}, A_{0}{ }^{\prime}$ have a common image P and the frames $\left[A_{0} A_{1} A_{2}\right],\left[A_{0}{ }^{\prime} A_{1}{ }^{\prime} A_{2}{ }^{\prime}\right]$ take a common initial position, and take, in the neighbourhood of P, the image Q, Q^{\prime} of the homologous points on C, C^{\prime} respectively. By means of (4), the écart [$Q Q^{\prime}$] is given by

$$
\frac{1}{2} \sum_{i=1}^{2}\left|\left(\prod_{{ }_{j k}}^{i}-\prod_{{ }_{j k}}^{\prime i}\right) \frac{d u^{j}}{d t} \frac{d u^{k}}{d t}(t)^{2}\right|,
$$

excepting the terms of higher orders.
If we have

$$
\begin{equation*}
\Pi_{{ }_{j k}}^{i}+\Pi_{k_{j}}^{i}=\Pi_{j_{k}}^{\prime i}+\Pi_{k_{j}}^{i}, \tag{14}
\end{equation*}
$$

[$\left.Q Q^{\prime}\right]$ is an infinitesimal of the third order at least with respect to the écart $[P Q]$. In this case, it is said that $\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{\mathbf{2}}{ }^{\prime}$ are projectively deformable. ${ }^{5)}$

In the case that (14) is not satisfied, $\left[Q Q^{\prime}\right]$ is an infinitesimal of the third order with respect to [PQ] along the two curves defined by

$$
\begin{equation*}
\left(\Pi_{j k}^{i}-\Pi_{j k}^{\prime i}\right) \frac{d u^{j}}{d t} \frac{d u^{k}}{d t}=0, \tag{15}
\end{equation*}
$$

if we have

$$
\left(\Pi_{{ }_{j k}^{1}}^{1}+\Pi_{k_{j}}^{1}\right)-\left(\Pi_{j k}^{\prime 1}+\Pi_{k j}^{\prime 1}\right)=\rho\left\{\left(\Pi_{j k}^{2}+\Pi_{k_{j}}^{2}\right)-\left(\Pi_{j k}^{2}+\Pi_{k_{j}^{\prime}}^{\prime 2}\right)\right\} .
$$

5. Consider a surface S passing through A_{0} in \boldsymbol{R}_{3}. Suppose that S is defined by $u^{3}=0$, this being possible, for, if S is expressed by an equation $f\left(u^{1}, u^{2}, u^{3}\right)=0$, we can choose a new system of coordinates \bar{u}^{i} suich as $\bar{u}^{3}=f\left(u^{1}, u^{2}, u^{3}\right)$. Along a curve C on S, we have

$$
\left\{\begin{array}{l}
d A_{0}=d u^{i} A_{i} \tag{16}\\
d A_{i}=\prod_{i k}^{i} d u^{k} A_{0}+\Pi_{i k}^{j} d u^{k} A_{j}+\Pi_{i k}^{3} d u^{k} A_{3} \\
d A_{3}=\Pi_{3 k}^{0} d u^{k} A_{0}+\Pi_{3 k}^{j} d u^{k} A_{j}+\Pi_{3 k}^{3} d u^{k} A_{3} \\
\quad\left(i, j, k=1,2 ; d u^{3}=0\right)
\end{array}\right.
$$

Take a point

$$
\bar{A}_{3}=\xi^{0} A_{0}+\xi^{i} A_{i}+A_{3}
$$

in the tangential projective space \boldsymbol{E}_{3} at \boldsymbol{A}_{0} of \boldsymbol{R}_{3}. Then (16) becomes

$$
\left\{\begin{array}{l}
d A_{0}=d u^{i} A_{i} \tag{17}\\
d A_{i}=\bar{\Pi}_{i k}^{{ }_{i}^{n}} d u^{k} A_{0}+\bar{\Pi}_{i k}^{\prime} d u^{k} A_{j}+\Pi_{i k}^{3} d u^{k} \bar{A}_{3} \\
d \bar{A}_{3}=\cdots, \\
\bar{\Pi}_{i k}^{a}=\Pi_{i k}^{a}-\xi^{\alpha} \Pi_{i k}^{3} \quad(\alpha=0,1,2 ; i, k=1,2)
\end{array}\right.
$$

