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On Sufficient Conditions for a Function
to be Holomor phic in a Domain

By Zenjiro KURAMOCHI

§1

1. The problem under what condition it is sufficient for the con-
tinuous function f(z)=U(z)+iV(z) of a complex variable z = +1iy
defined in a domain D of the z-plane to be holomorphic, has been
studied from many points of view. In particular one is from the the-
ory of a real function or the integral, and the other is from the
properties of an analytic function in the neighbourhood of the regular
point, for instanice, the invariance of segment’s ratio, of angles, etc.
The latter is the starting point of Menchoff’s study continued from
1923 to 1938.

In regarding this there may be enumerable algebraic singular pomts
(i. e. branch point) at which the local properties in the neighbourhood
will be lost to some extent, his allowance that there might be enumerable
points at which the properties supposed as the conditions of his theo-
rems, were not satisfied, renders to be more interesting in the case
when f(z) is not univalent, because univalent and holomorphic function
cannot have any branch points in its' domain. The object of our
study is to extend his theorems so as they may remain valid even when
f(z) is not necessarily univalent, to shorten his proofs and generalize
in some ways.

When lim’ (z°+h) 1 (2,) exists, we call f(z) is monogene at z=

Z,. 'The necessary and sufficient conditions for f(z) to be monogene,
is that f(z) is totally derivable » and simultaneously satisfies the Cauchy-
oU_ 2V oU__ _ oV
ox oy’ é}] ox
and sufficient conditions for f(z) to be holomorphic in D is that f(z)
is monogene at every point in D. We see directly that the set in
which f(z) is not regular forms a perfect set.

2. We denote the half lines issuing from z by +,(z); i=1.2.3...,

Riemann differential equations and the necessary

1) Pompeiu : Sur la continuité des fonctions de varibles complexes, Ann. Fac. Soc.
Université Toulouse (2), pp. 262-315 (1905).
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the angle made between r, and r; by [r(2)"7,2)] and the amplitude of
f(€)—f(z) by amp [f(£)—f(z)). If the upper and lower limit h_rr_l'f—(@_#
&7
f(é) f £)—1(2)

lgm exist and when two extreme limits of im{&)=1(2) (f) 7; ()
>z e —
hmf (E )— f (2)
s £z
r.B(z) respectively.

We say that f(z) satisfies the property K”, K"* and K"** at z=z,,
if the folllowing conditions are satisfied respectively.

PROPERTY K"

1° To z=z, three lines 7,(z,) correspond such that [r,(z)A7,(2)]
=0 (mod =)

20 rA(2) = r;A(z) 1.5.=1.2.3

PROPERTY K"*

1° To z=z, two lines 7,(z) correspond such that [r(z)"7,(2)}=0
(mod =)

and

are equal, we denote them by r,A(2), r,B(z) and r,4(z),

2° 7,A(z)< 400 and moreo'ver two sequences qi1 -qf-qf .. OD T,(2)
exist satisfying
lim B(q;) = lim B(Q!)
PROFERTY K"*% i ,
1° To 2=z, three lines r,(z) correspond such that [r«(z)"r,(z)}=E0
(mod =)
2° ,A(2)<_+0c0 and moreover three secquence a -qf-qf... on 7,(z)
exist satisfying lim A(q})= lim A(qg}) i, =1. 2. 3, and amp
n=00T, n=00T 5

f(a)—1@)] x [fa)—1(=z)]>0
3. Condition S. For a continuous function f(z) in D, let Q be the
image of D as z varies in D: Q=f(D). At every point of Q, let
s(w): weQ, be the number (finite or -infinite) of times when w is
covered by f(z). Then s(w) is measurable.
Proof. Let @, b and ¢, d be the upper and lower bounds of z, ¥

,
coordinates of D :I‘“=[a. ], I=[c. d]. For each pOS1t1ve integer #,

let us put I,"=[a. a+(b—a)/2"). L"=(a+(k—1)(b—a)/2" ca+1(b— @)
/2"...... L’f)——(c+(h’ -1)(d—¢)/2"c+K'(b—a)/2"]: k. K'=1,2,3......

These define two subdivision 3 and fé““‘ of the intervals I/"m and I'
into 2" subintervals, of which the first is closed and the other are
half open on the left respectively. Let us  denote the rectangle by
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(n) . . C ¢ R !
R.: of which the sides are I, and I,,, these R,', make up a sub-

Vs .
division of R of which I and I‘” are sides, composed of 22" parts.
For k=1.2.3...2", let s;',";, denote the characteristic function of the

set f(RBuo) and let
s™(w) =k>_:.« S, w(w): k, K=1,2.22..... 2",

We see at once that the functions s™(w) constitute a non decrea-
sing secquence which converges at each point of w to s(w). Hence,
the functions s (w) being measurable, so .is also the function s(w),
and s(w) shows the number of times when w is covered by f(z) in D.

We call, conditions S is satisfied in D if

S S(W)AU AV < + 00 : w=U +iV
Q

Menchoff proved the following theorem * :

4. Theorem 1. If w=f(z) is a continuous function defined in D, if f(z)
is o topological and direct (i,e, sense preserving) transformation of the
z-plane to the w-plane, and moreover K" is satisfied at every point in
D, except at most enumerable points, then f(z) is holomorphic throughout
in D.

We shall prove the next modified theorem

Theorem 1. For the continuous function w=f(z) defined in D (not
necessarily topological or univalent), if the followmg conditions are sa-
tisfied,

1° K"* (or K"**) is satisfied at every point except at most enu-
merable set,

2° Condition S is satisfied in D,
then f(z) is holomorphic in D.

In order to prove the theorem we proceed with some lemmas.

5. Lemma 1. If f(z) is the continuous function having two lines v,(z)
on which lim -, A(z)< +co at every point z except at most enumerable
points, then f(z) is almost everywhere totally derivable®

To prove the lemma 1, we have only to show hmf (z+h) f (z)<

almost everywhere in D, by Stepanoff’s Theorem .
If Lemma 1 were false, we can find a positive measure set £, in which

—If(z +h) -f(2)

llml lﬂoo from which follows that f(z) is not regular in £.
>0

2) Menchoff : Sur les conditions monog:nes, Bull. de Math. France pp, 141-182 (1928).

