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Abstract
Temperley-Lieb algebras have been generalized to web spaces for rank 2 simple

Lie algebras. Using these webs, we find a complete description of the Jones-Wenzl
idempotents for the quantumsl(3) and sp(4) by single clasp expansions. We discuss
applications of these expansions.

1. Introduction

After the discovery of the Jones polynomial [9, 10], its generalizations have been
studied in many different ways. Using the quantumsl(2) representation theory, the
Jones polynomial can be seen as a polynomial invariant of a colored link whose com-
ponents are colored by the two dimensional vector representation of the quantumsl(2).
By using all irreducible representations of the quantumsl(2), one can find the colored
Jones polynomial and it has been extensively studied [5, 11,19, 26, 35, 38].

The other direction is to use the representation theory of other complex simple Lie
algebras from the original work of Reshetikhin and Turaev [30, 31]. These quantized
simple Lie algebras invariants can be found by using the Jones-Wenzl idempotents and
fundamental representations. In this philosophy, Kuperberg introduced web spaces of
simple Lie algebras of rank 2,sl(3), sp(4) and G2 as generalizations of Temperley-
Lieb algebras corresponding tosl(2) [21]. Then he successively generalized the result
for sl(2) [32] that the dimension of the invariant subspace of the tensor of irreducible
representations of the quantumsl(3) andsp(4) is equal to the dimension of web spaces
of the given boundary with respect to the relations in Fig. 5 and Fig. 12 respectively
[21]. But there was no immediate generalization to other Liealgebras until new re-
sults for so(7) [37] and sl(4) [17]. The quantumsl(3) invariants have many interest-
ing results [1, 2, 12, 13, 28, 34] also have been generalized to the quantumsl(n)
[8, 14, 27, 33, 39]. An excellent review can be found in [6].

Ohtsuki and Yamada generalized Jones-Wenzl idempotents (these were calledmagic
weaving elements) for the quantumsl(3) web spaces by taking the expansions in Propo-
sition 3.1 and 3.4 as a definition of clasps [28]. On the other hand, Kuperberg ab-
stractly proved the existence of generalized Jones-Wenzl idempotents for other simple
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Lie algebras of rank 2, he calledclasps[21]. In the recursive formula shown in Fig. 1,
the resulting webs have two (one with one clasp) clasps, thusit is called a double
clasps expansionof the clasp of weightn. There is an expansion for which each result-
ing web has just one clasp as depicted in Fig. 3 [5]. We called it a single clasp expan-
sion of the clasp of weightn. These expansions are very powerful tools for graphical
calculus [5, 15, 35]. We provide single clasp expansions of all quantum sl(3) clasps
together with double, quadruple clasps expansions of all quantumsl(3) clasps. We also
find single and double clasp expansions of some quantumsp(4) clasps.

Using expansions of clasps, Lickorish first found a quantumsl(2) invariants of
3-manifolds [23, 24]. Ohtsuki and Yamada did for the quantumsl(3) [28] and Yokota
found for the quantumsl(n) [39]. For applications of single clasp expansions, first we
provide a criterion which determines the periodicity of a link using colored quantum
sl(3) andsp(4) link invariants. We discuss a generalization of 3j , 6 j symbols for the
quantumsl(3) representation theory. At last, we review howsl(3) invariants extend for
a special class of graphs.

The outline of this paper is as follows. In Section 2, we review the original Jones-
Wenzl idempotents and provide some algebraic background ofthe representation theory
of sl(3) and sp(4). We provide single clasp expansions of all clasps for thequantum
sl(3) in Section 3. In Section 4 we study single clasp expansions of some clasps for the
quantumsp(4). In Section 5, we will discuss some applications of the quantum sl(3)
clasps and their single clasp expansions. In Section 6, we prove two key lemmas.

A part of the article is from the author’s Ph. D. thesis. Precisely, Section 3 and 6
are from [15, Section 2.3] and Section 4 is from [15, Section 2.4].