The images of the tangents of curves passing through A_{0} on S lie on the plane $A_{0} A_{1} A_{2}$. Now we consider the two-dimensional space \boldsymbol{R}_{2} of projective connection defined by the connections $\bar{\Pi}_{i k}^{a} d u^{k}$ relating to S. It may be supposed that the tangential projective plane \boldsymbol{E}_{2} at A_{0} of \boldsymbol{R}_{2} coincides with the plane $A_{0} A_{1} A_{2}$, the frame of reference associated with \boldsymbol{R}_{2} has the common initial position with $\left[A_{0} A_{1} A_{2}\right]$, and the infinitesimal displacement of the frame is given by the projections of the variations of $\left[A_{0} A_{1} A_{2} \bar{A}_{3}\right]$ on the plane $A_{0} A_{1} A_{2}$ from \bar{A}_{3}. Namely we get for \boldsymbol{R}_{2} from (17)

$$
\left\{\begin{align*}
d A_{0} & =d u^{i} A_{i} \tag{18}\\
d A_{i} & =\bar{\Pi}_{i k}^{\alpha} d u^{k} A_{\alpha}
\end{align*}\right.
$$

If we choose ξ^{i} in such a way that

$$
\begin{equation*}
\xi^{i} \Pi_{i k}^{3}=-\Pi_{3 k}^{3} \quad(i, k=1,2) \tag{19}
\end{equation*}
$$

the frame $\left[A_{0} A_{1} A_{2}\right]$ is natural, for, since the frame $\left[A_{0} A_{1} A_{2} A_{3}\right]$ is natural, we have the condition

$$
\sum_{i=1}^{2} \bar{\Pi}_{i^{k}}^{i}=\sum_{i=1}^{3} \Pi_{i k}^{i}=0
$$

The point \bar{A}_{3} in this case lies on the line

$$
\sum_{i=1}^{3} z^{i} \prod_{i k}^{3}=0 \quad(k=1,2)
$$

in \boldsymbol{E}_{3}, when the rank of the matrix

$$
\left(\begin{array}{lll}
\Pi_{11}^{3} & \Pi_{21}^{3} & \Pi_{31}^{3} \\
\Pi_{12}^{3} & \Pi_{22}^{3} & \Pi_{32}^{3}
\end{array}\right)
$$

is two, z^{i} being the coordinates of a point referred to the frame [$A_{0} A_{1} A_{2} A_{3}$].
6. Project the development Γ^{\prime} of a curve $C\left[u^{i}=u^{i}(t), u^{3}=0\right]$ on S on the plane $A_{0} A_{1} A_{2}$ from A_{3}, and we have by (4)

$$
\begin{gathered}
x^{i}=p_{0}^{i} d t+\frac{1}{2}\left(\frac{d p_{0}^{i}}{d t}+\prod_{{ }_{j k}}^{i} p_{0}^{j} p_{0}^{k}\right)(d t)^{2}+\cdots \\
\left(p_{0}^{3}=0, \quad i=1,2\right)
\end{gathered}
$$

while the image $\bar{\Gamma}$ of the curve $\bar{C}\left[u^{i}=u^{i}(t)\right]$ of \boldsymbol{R}_{2} mentioned in the preceeding paragraph is expressed by

$$
\bar{x}^{i}=p_{0}^{i} d t+\frac{1}{2}\left(\frac{d p_{0}^{i}}{d t}+\bar{\Pi}_{{ }_{3 k}}^{i} p_{0}^{j} p_{0}^{k}\right)(d t)^{2}+\cdots \quad(i=1,2) .
$$

Consider a point-correspondence between S and \boldsymbol{R}_{2}, the homologous points having the same values of u^{i}. Let Q and \bar{Q} be the homologous points in the neighbourhood of A_{0} on Γ and $\bar{\Gamma}$ respectively. Then, similarly as $n^{\circ} 4$, the écart $[Q \bar{Q}]$ is an infinitesimal of the third order with respect to $\left[A_{0} Q\right]$, when the equation equivalent to (15) is satisfied. Then we have by means of (17)

$$
\begin{equation*}
\xi^{i} \Pi_{j k}^{3} d u^{j} d u^{k}=0 \quad(i=1,2) \tag{20}
\end{equation*}
$$