3) Menchoff : Sur les differentiales totales des fonctions umvalents Math. Ann. pp. 78-
85 (1931).

4) Stepanoff : Ueber total Differentierbarkeit, Math. Ann. 70, pp. 318-320 (1925).
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We denote the set of points of density of E, by E,, we observe that
mes |E—FE,|=0, and accordingly for any positive number & we can
find a perfect set E,, such as E,2F,, mes |E,—FE,|<é. We easily
see that any portion of E, has positive measure.

We denote the set satisfying the following conditions by G (P. N
n,, Ny): where P. N. n,, n, are all integers

1
o —_—
1 [A (%) NP]<2NP A is the fixed direction
o 1’< A ] *M.
2 [NP NPT Nz2?
30 l’i(f—)““_("')iq’ : 0<|;—z1_g%: £ erlz)
4° dist (z, boundary of D)ng‘%—
then =2 }] G(P N, n,, ny)+H

1’ 2
where H is the set in which K”* (or K"**) is not satisfied which is
enumerable at most. . | -
By Baire’s theorems we conclude that there is a portion II% (we
assume that mes II-=0 without losing generality) defined by a certain

open set D/, and in II a certain G(P,. N,.n,) is dense, which will be
denoted by G,. In the case when II/\G, >z, 7,(z) are defined already,
and in the case when II/\G, 5z €Il we define =, as the limit of =,(z,)
2,=z: 2, €II\G,. From the continuity of f(z) we easily recognize
that these 7,(z): z € II/\D’ satisfies all the conditions of Lemma 1.

Proof of the lemma 1. For a positive measure set II, we know
that the set of linearly density point of © II .with respect to a fixed
direction, has the same measure as that of II.

Now let us denote by X and Y axes the two half lines of the
‘angles associated with the fixed dlrectlons N;’ and 17:’;21)3
intersect perpendicularily each other. If we denote by 11* the set of
points of linearly density of II with respect to X, and Y directions
simultaneously, then

these axes

mes |II--IT*|=0

By Egoroff’s theorem for any small number & and 5 we can find a
positive measure set IT** of IT* and a positive number & such that if

5) Saks: Theory of the Integral, p. 54 (1937).
6) Saks: loc. cit. p. 54.
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l is the line containing a point IT** at least parallel to X or Y axis
and its length is smaller than & then

mes IN\IT*_ 1
__l__>1

€ * _ Tk Cs< L
5 mes [IT*—TI%*|<7y : =5
If 2, is a point of 1T**, let us trace X, Y axes going through z, and
denote by V,(z,) the circular neighbourhood of z, with centre z, and
diameter s, where

s< - 8

3 1 1 5(
2(1—¢) cosec(zp 2NP> 1+ tan

(1)
(2P 2NP)COt(2P ZNP)}

Then |£(%#’2§MP: z€IIN\V,(2,): M depends only on P and N.
%0

1 1 . .
Take p, so that |z,p,|=s cosec <2?—2N—P><8 then there exists a point
’ ’ " 4 1
p,: P, €IT¥%, |plzol<1__-_—8]p1z0] on the » 6,
left hand of p,, and take =,(p,) which
intersects with Y axis at p, and denote

by 6,, the angle made X axis and =,(p;).
As |z,p|<8, there exists a point p, € II

: ° 4 , Zo
such as [p:2| <J_1p_2__z_é}_ and trace mo(p;) P W

intersecting with X axists at p;, we Fig. 1
shall name as follow

WO

ps = the intersecting point of Tl(p;) and 'rz(p;)
6, = angle p\psps
0; = angle PP,

For N>=2 we have

1 1.

0&4*15\213 anp="=3p 2NP< <

11 . 1 n
P e <l = 4 = e
05 —vp anp=0:=5 " optoNp<s

1 1 1,1
‘P‘NP—03§P NP

Let z be a point of II lying on the periphery of V.(z,), then +,(z)

exists which has a point ¢ with =,(p;) in common and as z, € II**CII
there exists ,(z,) which has a common point &, with =(p).
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Let. 0,=1angle z{p;, 605=2,{,Ds,
z 1 1 1 1 =~ 1 1 1 -1
rZ_1_ 1 <z _ 4 1
then &~ r~Np=h <5 9p*Np 3 op NP0S7 3P NP
’ 1 ’ ”
lzopll—scosec 21P 2NP <8 lplzolglzoplll__e; plen+

Izop3|=lzop;ltan 0,; !pzp;|

22051 < |24 | (tan 0‘)1-5

11
=1yel ol =g e tan 6= sc""*’°<2P sNp)tan (2P+2NP)
|ipy] = ]pzp; sin 6y .|, é,I_(s+zop3) sin 0, _(s+2,p;) sin 6,

cos 6, _
| sin( 5~ ) cos( 3+ yp)
|z§0[<gop_3_sm___0_5 from (1).

cos 0,
Thus

]zofo!’ Ié‘opél: lp;psl' |p5p;|' Ip:psli lpsp;l’ Ip;é‘l’ Ié‘: zl__<=8
and all <K,|z—z,| i=1. 2...3 and all K, <400 depend only on P
and N. v

In the same manner we proceed with =,(p}), etc, in the half plane
under the X axis, and p;, ;... etc. are denoted as in the former and
peps and p,p, intersect at p,, then p,, s, »;, D5 and p, forms a quasi
parallelogram /7/,.

Finally

| f(2)—F(20)| 1 (20)=F(E) | + | F(Ea)— F(wa)| +|f (D2)—1 (5)]

+1f(0s) —F (D] + | ()~ (@) | + 11(0s) — f(D2)| + | F(2)—F(£)]

+|f(E)—f(z)| <M.P|z—z,|,
where M depends only on P and N whenever z € V,(z,)N\II.

In the case when z € II, we make s’ so small that quasi parallelo-
gram /7, associated with s’ and z, may be contained in V,(z,) com-
pletely, then we have the same conclusion for any point of z’' lying
on the cercumference of / /., that is

M’thP: ¢’ € [7,’s periphery N\V,\D': M'=M'(M.P)

!
2'—z,

If € L7N\Ve~TDND TE)=1E) ig regular
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By the maximum principle of analytic functions

f(2)—1(20)

z—2,

<MP: M" =max (M, M'): if ze€V(2,)\[Ts

Since ¢ and 7 any positive numbers, by Stepanoff’s theorem f(z) is
totally derivable almost everywhere.