2. Jones-Wenzl idempotents and algebraic back ground

For standard terms and notations for representation theory, we refer to [4].

2.1. Jones-Wenzl idempotents. An explicit algebraic definition of Jones-Wenzl
idempotents can be found in [5]. We will recall a definition ofJones-Wenzl idem-
potents which can be generalized for other simple Lie algebras. Let Tn be then-th
Temperley-Lieb algebra with generators, 1,e1, e2, : : : , en�1, and relations,

e2
i = �(q1=2 + q�1=2)ei ,

ei ej = ej ei if ji � j j � 2,

ei = ei ei�1ei .

For eachn, the algebraTn has an idempotentfn such that fnx = x fn = �(x) fn for
all x 2 Tn, where � is an augmentation. These idempotents were first discoveredby
Jones [9] and Wenzl [36]. They found a recursive formula:

fn = fn�1 +
[n� 1]

[n]
fn�1en�1 fn�1,
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Fig. 1. A double clasps expansion of the clasp of weightn.

Fig. 2. Properties of the Jones-Wenzl idempotents.

Fig. 3. A single clasp expansion of the clasp of weightn.

as illustrated in Fig. 1 where we use a rectangular box to represent fn and the quantum
integers are defined as

[n] =
qn=2 � q�n=2
q1=2 � q�1=2 .

Thus, they are namedJones-Wenzl idempotents(projectors). It has the following prop-
erties 1) it is an idempotent 2)fnei = 0 = ei fn where ei is a U -turn from the i -th to
the (i + 1)-th string as shown in Fig. 2. The second property is called the annihilation
axiom. We will discuss the importance of Jones-Wenzl idempotentsin Section 2.4. In
Fig. 3, n stands for the number of strings and “i ” stands fori -th string from the right.
We will use this convention for the rest of the article.

2.2. The representation theory ofsl(3). The Lie algebrasl(3) is the set of all
3� 3 complex matrices with trace zero, which is an 8 dimensionalvector space with
the Lie bracket. Let�i be a fundamental dominant weight ofsl(3), i = 1, 2. All fi-
nite dimensional irreducible representation ofsl(3) are determined by its highest weight� = a�1 + b�2, denoted byV� where a and b are all nonnegative integers. We will
abbreviateVa�1+b�2 by V(a, b). The dimension and the quantum dimension of the fun-
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damental representationV�1
�= (V�2)

� of sl(3) are 3, [3]. The weight space of a fun-
damental representationV(1, 0) is [1, 0], [�1, 1] and [0,�1]. The weight space of a
fundamental representationV(0, 1) is [0, 1], [1,�1] and [�1, 0]. Thus, one can easily
find the following decomposition formula for a tensor product of a fundamental repre-
sentation and an irreducible representation,

V�1 
 Va�1+b�2
�= V(a+1)�1+b�2 � V(a�1)�1+(b+1)�2 � Va�1+(b�1)�2,

V�2 
 Va�1+b�2
�= Va�1+(b+1)�2 � V(a+1)�1+(b�1)�2 � V(a�1)�1+b�2,

with a standard reflection rule, a refined version of the Brauer’s theorem [7, pp.142].
Using these tensor rules, one can find the following lemma.

Lemma 2.1. For integers a, b � 1,

dim
�
Inv
�
V
a�1

 V
b�2


 V(b�1)�1+a�2

��
= ab.

To compare the weight of cut paths and clasps, we recall the usual partial ordering
of the weight lattice ofsl (3) as

a�1 + b�2 � (a + 1)�1 + (b� 2)�2,

a�1 + b�2 � (a� 2)�1 + (b + 1)�2.