On the other hand, $\Pi_{{ }_{j k}^{3}}^{3} d u^{\prime} d u^{k}=0$ defines the asymptotic curves ${ }^{6)}$ of S. If $\xi^{i}=0,(20)$ is an identity. Hence we can say as follows:

Let S be a surface in \boldsymbol{R}_{3}, C be a curve passing through a point A_{0} on S, $\left[A_{0} A_{1} A_{2} A_{3}\right]$ be a natural frame in the tangential projective space \boldsymbol{E}_{3} at A_{0} of \boldsymbol{R}_{3}, and the plane $A_{0} A_{1} A_{2}$ be the image of the tangent plane at A_{0} of S. Denote by Γ the projection of the development of C on the plane $A_{0} A_{1} A_{2}$ from A_{3}. Associate with S the two-dimensional space \boldsymbol{R}_{2} of projective connection in which the infinitesimal dispacements of the frame $\left[A_{0} A_{1} A_{2}\right]$ are defined by the projections of the variations of the frame $\left[A_{0} A_{1} A_{2} \bar{A}_{3}\right]$ on the plane $A_{0} A_{1} A_{2}$ from a point \bar{A}_{3} which does not lie on the plane $A_{0} A_{1} A_{2}$ in \boldsymbol{E}_{3}. Consider a point-correspondence between S and \boldsymbol{R}_{2} in such a way that the homologous points on them correspond to the same values in the system of coordinates determining points of \boldsymbol{R}_{3}, and let $\bar{C}, \overline{\mathrm{I}}$ be the figures with respect to $\boldsymbol{R}_{\mathbf{2}}$ homologous to C, Γ. Take the homologous points Q, \bar{Q} in the neighbourhood of A_{0} on $C, \overline{C .}$. If the écart $[Q \bar{Q}]$ for the images is an infinitesimal of the third order with respect to $\left[A_{0} Q\right], C$ is an asymptotic curve of S. If \bar{A}_{3} lies on the line
$A_{0} A_{3}, \boldsymbol{R}_{\mathbf{2}}$ is projectively deformable to the space similar to \boldsymbol{R}_{2} with A_{3} as the centre of projection.

If the relations (20) is identically satisfied for any values of ξ^{i} and any curve, we have

$$
\Pi_{j k}^{3}+\Pi_{k_{k j}}^{3}=0 \quad(j, k=1,2),
$$

which is the condition that S is totally geodesic. ${ }^{7}$ Hence it is necessary and sufficient that S is totally geodesic, in order that the spaces \boldsymbol{R}_{2} corresponding to the different centres \bar{A}_{3} of projection are projectively deformable to each other.
7. The displacement associated with an infinitesimal closed cycle on S of \boldsymbol{R}_{3} is given by $R_{\alpha h k}^{\beta}\left[d u^{h} d u^{k}\right]$ with $d u^{3}=0$, where

$$
\begin{gather*}
R_{\alpha h k}^{\beta}=\frac{\partial \prod_{\alpha k h}^{\beta}}{\partial u^{k}}-\frac{\partial \prod_{\alpha k}^{\beta}}{\partial u^{h}}+\Pi_{\alpha k}^{\lambda} \Pi_{\lambda k}^{\beta}-\Pi_{\alpha k}^{\lambda} \Pi_{\lambda h}^{\beta} \tag{21}\\
(\alpha, \beta, \lambda=0,1,2,3 ; h, k=1,2),
\end{gather*}
$$

and $\left[d u^{h} d u^{k}\right]$ represents the exterior product. On the other hand, \boldsymbol{R}_{2} ($n^{\circ} 5$) associated with S, under the condition (19), has the tensor of curvature and torsion

$$
\begin{gathered}
\bar{R}_{\alpha h k}^{\mathrm{s}}=\frac{\partial \bar{\Pi}_{\alpha{ }^{\alpha}}^{\beta}}{\partial u^{k}}-\frac{\partial \bar{\Pi}_{\alpha k}^{\beta}}{\partial u^{h}}+\bar{\Pi}_{\alpha h}^{\lambda} \bar{\Pi}_{\lambda k}^{\beta}-\bar{\Pi}_{{ }_{k}}^{\lambda} \bar{\Pi}_{\lambda h}^{\beta} \\
(\alpha, \beta, \lambda=0,1,2 ; h, k=1,2) .
\end{gathered}
$$