Remark. When NZ=21 the proof is valid too with no essential altera-
tion.

6. Lemma 2. When at z=z,, f(z) is totally derivable and satisfies
K"*%, then f(z) is monogene at z=z,.

f(21) = F(2o)=(A, +i4,)(@,— &) + (B, +iB2 )y, — Yo) +E&(21) | 21— 2o | =5(2))
+&(2)|21—2%0| : lim &(z,)=0: z,=2,+y,: i=1.0
81-»20

f(21)—1(20)

Z2,—2,
=1/(A, +14;) cos 0,+(B, +iB,) sin 0, + 2sin 0, cos 6,(A,B, + A,B;)
A,, 4,, B, and B, constants for 6,; i=1.2.3 (mod =)

We easily have the relation 4,=+B,, A;,=FB,;, but from the latter
condition of K"** we have A,=B,, 4,=—B,, Therefore f(z) is mono-
gene, in the case of K”* will be proved in the same manner.

7. Lemma 3. A continuous function f(a) is defined in the closed
interval |a-b] and there is a closed set F'. [a+b]—F=>I,: I,=(a,+b,)
are intervals contigus to F, with satisfiying the following couditions

lim

?17%

1° f(z)—1(2s) <M: if 2, z,€F
2y—2
2°  f'(x) ewists almost everywhere and Eglf’(x)lda:< + 00
In

3° For each interval : I,=(a;+b,), f(x) is absolutely continuous
b

theng f(@)ds = F(b)—f(a).

a

Let us denote the uppper and lower bound of F' by &' and b’ and

fla)y=f(z)=f(x) if xeF or a<la’ or &b
f(x)='"’f(a'¢/)t"::f(c‘): x——-’“:'ziitb‘, if v€F and o'<a<ld'

and x €1,
where A, x>0

After elementary calculation we have
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W‘éM if &y xjéF: a’>x,, xj<b r €, ijF
1T vy

Consequently f(z) has the property N of Lusin, and from 2° f(2) is
integrable. We denote the upper lower relative to F derivatives by

f«(@) or f.(x) and when two are equal, by fi().

Then ful@)=fnx)=f'(x) almost everywhere in F, where
lim f/(2)< lim f,(«)< Iim f7(2)< 1im 7(=).

From 2° S |fi(2)— Fi(2)|de + 25 |f' (%) —f(x)|dz=0, it follows
F I, »
F(6) ~T(a)= f(b)—f(a)=| f/()i
8. Proof of the theorem 1.
We have only to show that f(z) is holomorphic in D', for it follows
that IT is empty set.
m

NP and

Let us take £, and 5 axies which are perpendecular to

Ty
NP
between £ and 5 and X axis, then we have

x—x,=Ecosa+ycosB, y—y,=~Esina+qysing
~1_ 1 A 1_1
7[>7r _.P‘ 2NP>[7L(21) TI(ZZ)]> P NP>0 (2)

Take a so small parallelogram /7, in D' whose four sides are parallel
& or 5 axis, of which the diameter is smaller than

1 . 1 1
+ 51 (3—xnp) 3)
We shall prove that f(z) is holomorphic in this prallelogram. If

2,, 2, have the same & coordinates and both in II/\D'’ then 7,(z,) and
T,(z,) exist which have a point z; in common. From (2) and (3)

directions respectively and denote by « and B the angles made

=zl < s =2l <p a2l +|ei—2 | <Mz =]
M =M (P.N)

We see directly that I&z;ii@!)gM.P in the same manner of
1

2
Lemma 2, if z€ /7N\D'—1II then f(z) is regular, therefore U, and V
absolutely continious with respect to £. From condition S and change

of variables,
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“ |f/(2) |2dEdy = “ |f'(2) | 2dady < ” $(0)AU-dV < + o0
- ' D=l o
By the theorem of Fubini

[ " ou| ov
} |f'(z)|dé <400 for almost 5 and |f(z)[,2_é§1, ’2’65

p’

by Lemma 3
3] U 13
| Se= V-V, | STde=V(g)—V(&): for almost ,
31 131

Similarly we have for 5 axis.
" ou Cov
[ 5, an=Utm=UCn) + {5 a=V(n)=V): for almost &
n1 n

Denoting by C the circumference of /7

j f(2)dz = SS(—Uﬂ C0S @ +Vy sin « + Uz cos c— Vi sin 8)dEdy

D o

+1 SS (—Vycos a--Uysin a+Vzcos B+ UsR)dEdy

vy

— Sg (U,—V,)dady +i ﬂ(vy +V)dady =0,
v 7
because f(z) is monogene almost everywhere in D.

Finally we conclude that f(z) is holomorphic in D', from which
follows that f(z) is holomorphic in D.

§ 2
9. In this paragraph we intend to enlarge the results in the pre-
ceedings, in the wide sense.
We denote by f(z)=w, a continuous function defined in a domain

of the z-plane.
Proposition 1. If f(z) satisfies the following conditions.

1° f(2) is contiuous and for almost y, app, U?, app V, and for
almost 2, app U,, app V, exist except at most enumerable set, relative
x, and y axis respcetively.

20

Hlapp U,|dxdy, Ss |app U, |dxdy, ”}app V,|dady, “]app Vyldedy <oo
“p

o
D D

7) app means approximate derivate. Saks, p. 215. 300, 225.
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3° app U,=appV,, app U,=—appV, a,lmoet everywnere in D, then
f(2) is holomorphic in D.

From Fubini’s theorem for almost ¥ Xlap,pU,[dx and 1°) follows
' y=v

that [U(z, y)] is function A.C.G.» We define U(x, y)=§(app U.(2,9))de,
V=1, ‘.10
then U—U is a function A.C.G, therefore U,=app U,=app U, almost

everywhere with respect to #, so we have U—U=const., it follows that
b

Ub) — Ula)=0b)— Ula); a >a,, after all we have Ub)—Ula\= ‘ app U (@, y)dw.

a

In the same way as in the proof of the theorem 1, for any square

in D. S f(z)dz = “ (app U,—app V,)) dady +1 gS(app V,+app U,) dedy==0.
J L7
Proposition 2. If f(z) satisfies the following condztwm
1° appU,, appU,. appV, and appV, exist except at most at
enumerable point in D, and further 2° conditions S is satisfied,
then f(z) is holomorphic.
Denote by E(n,, ny) for any given & the set : n, are integers.