2.3. The representation theory ofsp(4). The Lie algebrasp(4) is the set of
all 4� 4 complex matrices of the following form,

�
A B
C �tA

�
, where tB = B, tC = C

which is a 10 dimensional vector space with the Lie bracket, where A, B and C are
2� 2 matrices. Let�i be a fundamental dominant weight ofsp(4), i = 1, 2. All finite
dimensional irreducible representation ofsp(4) are determined by its highest weight� = a�1 + b�2, denoted byV� where a and b are all nonnegative integers. We will
abbreviateVa�1+b�2 by V(a, b). The dimension and the quantum dimension of the fun-
damental representationV�1(V�2) of sp(4) are 4, [4] (5, [5], respectively). The weight
space of a fundamental representationV(1, 0) is [1, 0], [�1, 1], [1,�1] and [�1, 0].
The weight space of a fundamental representationV(0, 1) is [0, 1], [0,�1], [2, �1],
[�2, 1] and [0, 0]. Thus, one can easily find the following decomposition formula for
a tensor product of a fundamental representation and an irreducible representation,

V�1 
 Va�1+b�2
�= V(a+1)�1+b�2 � V(a�1)�1+(b+1)�2 � V(a+1)�1+(b�1)�2 � V(a�1)�1+b�2,

V�2 
 Va�1+b�2
�= Va�1+(b+1)�2 � Va�1+(b�1)�2 � V(a�2)�1+(b+1)�2 � V(a+2)�1+(b�1)�2 � Va�1+b�2,

with a similar reflection rule. Using these tensor rules, onecan find the following two
lemmas.
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Lemma 2.2. For a positive integer n,

dim
�
Inv
�
V
n+1�1


 V(n�1)�1

��
=

n(n + 1)

2
.

Lemma 2.3. For a positive integer n,

dim
�
Inv
�
V
n+1�2


 V(n�1)�2

��
=

n(n + 1)

2
.

There is a natural partial ordering of thesp(4) weight lattice given by

a�1 + b�2 � (a� 2)�1 + (b + 1)�2,

a�1 + b�2 � (a + 2)�1 + (b� 2)�2.

2.4. Invariant vector spaces and web spaces.In this subsection, we briefly
review the web spaces, full details can be found in [21]. LetVi be an irreducible
representation of complex simple Lie algebrasg. One of classical invariant problems
is to characterize the vector space of invariant tensors

Inv(V1
 V2
 � � � 
 Vn),

together with algebraic structures such as tensor products, cyclic permutations and con-
tractions. The dimension of such a vector space is given by Cartan-Weyl character the-
ory; dim(Inv(V1
 V2
 � � � 
 Vn)) is the number of copies of the trivial representation
in the decomposition ofV1 
 V2 
 : : : 
 Vn into irreducible representations. For this
algebraic space, we look for a geometric counterpart which can preserve the algebraic
structure of the invariant spaces. The discovery of quantumgroups opens the door for
the link between invariant spaces and topological invariants of links and manifolds. For
quantumsl(2), the dimension of the invariant spaces ofV
2n

1 is the dimension of the
n-th Temperley-Lieb algebra as a vector space which is generated by chord diagrams
with 2n marked points on the boundary of the disk whereV1 is the vector representa-
tion of sl(2). In particular, this space is free, i.e., there is no relation between chord
diagrams. To represent any irreducible representations other than the vector representa-
tion, we use Jones-Wenzl idempotents as we described in Section 2.1. Then all webs
in the web space of a tensor of irreducible representationsVi1 
 Vi2 
 � � � 
 Vin can be

obtained from webs in the web space ofV

Pk ik

1 and by attaching Jones-Wenzl idem-
potents of weightik along the boundary (some webs become zero by the annihilation
axiom, no longer a basis for web space and the other nonzero webs are calledbasis
webs), whereVi is the irreducible representation of the quantumsl(2) of highest weight
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Fig. 4. Generators of the quantumsl(3) web space.

i and k = 1, 2, : : : , n. For example [21], the web

is not a basis web ofV2
 V3
 V4
 V5, which instead has basis

where the Jones-Wenzl idempotents were presented by the thick gray lines instead of
boxes.

