Osaka Mathematical Jjournal,
Vol. 2, No. 1, March, 1950

Random Ergodic Theorem with Finite Possible States
By Hirotada ANzal

The purpose of this note'is to give a special model of .random
ergodic theorem. "’
Let X be the infinite direct product measure space:

X=Pr_oHy, vcX, v =(..2_,, &, &, & ...), & € Hy,

E=0, £1, £2,....

We assume that each component space H, consists of p points, which
are described by p figures; 1, 2, ... p, each having the same probability
(measure) 1/p. We denote the k-component x, of a point # of X by
ne (@). The measure on X is denoted by m. Let o be the shift trans-
formation of X:

ne®)=n, @), k=0, 1, 2, ...

It is well-known that o is an ergodic transformation of strongly
mixing type. Let Q be another probability field (i.e. measure space).
In this note we restrict ourselves to the case in which Q consists of
q points; Q = (w,, @ ..., @), €ach having the same a priori pro-
bability 1/q.

Suppose that it is given a family ® of permutations T,, T, ...,
T, of Q. Starting from any point o, of Q, we take up at random a
point from H,, if it is «,, we operate Tx, to w,, then o, is transferred
to Tx, »,, at the second step we take up at random a point from H.,
if it is x,, we operate T=x, to Tx, w,, then we arrive at Tx,Tx, »,, and
SO on.

Continuing this process, the transition probabilty that o, iS trans-
ferred to w, after the elapse of » units of time is given by

m fa:]a)g = TW,,(x)T7l,,,_1(:\') T’],(x)wlf .

We can represent any permutation 7 of Q in a matrix form of
degree q; T =(7y), 1<i, j<q. The i-j element +;; of T is equal to

1 if Ct)i:T&)j, 'T,'j:() if @; :i-' TCOJ.

1) S. M. ULaM and J. V. NEUMANN: 165. Random ergodic theorems. Bull. Amer.
Math. Soc. Vol. 51, No. 9, 1945. p. 660.
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Set
To=1/p (T, +T:+ ... +T,).
T, is a Markoff matrix. It is easy to verify that the i-j element
=3 of Ty is equal to m {x|Ty ) .. T77](x) »; = w,}, that is the transi-
tion probability that e; is transferred to », after the elapse of »n units
of time. It is a well-known fact that if for some integer =, ={}> >0
for all 4, 7, then lim T?= Q exists and all ¢-j elements of @ are equal

Nyo0

to 1/q. In this case the family ® is said lo be strongly mixzing.
Let = be the direct product measure space of X and Q:
=XxQ, £€E, i=(, o), v€X, 0c0.
Let ¢ be the measure preserving transformation of = defined by
P @, 0) = (o2, Ty, o).

THEOREM 1 @ is strongly mixing if and only if P is strongly
mixing.
Proor: Define the functions f, (w), i=1, 2, ... ¢, as follows.

a)=§1 if o=w,
fu(w) lO if o=+ o,.

Set
F@,o0)=f(0), G&, 0)="F; (o).

’Ihen we haVe F(¢ (x (O)) == fi (T7] T/]] l(x) “ee T7/1(x) CO) .
Assume that ¢ is strongly mixing, t ‘hen we have

lim gF((pmf) G(s)dgzj F(£)de g G (e
_ jf,@))dwgf,(@dw:l/q,l/qzW

The integral of the left hand side of the above equality is
[P o) @@de=|{[ 1,000 Tn, ) Ty @) a2} £, (010
=1/q m{x|w, = T% (x) T%—,(x) T,7 (x) @114 =1/q 5.
Therefore we obtain the equality hm 1/q +{3’ =1/¢*, that is, hm TP=

1/q. This shows that @ is strongly mixing.
Conversely assume that lim -}’ = 1/q for all i, 7.

00

2) In Q, each point has the positive measure 1/¢, Following the usual custom we
should replace the integral notation ‘a’n by the summation notation E But, for the
sake of simplicity, we use the integral notation.
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Set
&, (.1,)=exp (27:737'7,/1)), 7=0,1, 2, ...p—l, 7n € Hy.

Obviously {&,(9)}, 7=0, 1, 2,...p—1, are the complete orthonormal
system of I*(H;) for any k.

Hence ¢, (,,ﬂ(a;)) Coy Oy (@) e Exy (g, (@)}, 0<8<Coe, —oc i, ey
e, 0Lk, ... ks<p—1, are the complete orthonormal system of L®(X).
We denote this system by V.

In order to prove that ¢ is strongly mixing, it is sufficient to
show that

W dim [[960) £ Ty e Ty ) B @) 1, @z

— 1/q2j g ()dz ( h (2)da

holds for any g (x), % ()€ V.