B[ mes tine B 1=y och Lz1—e) L h—real
z n 1 1

E[ mes line E[f<z+}ﬁ) f(2)

z

<ny; O(h(wz(l eo)ﬁ]

If f(z) is not holomorphic in D, we can find a portion IT defined by D’
in which E(n:, n;’) is dense, and by taking limit, IT is contained in the
closure of a certain E(n}, my) completely. We term this operation B.

If II is defined by D' from condition 1°) appU,, app U,, app V.,
and app V, exist, therefore, they are <Max(n;, n;) in absolute value.
f(z) is regular, if z € D'—1II

From proposition 1 we conclude that f(x) is holomorphic in D.

10. Proposition 3. If f(x) is & continuous function defined in o
closed interval [a, b], and if there is a closed set F "[a, b],I,=(a;, b,)
denoting the intervals contigus satisfying the following conditions.

1°) gf’(Z) da = f(b,)—f(a,) for each interval and Ei] S|f’(x)|dx oo
Ii I?

8) see 7).
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2°)  fi(x) ewists except at most at mumerable set and §|f;(x)]da: < oo,
F

then  f(b)—f(a)= 3 Sf’(:v)dx+ Sf;(a:) dz .
I; ¥ '
Proof. If € F and « is isolated from F, f.(x) loses its meaning,

but the set where x is isolated, is at most enumerable, therefore f,.(x)
has finite value everywhere in F' except at most enumerable set in F,
we define a function such as

flx)y="f(x); if xeF

Fr oy Af(@) +pf(b) . . — @, + pb;
f(a) R W if vel,=(a,b,) 2« Nt A >0,

When |f, (2)|<K; |K|<co, there exists a secquence x, converging
to x, 2, € F and there is number & exists so that
if ,€(xt8)\F

a) In the case when x,, ¥ € F |x—x,|< 8 follows K — 8<f(9“—’3¢1@
<K+¢&

b) In the case when 2 € F, and «,€F

b,1) F3>ux, >, = lower bound of (x—8)N\F

b,2) F ex<x,=upper bound of (x+8)\F, there exists a I, =

(a, b)€x,
from this it is clear lf(L;)_—jj(—@KK +&.
—

2) If 2€F |f(x)| <M (because f(z) is continuous in closed inter-
val, there exists an interval I,=(a,, b,)> z,, &, therefore for z,.2;

if(a)— f(%){_Jf(b) fla,) - 2M <oo, M=max |f(2)]; z€[a,b].

Xy —&, b,—a, ) = i — Oy

Finally all f(x) has finite Dini’s derivatives everywhere except at most
enumerable set, from 2°) f(«) is an absolutely continuous function,

on the other hand f,(x)=f"(x)=f(x) almost everwhere in F, then
fo-t@y =5 | 7() az+ [ F2) do =2 { 1) do+ | £i@) dz .
I, F I, F
11. Theoreme 2. f(2) is a continuous® function in D, and D is

9) Kametani: On conditions for a function to be regular, Jap. Journ. of Math. 17,
pp. 337-345 (1941),
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expressed in the form D=3E,+H, where H is an enumerable set, and
2

satisfies the following conditions.

1°) For each E;>z two lines (fixed direction) denoted by =, issuing
from z, correspond, and for z' € E,N\r, and |2'—z|<8(%)

e HO—1(2) D= f2)
nBE; = ];..l..r,r:: 77_, BE; = lcgg *éthz—‘
e EyNT1 te Ej\T2

exist except at most enumerable set in E,, and when two z,B exist, ,BE;
=r,BE; almost everywhere in E; and S is satisfied, then f(z) is
holomorpic in D. (Of course on 7,(z)\E; when z is isolated from
+(2)N\E;, relative derivative loses its meaning)

Generality will not be lost by assuming that the two fixed direc-
tions are that of x and y axis. H, denotes the set of F, where (1°)
is not satisfied.

Then D=§_,‘E,+H,+H .
Denote by %, the set E, satisfying the following conditions
10) E[IM})‘:‘@<P” if 2, 2+h e B, 0<h 1

% = real or imaginary

2°) dist (2, boundary of D) g,‘;_

Es—_‘EEwr D-:ZE“,+H,+H.
. p 23

If f(z) is not holomorphic in D, by operation B we can find a portion I1
defined by D’ in which a certain F,, is dense, we conclude by taking
limit of =(2,): z,€ E,,, limz,==2. For any ze€ D’'\II. 1°) and 2°) is
satisfied,

f(z) is regular : if ze D'—I1 ,

”%, ”gggp Cif zedl .
By using Fubini’s theorem about S condition “ |f'(z)|dwdy <co and
D’ -11
proposition 3, we conclude that for almost all y
X2
Uty =V )= [ [ U (& pydx+ |Uka, )i, ete.
11

V=¥ x
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of__ of

and further | ox 1oy’

etc. almost everywhere in II. Finally we have

[f(z) dz=10

(4

12. Proposition 4. w=f(z) is approximately monogene except at most
enumerable set and condition S is satisfied in. D, then f(z) is holomor-
phic in D. _

If f(z) is not holomophic in D, we can find by B operation a por-
tion I defined by D/, there exist a certain & and 7, and M, not
depending on z €1l

f(z) is regular, if ze D'—1I1
1°) mes [E[’f(“he;:)“f(z)— A‘<€0]!>(1—eo)h§n: 0<6< 2 :
where |A|=M, h<h<r,:if z€Il .

‘We have only to show that f(z) is holomorphic for any small square
in D' for this purpose, we.take a square with its diametre smaller

than <%, then for z,, 2, € I we find a cercle C(z,) and, C(z,) their

diametre |z,—2,|, in which :
(1°) - is satisfied and mes |C(2)\C(2:)| > |21—2|® < (1-6&)|a
—z;|*z therefore there exists at least a point z; € C(z,)\C(2)
) =F(zs) p [f(22)—F(2s) p

R1—R3 - Rg—R3

and so ;]Lzl)—“ﬂiz-)gzmp Cif 2y, €11 ; M= M(A, &)

R1—%2

On the other hand f(z) is approximately monogene
f(22)—f(2))=(A, +iA, )@y — ) + (B, +iBy (Y2 — 1)+ E(22) | 22— 21| :
lim &(z,)=0

22=x2]1
(approximately totally derivable)
but directions are fixed
f(29)—f(21)=(A, +iA (X —2,) + (B, + 1By XY — 1) +&(22) | 22— 21 |

then we have (A4,+i4,)=appf,, (B,+iB,)=app/f, almost everywhere
in TI. Finally from the theorem 2, f(z) is holomorphic in D.