A first generalization of Temperley-Lieb algebras was made for simple Lie algebras
of rank 2, sl(3), sp(4) andG2 [21]. Each diagrams appears in a geometric counterpart
of the invariant vectors is called a web, precisely a directed and weighted cubic pla-
nar graph. Unfortunately, some of webs are no longer linearly independent for simple
Lie algebra other thansl(2). For example, we look at the web space ofsl(3) repre-
sentations. LetV�1 be the vector representation of the quantumsl(3) and V�2 be the
dual representation ofV�1. The web space of a fixed boundary (a sequence ofV�1 and
V�2) is a vector space spanned by the all webs of the given boundary which is gen-
erated by the webs in Fig. 4 (as inward and outward arrows) modulo by the subspace
spanned by the equation of diagrams which are called a complete set of the relations,
equations (1), (2) and (3) as illustrated in Fig. 5. We have drawn a web in Fig. 6. We
might use the notation +,� for V�1,V�2 but it should be clear. For several reasons, such
as the positivity and the integrality [22], we use�[2] in relation (2) but one can use
a quantum integer [2] and get an independent result. If one uses [2], one can rewrite
all results in here by multiplying each trivalent vertex by the complex numberi .
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(1)

(2)

(3)

Fig. 5. Complete relations of the quantumsl(3) web space.

Fig. 6. An example of the webs with a boundary (+�+����).

Fig. 7. An example of the annihilation axiom with a cut path.

To define the generalization of Jones-Wenzl idempotents,clasps, we first general-
ize the annihilation axiom for other web spaces. We need to introduce new concepts:
a cut path is a path which is transverse to strings of a web, and theweight of a cut
path is the sum of weights of all decorated strings which intersect with the cut path.
For example, the weight of the clasp as depicted in Fig. 7 is 2V�1 abbreviated by (2, 0).
Then we can generalize the annihilation axiom as follows: ifwe attach the clasp to a
web which has a cut path of a weight less than that of the clasp,then it is zero. Since
the weight of the clasp shown in Fig. 7 is (2, 1) and there is a cut path of weight (2, 0),
the web in Fig. 7 is zero by the annihilation axiom. Forsl(3), the clasp! of weight
(a, b) is defined to be the web in the web space ofV
a�1


 V
b�2

 (V��1

)
a 
 (V��2
)
b,

say W, which satisfies the annihilation axiom and the idempotent axiom (!2 = !). One
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can see the dimension of the web space ofW is one, i.e., all webs in the web space
of W are multiples of!. However, the clasp of weight (a, b) is unique by the idempo-
tent axiom (it is nonzero). An algebraic proof of the existence of clasps forsl(3) and
sp(4) is given [21]. On the other hand, the double clasps expansion and the quadruple
clasps expansion formulae [28] do concretely show the existence of thesl(3) clasp. Us-
ing these expansions one can find Example 2.4 (we omit some of arrows on the edges
of webs, but it should be clear).

EXAMPLE 2.4. The complete expansions of the clasps of weight (2, 0) and
(3, 0) are

= +
1

[2]

= +
[2]

[3]

0
B� +

1
CA +

[1]

[3]

0
B� +

1
CA +

1

[2][3]
.

3. Single clasp expansions for the quantumsl(3) clasps

First we look at a single clasp expansion of the clasp of weight (n, 0) where the
weight (a, b) stands fora�1 + b�2 in Section 3.1. We can easily find a single clasp
expansion of the clasp of weight (0,n) by reversing arrows in the equation presented
in the formula of Proposition 3.1. In Section 3.2, we find a single clasp expansion of
the clasp of weight (a, b) and double clasps expansions. Kuperberg showed that for a
fixed boundary, all webs of the given boundary are cut outs from the hexagonal tiling
of the plane with the given boundary [21].