Reducing this by means of (17), we get

$$
\begin{align*}
& \bar{R}_{\alpha h k}^{\mathrm{\beta}}=R_{\alpha h k}^{\beta}-\xi^{\beta} R_{\alpha h k}^{\mathfrak{\alpha}}+\Pi_{\alpha h}^{3} \frac{\partial \xi^{\beta}}{\partial u^{k}}-\Pi_{\alpha k}^{\alpha} \frac{\partial \xi^{\beta}}{\partial u^{h}} \tag{22}\\
& +\left(\prod_{\alpha k}^{3} \Pi_{\lambda h}^{\beta}-\Pi_{\alpha k}^{3} \Pi_{\lambda k}^{\beta}\right) \xi^{\lambda} \\
& +\Pi_{\alpha k}^{3} \Pi_{{ }_{2}^{2} h}^{\beta}-\Pi_{\alpha}^{3}{ }_{\alpha}^{3} \Pi_{{ }_{3}^{\beta}}^{\beta} \\
& (\alpha, \beta, \lambda=0,1,2 ; h, k=1,2) \text {, }
\end{align*}
$$

so that

$$
\begin{equation*}
\bar{R}_{c h k}^{\beta}=R_{0 h k}^{\beta}-\xi^{\beta} R_{c h k}^{3} . \tag{23}
\end{equation*}
$$

Hence if \boldsymbol{R}_{3} is the space of zero torsion, the space \boldsymbol{R}_{2} associated with the surface S in \boldsymbol{R}_{3} by projection ($n^{\circ} 5$) is so, too.

If S is totally geodesic, we have

$$
\Pi_{{ }_{j k}^{3}+\Pi_{k_{j}}^{3}=0 \quad(j, k=1,2), ~}^{2}
$$

so that from (22) we have

$$
\begin{aligned}
\bar{R}_{i 12}^{\beta}= & R_{i 12}^{\beta}-\xi^{\beta} R_{i 12}^{3} \\
& -\delta_{i}^{1} \Pi_{12}^{3}\left(\frac{\partial \xi^{\beta}}{\partial u^{1}}-\Pi_{\lambda 1}^{\beta} \xi^{\lambda}-\Pi_{31}^{\beta}\right) \\
& +\delta_{i}^{2} \Pi_{21}^{3}\left(\frac{\partial \xi^{\beta}}{\partial u^{2}}-\Pi_{\lambda 2}^{\beta} \xi^{\lambda}-\Pi_{32}^{\beta}\right) .
\end{aligned}
$$

If the tensor of torsion for \boldsymbol{R}_{3} is zero, moreover, we have

$$
\Pi_{{ }_{j} k}^{3}=0,
$$

and accordingly by (21)

$$
R_{i h k}^{3}=0 \quad(i, h, k=1,2)
$$

Thus if \boldsymbol{R}_{3} is a space of zero torsion and S is a totally geodesic surface in \boldsymbol{R}_{3}, we have for \boldsymbol{R}_{2} associated with S

$$
\bar{R}_{\alpha h k}^{\beta}=R_{\alpha h k}^{\beta} \quad(\alpha, \beta=0,1,2 ; h, k=1,2) .
$$