§3
We give the simplest proof under 4 little change of the conditions
of the theorem 1. -
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We denote by I(z) straight line passing through z and denote

-z —Z {—z
CGIiCZ;\ :Glz(z\

by 1,B(z) or lim 1,A(z)

13. Theoreme 3 (Menchoff)!®.. If f(z) is a continuous function
with the following conditions.

. 1°9). :To every point except at most at enumerable points, co'mespon(l
two lines passing through z , [1,MN,]==0 (mod 7).

29) Bi, =B, .
Then f(z) is holomorphic in D.

Or more generally lim 7,4, im7,A</co and two sequences on them

lim B(q}) = lim B (g3) .

We, prove this. theorem as an. application of following Pompeiu’s the-
orem. - A complex function f(z), continuous in an open set D, is
regular in D, if it is monogene at almost all the point D and if further

lim &ziﬁh)_iz)i < oo at each point except at most enumerable set.

n->0

Proof. It is not regular in D we can find as in the case of theo-
rem 1 the portion II defined by D’ and followmgly conditioned.

1°) f(2) is regular, if 2€ D'—TI

2°) 1}, 1, are fixed direction [l?Ali].g—'z—%P i N=2

8°) eI <m— 4

dist (z, boundary of D) g%;ﬁ

4°) {”(fg—:’;@}gp if £el(e), 0lE—2]<} i=1.2

1f we associate a sector S(z) (fixed direction and fixed opening angle)
to each point 2z of the plane set II, of which z is the vertex of the
sector S(z). It is clear that the set of z which is isolated from S(z)N\II
is at most enumerable.

' Let ‘R be a subset of II, which is isolated from II in any one of
four sectors, then R is at most' numerable.

14 Lemma 1. Let us denote by V() the circular neighbourhood of

z 'wzth the centre a,t z and the radius s.

10) Menchoff Sur les conditions de Cauchy-Riemann, Fund. Math. (1935). pp. 59-97
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1 1 1
o=y
$op ‘Sm< P NP)

then
hm‘lf(z") =1(2) is vounded if 2/ eIl N\ Viz) : z€lI-R .

Proof. We take a point 2" €I -
NVsz), then exist two 1,(z”) and
1,(z"), which intersect with [,(z)
and [,(z) at points p; and p,, and
denote the angle 6;= angle z'p,z,
6, = angle p,2z” then o :

ozas kol z Lo ESY
o<t~ Lot
P NP P NP
N=1
accordingly Fig. 2
27 =] + 1y = < FE IO BIE IR 21— < -
K,=K/(P.N)

We directly see that: if (z ) f (z )'<P M- if =" eVs(z)[\H in the same way

as in Theorem 1, where M depends only’ on ‘P and N.
“From that z is not gontgined in ‘R, there exists z’ such as

l'z’—;z|<‘s,‘z’ESU(z)./'\H
and two lines [,(2') exist which intersect I;,(z) at p,, and p, where S,,(z)
is a sector of which vertex-is z and its half line is the half line 1(2)
and I)(z) and its opening angle sufficiently small given number &.
Then, diametre of (zpzz’pl){—}l,—, therefore [1(2):__%(3_)\ <PM: if ¢

lies on the circumference of (zp,2'p,) ,. which can be proved as
usual. '

Finally ‘f(—z;),{—];(—z)lgPM i 2" e V(2) N\ (2p,2'p,) -
In the long run we conclude that
u*m]f(z;),—%(z)JgPM Cif 2€IN\ D
f(z+h) f(z)<°°

When z is contained in D'—1I, f(z) is regular, so l1m
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at every point except at most enumerable set, from condition 2°, f(z)
must be monogene almost everywhere in D’. By the theorem of Pom-
peiu f(z) is holomorphic ni D',

Remark. It is clear that this method is applicable when K’ is
under the condition that three lines issuing from z never lie on the
same side of any line passing through z.

When four lines issuing from z, we can this apply without any
satisfied further condition. It is important not that lim B(z) exist, but
that lim A< oo,

15. We know what effect the number of +,(z) of which lim 4
< co has on the condition of regularity.

1) two lines, condition S. B,=B8,

2) three lines condition S. 4, =A,=A4;

3) two lines passing through or four lines issing from z. B,=B,

4) two lines (fixed direction) relative or approximate derivateve
conditions S.

§ 4

16. Invariance of angles. The properties studied in the preceed-
ing paragraphes are quantative relations between the behaviours of z
and w in the sense of segment’s ratio or its extended meaning. Never-
thless on the contrary this property is not direct relation between
them but it only tells us the indirectly, in the other word, it means
the connection of quantatives (angles) defined by pairs (z.#) and (U. V).

Property K’

With z=z, three half lines r,(z): i=1. 2.3 issuing from z, are ass-
ociated and any Jordan curve J terminating in z, with one of +,(z,) as
its tangent, has its image f(J) with a half line T,(w,): w,=f(z,) issuing
from w, as its tangent in the w-plane.

[r(2)N7y(2)) = [T(w) T (w)) == 0 (mod =) i.j.=1.2.3
Menchoff proved the following theorem 'V,

Theorem 4. If w={f(z) is univalent and continuous function defined
in a domain of the z-plane and if it has K' at every point except ot
most enumerable point, then f(z) is holomorphic in D.

For the purpose to make this theorem remain valid, in the case

when f(z) is not univalent, we take a little changed property K'*
as it follows.

11) Menchoff: Sur les représentations qui conservent les angles, Math. Ann. 109, p.
101-159 (1934,
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Property K'*

With z=z, three lines I,(z): ?=1. 2.3 passing through =z are-asso-
ciated having its image f(l(z)) in the w-plane which has a tangent T,
in the neighbourhood of w and at w=f(z)

WAL =[T.AT,)==0 (mod =) i, j=1.2.3

17. Theorem 4'. If w=f(z) is a continuous function which has K'*
at every points except at most enumerable points, and further if condi-
tion S is satisfied in D, then f(z) is holomorphic in D.