If g(@)=1, and %k (x) =1, then the integral of the left hand side of
(1) is equal to 1/q ={3°, which tends to 1/¢° as n—cc, therefore the
equality (1) holds. In general if

g (a’) gkl (ﬂiq (a‘)) §k3 ("hs (w))
h (x) - é“l (7]-71 (ﬂ/)) b gtr (77)7. (x)> ’
then the integral of the left hand side of (1) is

@ 14 [ O @) o By (o @) i Ty o Ty @)

. é‘tl ("]jl @) .. é’z,. (7Ij,. (@) da.

Suppose ¢, _> i, >:. >4, and j, >4, >... >j, There is no loss of
generality in assuming that i,< 0, 7, >0, 7,< 0. We may consider =
to be sufficiently large that ¢,+# >4, >0.

Set
=L gL S 2 ) —
F%’ 177, o My My, {‘L l 74, (@)= T 771']._1(9“) = Nj,-1
My @)=y 0, 1,5 (@) =9, } .
j])jj—]r ---;.ir"‘],j’ 1+” 1]—1+n,---,is+‘n _
Then the sets EWJ]’”J,—D---"']J,.H"IJ and Em e, are mu
tually stochastically independent for any
1< Ny ooe s Ny My e s My <p.
Therefore we have
i, +n. z,—l{-n,...,i.r!—n Juvdi— cesde
(F I,)’””-]) 77113 [\F jv I.’ —]’---;7]jr)

1 A-n. z,—lln,...,ig Fn Y e N I
<F7/lv ]l'] -1 »7]1"\. ) (F }vﬂjl |7~-‘r77]7_)
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The value of the integral (2) on the set

i1+n, i —1+n,...,1s+n Jiii— s e
E’Izl, 77-;::—1, . [\E’ 77.1,—1» w3,
is
LS —I—n,z '—1+n,~-.,i3+n 115 Je— ---,jr
3 1/q m(E] ::l—_[y ey g ) (EQ]J 7y —lvﬂ-’?}f,.)

. Skl (7&1 é’ks (77“) t:l (7111) z, (77],)
. Sfi (T"]oTn—l ces TﬂisTnis—j-Hz(x‘) cee T7]j]+1(x)T7711 cee T')]l(l)_’) dx

The value of the integral in (3) indicates the transition probability
that the point Ty, Ty, o; is transferred to the point 7'} ... T,;:) @,
r ig

after the elapse of n—1+i,—7, units of time, which tends to 1/q as
n—co by our assumption. Therefore the left hand side of (1) exists

and is equal to
e 33 wlEm) e )

s

. gkl ("l“) e Z;-,s ("718) gzl ("7]1) é‘z, (")jr)
=1/¢ f g (" x)dx j h(x)de =1/¢ j g (@)dx J h(x)dx .

This is the required result.

THEOREM 2. ¢ ts ergodic if and only if Q contains no ®-inveriant
subset except Q and the empty set. A

Proor: If Q contains a non-trivial ®-invariant subset A, then
XxA is a non-trivial gp-invariant subset of = g, therefore ¢ is not
ergodic.

Conversely assume that F (x, ») is a g-invariant function, which
is not a constant:
)] F(x,0)=F (o, T771(x) ).

In order to conclude the existence of a non-trivial ®-invariant sub-
set of ©, it is sufficient to show that F'(z,®) is a function depending
only on the variable ». If F (2, ») depends only on the variable z, then

we may conclude from (4) immediately that F (x,») is a constant.
Let & be the least positive value of

[1F@o)—F@ o) de, 154, 5<4q.

Let % be the order of the permutation group [®] of -Q generated by
®, 7 is at most ¢q!. Let & be a positive number such that

(5) 6/ (1+9ph) e <5,
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By the definition of IL*°(X), it is easy to conclude the existence of a
function G (2, ») and a positive number » such that

) f[F(x, ) —G (7, 0)|* dz <& for all we O,

(N G (2, »).does not depend on the value of , () for k| >n,

] [1F@o)—Fe,oldz<e  forall e,

8)
l S |F (c**"' @, 0)—F ("' V&, 0)|® doe <& for all w€ 2,

where V is any measure preserving transformation of X satisfying the
equalities 7, (@) = 7, (Va) for all |k|< n.
Let S, and S. be elements of [P].

Set

AS) = {a|Ty,xTy,_ (x) - Tnx) = Si}
A'(Sy) = {a [Ty, , )Ty, ) . Ty, (x) =S} =" (A(S:)
A(S), S) =A(S)NA'(Sy), By=ix|y,, @=n2{.