Also, the relation (23) shows that, the tensor of torsion for \boldsymbol{R}_{2} is equal to the components of the tensor of torsion associated with an infinitesimal cycle on S of \boldsymbol{R}_{3}, when

$$
R_{c h k}^{3}=0 \quad(h, k=1,2),
$$

which is the necessary and snfficient condition in order that the conjugate tangents at A_{0} of S are in involution. ${ }^{8)}$
8. Now we consider as an example a surface S in a projective space \boldsymbol{E}_{3} of three dimensions. The displacement of the Darboux frame [$A_{0} A_{1} A_{2} A_{3}$] associated with a moving point A_{0} of S is given by

$$
\left\{\begin{array}{l}
d A_{0}=\omega_{0}^{i} A_{i}, \\
d A_{i}=\omega_{i}^{?} A_{0}+\omega_{i}^{\tau} A_{l}+\omega_{i}^{3} A_{3}, \\
d A_{3}=\omega_{3}^{0} A_{0}+\omega_{3}^{2} A_{l},
\end{array}\right.
$$

where

$$
\begin{aligned}
& \omega_{j}^{i}=d u^{i}, \quad \omega_{i}^{0}=M_{i j} d u^{j}\left(M_{i j}=M_{j i}\right), \\
& \omega_{i}^{l}=\left(K_{i j}^{i}+\Gamma_{i j}^{l}\right) d u^{j} \quad\left(K_{i j}^{l}=K_{j i}^{l}, \Gamma_{i j}^{l}=\Gamma_{j i}^{l}, K_{i j}^{i}=0\right), \\
& \omega_{i}^{3}=H_{i j} d u^{j} \\
& \left(H_{i j}=H_{j i}\right),
\end{aligned}
$$

and the indices i, j, l, etc. take the values $1,2$.
By projecting the variations of A_{α} on the plane $A_{0} A_{1} A_{2}$ from the point $\xi^{\infty} A_{\alpha}+A_{3}(\alpha=0,1,2)$, we get the two-dimensional space \boldsymbol{R}_{2} of projective connection associated with S, in which the displacement is defined by

$$
\left\{\begin{array}{l}
d A_{0}=\omega_{j}^{i} A_{i}, \\
d A_{i}=\left(\omega_{i}^{\alpha}-\xi^{\alpha} \omega_{i}^{3}\right) A_{\alpha} .
\end{array}\right.
$$

The frame $\left[A_{0} A_{1} A_{2}\right]$ is natural, if $\xi^{t}(i=1,2)$ satisfy $\omega_{i}^{i}-\xi^{i} \omega_{i}^{3}=0$, which becomes $\xi^{i} H_{i j}=\Gamma_{i j}^{i j}$, or $\xi^{l}=H^{l j} \Gamma_{i j}^{i}$.

Since the parameters of connection of $\boldsymbol{R}_{\mathbf{2}}$ are

$$
\begin{aligned}
\Pi_{o i}^{l} & =\Pi_{i 0}^{l}=\delta_{i}^{l} \\
\Pi_{i j}^{o} & =M_{i j}-\xi^{0} H_{i j} \\
\prod_{i j}^{l} & =K_{i j}^{l}+\Gamma_{i j}^{l}-\xi^{l} H_{i j}
\end{aligned}
$$

these quantities are symmetric with respect to the lower indices. Hence \boldsymbol{R}_{2} is a space of torsion zero. This follows from the result of the preceeding paragraph, for \boldsymbol{E}_{3} is the space in which the tensor of curvature and torsion is zero.

Since the tensor of torsion of \boldsymbol{R}_{2} is zero, $\boldsymbol{R}_{\mathbf{2}}$ is applicable on the tangent plane $A_{0} A_{1} A_{2}$ of S, excepting an infinitesimal of the fourth order, by the equation

$$
\begin{align*}
x^{i}= & u^{i}+\frac{1}{2} \Pi_{{ }_{j k}}^{i} u^{j} u^{k} \tag{24}\\
& +\frac{1}{6}\left(\frac{\partial \prod_{j k}^{i}}{\partial u^{i}}+\Pi_{{ }_{j k}}^{\lambda} \Pi_{\lambda \imath}^{i}\right) u^{j} u^{k} u^{l}-\frac{1}{2} \Pi_{{ }_{j k}}^{0} u^{i} u^{j} u^{k},
\end{align*}
$$

which defines the point-correspondence between the points (x^{i}) on the plane $A_{0} A_{1} A_{2}$ and (u^{i}) on \boldsymbol{R}_{2}. If we make $h=k=0$ for a curve $C\left[u^{i}=u^{i}(t)\right]$ in \boldsymbol{R}_{2}, the relations (13) are satisfied. By expanding $u^{i}(t)$ into a power series of $d t$ by making use of (13), and substituting the expansion in place of u^{i} of (24), we obtain the equation of the curve C^{\prime} on the plane $A_{0} A_{1} A_{2}$ corresponding to C. On the other hand, the development Γ of C on $A_{0} A_{1} A_{2}$ is given by (4).