Let us denote by T(w) the tangent of f(I(z)) at w: i=1.2.3 and
by G(P.N. n,, n,, n;) the set conditioned followingly.

o 1 .- 1 . - ATy 4
1 2NP\[ (2)" 2NP] NP’ 2NP< T, 2NP]<2NP
1 1
o =+ A [ e el A —_—
2 P<Ll‘(z) l,(z)]<7r L P<[T¢ T,:'<7z -
3° [li/\ ZJ] = [Tt/\ TJ]
o _1 _r A 1 e 1
50 dist (z. boundary of D)g% N=4 .
Then D=>'G(P.N. n,, 1, ns)+H

where P.N u,, n,, n; are all integers, and H is enumerable set.

If f(z) where not holomorphic in D, we can find the portion II
defined by a certain open set D', and in II a certain G (P°. N° n,, ny,
ns) is dense. In the case when z € GoN\II, I(z) are defined already, in
the case when z € G,N\II, we can define [,(z) by the limit of [,(z,): lim

z,=z: 2, € GyN\II, then by the continuity conditions 1°...... 5° are satis-
fied

o _ 1 A 1 1
1 aND A l'(z)J<2NP’ 2NPrA‘ T (w)]<-2NP
o 1_ 1 A
2 pNPS [A AJS” (3- NP) P NP—‘[A‘AA ]<”
_<1 _1 )
‘P NP
o 1 A 1 1
4 — o p S| TN T w0) < i - if |22, <

where A,, and A, are all fixed directions in the z or w-plane respec-
tively.
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18. Lemma 1. f(z) is totally derivable almost everywhere in II.

Let us denote by A,., the-half line of the angle made by A,, and
A, (A, are fixed directions) which is named X axis the other axis per-
pendecular to this axis will be named Y axis, and denote by I(y) the
line passing through y and parallel to X axis. In the same way the
half hne of A1 4nd A, and the other will be named U. and V axis,
(this is possible by rotation of the coordinates).

. Remark 1.

If |2,—2|< min (l cos(X/\ A) 3 cos([X/\Az]> and z,, z € )N\

V(z2)—V(z,) -

U(zi) U(zk)— tan(Al +

then tan(A2 N P)

Proof. If it were not so, there is at least one point where the bran-
ches of I,(z.) anc l,(z,;) intersects. But their images f (branch of I,(z))
and f (branch of l,(z,)) do not intersect, this is impossible.

This follows clearly that Uy(a;'; y) is monoton increasing function

of x: a cl(y)N\II, accordingly if « € l(y)N\II, then U(z.y) and V(«. y) are
functions of bounded variation on I(y)/\II. But on the other hand from

condition S S) If'(2)|? dwdy <co. We see directly that U(z.y) and
o
V(x.y) are bounded variation -on I(y)/\D' for almost y., consequently
(w=U+iV) is a rectifiable curve for almonst y as a function of .
'19. Remark 2. U and V are bounded variation, therefore they are
derivable with respect to x almost everywhere in l(y)\D', and from
remark 1

ov

ox 1 .
s <M(<tanA iNP i=1.2
ox

almot everywhere in l(y)/\H
Let us denote by E; the set satisfying the following condition on
I(y)N\II and denote by E(y) the set I(y)N\II

’aV
tan NP<9U tanN Dif ze By K<INP: N=2
er3
mes E(y)=[U(y)N\II|=72] mes E,.
To prove the total derivability, we have only to show that
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e =AE) o,

almost everywhere in II, we assume that Iim™~<"".
h>0

positive measure set IT°: IT°CII.
mes|IT N\ 3 B(y)|= 3 3 E, = mes II> mes I1°>d >0 ,
Y Y .

f(z+h) f(z)—-oo in a

therefore there is a certain m such as at least

d
0
mes |II [\;EMI>A_7P, .
' aV
m—1 9% _ ton- M
U NP -

0 —_——
If zell N ; E,, then - tan NP
o

By Egoroff’s theorem for any positive number &. There exist ¢

and a closed subset IT’ such as
mes |II°—1II'|<¢

If z€Il' and & is real number and |%|<[8 then

1 [ m AV(z+h)— V(z)]<

" NP=LNP U(z+h)—U(z)
From IT', we take a set II* which is linearly density with . respect to
any line () and by Egoroff’s theorem we can find a subset II2 of II’

such as
e mes [N\ |~ &
If lengh of I(y)<8, then es [y) >1—————2

We denote by 6, and 8, the angles which is made A, and A, with X- ams
. , 2 \( _m ) 2 = 2 ( )
we can assume that — 2> (6,7 >NP’ ¥l NP> 02 > i
by choosing adequate A,, A, among A,, Az, Az, and now let 8 be smal

ler than
1

. 1
min (1— > Sin (‘9 NP) e P sin (6, NP))
20. Remark 3 Max1mal and minimal quasi parallelogram in the

z-plane with centre z and radius 4.
If zeII?, then iiﬁV“""’Qf‘f (z)l,j'oo. Therefore there existsz,=

z+h such as f’(i};l);f@{ZM for any 1argenumberM
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We write the circle with centre at z and radius
1
<2P Sin (9 +2NP)

<gp sin (% = g3p)

We can find «, and a; on I(y)N\II satisfying the following conditions

[k sec(92 +2NP) |z—a,| h sec| 0, +§Z%I?>T1‘5
max < < max

h sec(&l —“2—NT)) |z—a;| h SeC(01 —21%7?)1‘}8 .
From «, and a; we trace l(a,) and l(a;)
and I)(a;) and ly(«;). These lines forms a %‘ -

quasi parallelogram. This will be called

maximal quasi parallelogram /7 with centre

mix z

at z and radius 4.

a4 ) y
Next we can find 3, and 8. on (y)Nn \W

satisfying following conditions

Fig. 3
lhsec 02 Q‘NP) IZ Bll 1—¢& h cos (02 —§2V?)
mini 1 < = mini 1
lh sec(a, +2W>) lz— 8| (7= B cos (" +2NP>

and we trace [(8) in the same manner as in the preceding, we call
this quasi minimal perallelogram /7 with centre z radius 4.