Let 5’ and »” be any mutually different integers between 1 and p.
Let V be a measure preserving transformation of X such that

Viely, ) =72"}=1taly

n+1

a @ =a"1,
4 Mlvlnﬂ(xﬁ =q9"{={x|y,, 0=29"1{,
and e (@) = 5, (Vo) for all k==n+1.
Ve A(S,, S,) if and only if « € A(S,, S.).
From (4) we obtain
©)  F@o)=FG""2 Ty, o Ty Tn,, 0 m00 - Ty ©)
1f e A(S,, S.), then from (9) we have
10)  F@ 0)=F (""", STy S o)
If x€As, S, /\ By, then from (10) we have
SF @, w) =F ("2, S:TyS, 0)
IF (Va, 0) = F (c***' Va, S:T,,S, ).
From (11) and (8) we have

1n

12) | (Ferre, 8T8 o) —F (00 s, SIS0 de
.‘A(Sl' S:’.) N Bn/
2 f;F(awﬂx, S.T7/S, )—F (%" Var, S:T,S, o) |* do

.

A(Sy, Se) N By,
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+ 2 [|F (1 Var, ST078, 0)—F (02 @, S,TypS, o) do
X
<2j |F (2, 0)—F (Va, o) fde + 26 < 4é.
A(S,, 82 N By,

From (6) and (12) we have

(13) j |G (@ @, 8T8, 0)—G (o2 &, STyrS, w)|* da
A(Sy, Sy) N By,

<3[1G @2, STy S @)= F (> 2, S.T9S, ) do
X
+ 3j |F (o @, ST S, 0)—F (a1 @, S:TyrS, o) |* dar
A(Slv Sz) ﬂ B-q/

+ 3 \ |F (** ' 2, SyT "8, 0)—G (e @, S:T9"S, »)|* dw
D¢
< 3(+4¢&+&)=18¢.
The set B, is stochastically independent of the set A(S,, S.) and

of the functions appearing in the left hand side of (13), therefore the
left hand side of (13) ie equal to

(14)  m(By) [ |G (* @, SeT /S, 0)—G (@ &, S;TyrS, o) |* da

A(S), Ss)
- 1/1)‘ (G (o* " &, ST/S) 0)—G (o &, STyrS, o) | da .
ASy) N A/(S)
The set A(S,) is stochastically independent of the set A’(S.) and of
the functions in (14), therefore (14) is equal to

(15) 1/pm(A(sl))j" |G (0 @, SaT9sS) ©)— G (a2 2, ST Sy o) |* da .
A’(S,)

Let S, be an element of [®] such that m (A(S,)>1/%, then we have

from the inequality (13) and (15),

(16) j |G (e z, S:T5/S, 0)—G (a*** ' &, S;T»"S, 0)|* dae<_18ph &.
A’(Ss)
From (6) and (16) we have

a7 Y [F (o e, SoTyS, 0)—F (e &, S;Ty"S, o) [* da
'A’(S.,)

< 3(E+18ph e+&) =6 (1+9ph) &.
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Summing up (17) over all S,€[®], we obtain

(18) ({Fv (o_2n+1 @, T772”+1<x) ces T777b+2(x)T7]/S1 (L))
‘—'F(O“Z”¥l X, Tﬂ2n+1(~"‘) cee T’]n.p_)‘(x)T??”S'] (0) l?' da
< 6h (1+9ph) &.

Since F (&g, T"73n+g(x) T',]M_E(x) o)

=F (¢ (c"*' ), Tﬂn(a’“lx) .o T7]l(0"+lx) ®),

by replacing the variable ¢7''« in the right hand side of (18) by «,
and by making use of (5), we obtain

(19) f F(o"w, TowTn, ) - Ty TnS, o)
—F (o2, Ty, )Ty,  (x) .- Ty, x)Ty"S, ©) |* do <8
Since F (x, ») is a p-invariant function,
F(a"2, Ty, )Ty, (x) . Ty x)0) =F (2, ).

Therefore
fu«" (@, TSy 0)—F (@, TyrS, ) |2 de <" 8.

By the definition of 5, we have
F@,TyS o0)=F (x,Ty"S, ») .
Since 5, and 5 are arbitrary, we obtain
F@a,T o)=F@To0)=..=F@,T,o).
Therefore
Floo, TYo)y=F(cx, Tow)=..=F(cx, Tyo)=F (2, »)
Let » be the order of T,, then we have
Floos, Thw)=F(c"2z,0)=F (v, 0).

From the ergodicity of o", we can conclude that F (2, ») depende only
on the variable . This completes the proof of the theorem.

The extension 0f our results to the general case in which each
component space H, is the continuum of [0, 1]-interval with the usual
Lebesgue measure and ® is a family of measure preserving transfor-
mations of an arbitrary measure space 2 was made by S. KAKUTANI.
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