If the development Γ has a contact of the fourth order with the curve C^{\prime} corresponding to C with respect to the correspondence (24), we have

$$
R_{n k l}^{i} \frac{d p^{k}}{d t} p^{h} p^{l}=0
$$

If this relation is satisfied, whatever the curve C may be, the appli- . cability of \mathbf{R}_{2} on $A_{0} A_{1} A_{2}$ is of the fourth order. Then we have

$$
R_{\alpha h l}^{i}=0
$$

Hence the space \boldsymbol{R}_{2} is normal, ${ }^{9)}$ if $\boldsymbol{R}_{\mathbf{2}}$ admits an applicability of the fourth order on $A_{0} A_{1} A_{2}$.

The tensor of curvature and torsion of \boldsymbol{R}_{2} is in general

$$
\begin{aligned}
R_{h k l}^{i}= & \frac{\partial}{\partial u^{l}}\left(K_{h k}^{i}+\Gamma_{h k}^{i}-\xi^{\imath} H_{h k}\right)-\frac{\partial}{\partial u^{k}}\left(K_{h l}^{i}+\Gamma_{h l}^{i}-\xi^{i} H_{h l}\right) \\
& +\left(M_{h k}-\xi^{0} H_{h k}\right) \delta_{l}^{i}-\left(M_{h l}-\xi^{0} H_{h l}\right) \delta_{k}^{i} \\
& +\left(K_{h k}^{\prime}+\Gamma_{h k}^{t}-\xi^{\jmath} H_{h k}\right)\left(K_{l l}^{i}+\Gamma_{l l}^{i}-\xi^{i} H_{j l}\right) \\
& -\left(K_{h l}^{s}+\Gamma_{h l}^{\prime}-\xi^{\jmath} H_{h l}\right)\left(K_{j k}^{l}+\Gamma_{j k l}^{l}-\xi^{\prime} H_{j k}\right)
\end{aligned}
$$

and consequently we have for $\boldsymbol{R}_{\mathbf{2}}$

$$
R_{i k l}^{i}=0
$$

By means of Bianchi's identity in the case of torsion zero

$$
R_{l k n}^{i}+R_{k h l}^{i} \dot{t}+R_{h l k}^{i}=0
$$

and

$$
R_{k h_{i}}^{i}=-R_{k i \hbar}^{i}
$$

we get

$$
R_{i k h}^{i}=R_{h k i}^{i}-R_{k h i}^{i},
$$

which reduces to

$$
R_{k k i}^{t}=R_{k k i}^{i}
$$

Therefore the tensor $R_{h k}$ is symmetric for the space \boldsymbol{R}_{2}, putting

$$
R_{h k}=R_{h k i}^{\star}
$$

(Received February 29, 1952)

References

(1) E. Cartan: Leçons sur la théorie des espaces à connexion projective. (1937), p. 177.
(2) J. Kanitani: Les équations fondamentales d'une surface plongée dans un espace à connexion projective. Mem. Ryojun Coll. Eng. Vol. XII (1939) p. 64.
(3) J. Kanitani: Sur les repères mobiles attachés à une courbe gauche. Mem. Ryojun Coll. Eng. Vol. VI (1933) p. 91-113.
(4) M. Tsuboko: Sur la courbure projective d'une courbe. Mem. Ryojun Coll. Eng. Inoue Com. Vol. (1934), p. 59-74.
(5) J. Kanitani: On a generalization of the projective deformation. Mem. Coll. Sci. Kyoto Univ. Ser. A, Vol. XXV (1947), p. 23-26.
(6), (7), (8), (9) E. Cartan, loc. cit. p. 260, p. 265, p. 262, p. 246 respectively.