Evidently 2, €/ 7 — [T
max z mini 2
dia /7 area /7
max < max <
dla D = 1, area D _—__Kz ..................... (4)

mini mini

K, K,=K(P.N)

21. Remark 4. Outer minimal, and outest parallelogram in the
w-plane and their property.
In general, let us denote the image of p by p in the w-plane.



Suficient Conditions for a Function to be Holomor phic 41

From @, and @, we trace lines L(a,) and L/(a;) etc,

. . — — 1 . . — — 1
direction L,(@;)= A, +2NP direction Ly(a;)= A, ~oNP

. . — - 1 1
direction L,(a;)= A= oip direction Ly(@)) = 7=—A, +o7p

These L, form a parallelogram named outest /7. From «a, and
0o wW

«, we trace lines L, so that

direction Ll(al)zA'l—Z]%P (b(d:,ﬂ é\\\
direction Lz(a)_A2+21\1/'P )C Wi 7]
direction L(a;)==—A, +21\17P ' A, /
dirdetion L(@)—r—B8g=gn P

This is named outer minimal paralle-

logram /7 . Fig. 4
O mini W
aV
A 3 S m-1l_9x _, B, Bie/
s ap-a;€ell. 0 tan —p aU < anNP Bu Biel].
o

From «,, @, we make imges f(I(a,)), etc this forms a quasi paralle-
logram with four curves /7 (a;, ;).

It is evident [7 < [T (a;, al) < C7

Omlmw
and from = o NP/ 0, NP>/NP o np > \vp —0, > 2, then
NlP[L Aala] it follows that area [7,and area [/ =M|a,aj|?
’ ¢ w 0 mini W

where
0<<m**(N.P)Xm*(N.Pm)<M<M*(NP.m)<M*(N.P)>+oco

If z,€II then w,e /7 this is proved easily as in remark 1.

O mini W

22. Remark 5.
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area- /7 (a, “1)>K
area [7

Case 1 2. €N\ [7 — [, then f(z:) [T (@, a;)

max mini #

because to z, f(l(z,)) correspond which must intersect the peripherie
of /7 (a,, @) to outer side

Case 2 znéﬂf\aﬂ——g
f(z,)—1f(2)
z

Zn—
attaiend at the point p of IT or the peripherie of /7 — /7 therefore

mix 2z mini 2

is regular, therefore the maximum of this absolute value is

from case 1 or 2. There exists a point ¢, on the peripherie of /7

max 2

— [7)such as [f(&,)—f(z)|=M|{y—=z|., but in the z-plane [{,—=z]|

mini 2

>K3h, or at a point of IT (this is case 1), accordingly in /7,

max 2

there are two point z,  such as f(¢,) andf ()€ /7, |f(&0)—1(2)]
>Mksh, this follows that

area of /7 >K.M : Ky, K,: K, = K(P.N)
o w

23. Remark 6. If two maximal quasi parallelogram has no point in
common in the z-plane, then corresponding two minmal outer parallelo-
gram has no poinit in common in the w- plcme,

Case 1 [7, lies on one side of de
l(a,). Let such I, be [,(a,) then 4,B;

C,D; lies on one side of A,B;, if it .

were not so d,. A,B, opposite side, ci dj

then a,d; intersect with l(a,) or l(b;), @+

but A;D, or C,D; cannot intersects &l

with A,B, or C,D, on its extension.
This is impossible. Where 4,=f(a;)
etc. &)

Case 2 (not case 1) in this case, Fig. 5
we can prove in the same way ‘in 1
using the continuity of angle. Let /7, be not contained in the angle
ad.c,, then D; lies C.D,B,D, same side, therefore D, is not contained
in the angle A,D,B,, therefore minimal // never overlappe.

O mini W
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area £7
2
But area g < K; and from 4 area n{_;z >Kh
O mini W
fnall area /7
& - Cwminiw ~ K M
nally area // =

mix z

By Vitali’s covering theorem, we can find a secquence of /7 not

mix 2z

overlapping each other and

Z mes [/ >
mes f(D)> mes f(D’)>2 mes [T /K7M%, but M—co, this is a

contradiction.
24. Lemma 2.  If f(z) is totally deriveble at z=z, and: satisfies K'*
then f(z )is monogene at z=z,
f(2)—f(2o)=(A1+iA;) (& —2,) +(B, +iB;) (Y —Yo) +&(2) |2 —2, |
lim &(z)=0
Z2—2
tan © — Ay(z—2y)+By(y—vy,) __ Ax+Bjtand,
Ay(@—2)+By(y—y,) A,+B tané;
tan @—tan&r—_constfor& z——123
Then we easily have 4, = B,, A, = — B,.
25. Lemma 3. f(z) has property N on l(y) for almost-all y.
If it were not so there exists a positive measure set G on A, such
that, for any y € G,, []:/(i)] are rectifiable and on which f(z) has not N,

this fact follows that there exists a set ¢(¥) for line mes |¢(y)|=0 but
f(a(y)) has line measure >0. By Lusin’s theorem there exists a such
a perfect set as mes line ¢(y) of which any portion ¢ of it line mes
f(a(¥))>0, of course ()11 for D'—I1>2, f(z) is regular accordingly
absolutely continuous.

If 2, 2 €l/\IT and |2—2(|< 5y, then (@, w(A%,] is contained in

1 A~, 1 i ‘ :
[91 +2N75 0, 21\"/"13]' Let us denote the set of ¥ such as
av . _
ox Y _m +1 XY
—l AT D A ! NP :
G, E'[lm mes f<=ez 3 )NP<[X axis" tan"'-=r ]< NP )>NP]‘
dx

mes f(q(y))>\.



44 Zenjiro KURAMOCHI

Then there exists at least a set such as outer mes Gn»_>p_>0, which
is denoted by G,.
For any y€G,, let us devide I(y) in equal length segments 8

8,\5;=0 and denote by z,. z, the ends of §/\II and construct the
parallelogram /7 formed by I(z,), l(z.) =1.2.. From mes q(y)=0
follows 2,, length 8k<‘% for any large number A4, and if w,=f(zx),

wi=1(z), |we—wy|=N\s are denoted then3" |w,— wk|>2NP for suffici-
ently large », and

1
NP< (W~ w N T,) <z — N P : direction T, =y P

From the construction of f(/7), we see that f(//) is a quasi
parallelogram in the w-plane which has outer minimal parallelogram in
in its interior. These minimal parallelograms // never overlapp,

mini W

when corresponding maxima /7 have no common point in the z-plane
) mix z
(see Lemma 1) .

area of min U >C7\v,c (C depends only on P and N)

mllll
f} xk>—2~mg for sufficiently large » .

> and ¥ means the summation over k satisfying (1) or (2)
M < g 3) (2)
*~4NP*
A —_SV 1~ M
2NP< =23V +>" then 2 >4NP

2
area of minimal parallelogram /7 > MC ><4NLP8") C

mini W

>3 area of /7 >3V >3 (4Npak "¢ (g4p) B>ranpie

mini W

We denote by s(K) the projection of parallelogram of Wthh the dia-
gonal i8 z,, z;=s; on A,.

We can find a secquence of intervals I, has no common point each
other on A,
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N> 2. follows 2%> """ for large number m.

This operation will be used for each I, then we have

- - A CAN
21> area of /7 )02'64'1\)'}387“ 128N/;’.

mini W

This is a cofitradiction for A—co and mes |f(D)|<+oo, the same fact
occurs for another I(x), accordingly we can conclude

U(xl)—U(xz)-'—gaU dz  for almost all , etc.,

X1

then we can prove that Sf(z)dz=0 in the same manner as used in
A

Theorem 1.

§5

25. -When the topological property of a regular function is cha-
racterized, thig is called an inner transformation satisfying the following
two fundamental conditions.

1° Light transformation: for any w € f(D), f~*(w) is totally disc-
onnected, then f(z) is called a light transformation.

2° Open transformrtion : any open set is transformed into an open
set.

Property K'*. If at z==z, f(z) satisfies K’ and further in the nei-
bourhood of z, any Jordan curve issuing from z contained in the sector
S;{(z) formed ; and 7;,, has its image in the w-plane in the corres-
ponding sector S,; which is not whole direction, then we call that
f(z) has K" at z=¢,.

In regarding that f(+(z)) has a tengent at w : w=f(z), there exists
such 7, ; if |£—z|<ry: ¢ €r(2) then f({)=f(z). We define S,,=2=—S,,
and T, is the half liene of T, and T,.

We denote by G(N. P, n,, n,, n;) the set satsfying the following
conditions

o 1 [ AT ]/ 1,,

1 oNPL™ oaNP) ST ToNP
1

20 P<[ /\'7'1]\7r _T

3° (TAT))=[r, 7y]
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© [T yp i lE—2lSp: feni)

- 5° FE)€Sy i |&— zl\—» tesS,

26. Menchoff proved the following theorem '®
(¢ ) f(Z)

Theorem 5. If f(z) is topological and direct in D, and lim arg —>2——>~

{—z

exists at every point except at most enumerable points, then f(z) s
holomorphic in D.

Theorem 5'. If f(z)is continuons (not necessarily univalent) and K'
is satisfied at every point except ot most “enumerable points, then f(z)
is holomorphic in D.
" Lemma 1. f(z)is o light transformation in D.

If f(z) were not so, there exists at least such a point of w as
f Y(w) is a continum being clearly closed. A continum is a perfect
set, then there exists a portion II of the continum in which a certain
G, is dense, therefore there is secquence of points converging to p,
and then thereiisalso the subsecquence of pomts converging to' p in

certame sector S(p) ‘with the opning angle smaller than 2%) and the

vertex is p. If we denote by ¢, ., .the 1ntersect10ng :point _of =,(p,)
and 75(p;..), then there exists at. least a pair. of p,, p,,; in S(p) satis-

fying conditions

1° Diy Div1 €S(D)

Yol o 4 . /1 . . - _— 1
2 dist |Qg,z+1pil\—f'; ; dist IQi:i+1: pi+_ll <p
3° f(pz):}:f(%,iﬂ): (0 1)+ 041)

4°,. If :length of =,(p,), m(pg.'+v:1)<—1p,. then f(r.(0.)) CS,(f(p,))

fira(pi.1)) € Si(f(p)), where the opening angle of S, is ZVITJ
and the half line of S, is T,(w): w=f(p) respectively.
But from F(D) = F(Ps,1) = F(D) : (@0, 1s1)TSiN\S2=1(p).

(i, 1) = F(0.) = f(9,) = f(p)

12) Menchoff : Sur la représentation conforme des domaines plans, Math. Ann. 95, p. 642
(1926),
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This is a contradiction.

If f(2) is not holomorphic in D, we can find a portion IT defined
by D’ which is completely contained in the closure of certain G,.

Lemma 2. f(2) is an open transformation in D'.

If zeD'—1I, f(2) is regular, therefore if f(z) were not an open
transformation, then there exists such a point p € IIN\D’ and an open
set G as p€ interior of G, and f(p) € boundary of f(G).

We take a neighbourhood V() of p: dia V(p)<%: V(p) &G D'. Since

f(z) is a light transformation f~'f(p) is closed and disconnected. We
take 3 points a.b.c. on =, (p)N\V(p)"\ complement of f~'f(p); i=1.2.3
and connect by the ,C, @ and b in V(p)N\S.,(p)\ complement of f~f(p),
and so on about b, ¢ and ¢, ¢ in S,(p), S;(p) respectively to make a
closed curve C, then it is clear that

dist (f(C), f(») = §,>0,

the order of f(C) with respect to f(p) is 1.

Hence f(p) € boundary of f(G), then there exists another point ¢ and
another neighbourhood V'(f(p)); dia V’(f(p))g—g% V'(f(p)>q: f(G)Sq;

dist (f(p).0)=6<2°, then
the order of f(C) with respect to ¢ is 1.

In V(») we deform continuously C into C’; so that dia f(C’)<7i— and
enclosing p, then
the order of f(C') with respect to ¢ is 0.

This shows that ¢ is covered by the schar of images of curves from
C to C' in this deforming process, which contradicts that q ¢ f(G).

As f(2) is an inner transformation in D’, therefore it is locally
univalent and topological, consequently theorem 4 is applicable locally
except enumerable points (branch point), finally f(z) is holomorphic
in D.

Remark. Theorem 5 is clearly contained in Theorem 5’ therefore
the condition of univalency of Menchoff’s theorem is surplus.
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