3.1. Single clasp expansions of a clasp of weight (n, 0). First we find a single
clasp expansions of a clasp of weight (n, 0) in Proposition 3.1. It is worth to mention
that i) this expansion can be obtained from a complete expansion (linear expansions
of webs without any clasps) which can be found by using a double clasps expansion
iteratively [28] and then attaching a clasp of weight (n�1, 0) to each web in the expan-
sion; ii) the single clasp expansion in Proposition 3.1 holds for anysl(n) wheren � 4
becausesl(3) is naturally embedded insl(n). By symmetries, there are four different
single clasp expansions depending on where the clasp of weight (n� 1, 0) is located.
For equation (4), the clasp is located at the southwest corner, which will be considered
the standard expansion, otherwise, we will state the location of the clasp.

We demonstrate Proposition 3.1 forn = 2, 3 directly using the presentations of the
clasps in Example 2.4. Forn = 2, Proposition 3.1 is identical to the first formula of
Example 2.4. Forn = 3, by attaching the clasp of weight (2, 0) to the southwest corner
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of each web in the second formula of Example 2.4,

= +
[2]

[3]

0
BBB� +

1
CCCA

+
[1]

[3]

0
BBB� +

1
CCCA +

1

[2][3]
.

Since = 0, we find

= +
[2]

[3]
+

[1]

[3]
.

This verifies then = 3 case of Proposition 3.1.

Proposition 3.1. For a positive integer n,

(4) = +
nX

i =2

[n + 1� i ]

[n]
.

Proof. We prove the linear independence of the webs in the right-hand side of
the equation (4). Suppose there exists a linear combinationof webs which is zero, let
us denoteci be the coefficient of this linear combination correspondingto the i -th web
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in the right-hand side of the equation (4).

If we attach the clasp of weight (n, 0) to the top of each web in the right-hand side of
equation (4), the first web corresponding to the coefficientc1 is nonzero because it is a
cut out from the hexagonal tiling of the plane. All other remaining webs corresponding

to ck wherek � 2 are zero because = 0. Therefore,c1 = 0.

Inductively we assume allck = 0 wherek < i . If we attach the clasp of weight (n �
i + 1) to the left top of each web in the right side of equation (4), the i -th web cor-
responding to the coefficientci is nonzero because it is a cut out from the hexagonal
tiling of the plane. All other remaining webs correspondingto ck wherek � i + 1 are
zero because the same reason. Therefore,ci = 0. This completes the proof of linear
independency.

Now, we can show that the set of the webs in the right-hand sidein equation (4)
is a basis by counting the dimension of web spaces. If we seta = (n + 1), b = 1, we
find the dimension of the web space ofV
n+1�1


 V�2 
 V(n�1)�2 is n by Lemma 2.1.
Therefore, these webs in right side of equation (4) form a basis for the single clasp
expansion.
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We put

with someai , since the webs in the right hand side span the web space whichcontains
the web of the left hand side. If we attach a on the top of webs in equation (4),
the left side of equation (4) becomes zero and all webs in the right-hand side of equa-
tion (4) become multiples of a web. Thus we get the followingn� 1 equations.

an�1 � [2]an = 0.

For i = 1, 2, : : : , n� 2,

ai � [2]ai +1 + ai +2 = 0.

From these equations, we are able to find the relations between the coefficientsai ’s.
By a normalization, attaching the clasp of weight (n, 0) to the top of each web in the
equation, we finda1 = 1. Then other coefficients can be found subsequently.

3.2. Single clasp expansions of a non-segregated clasp of weight (a, b). The
most interesting case is a single clasp expansion of the clasp of weight (a, b) where
a 6= 0 6= b. By Lemma 2.1, we know the number of webs in a single clasp expansion
of the clasp of weight (a, b) is (a + 1)b. We need a set of basis webs with a nice
rectangular order, but we can not find one in the general case.Even if one finds such
a basis, each web in the basis would have many hexagonal faceswhich make it very
difficult to get numerical relations. So we start from an alternative, non-segregated
clasp. A non-segregated clasp is obtained from the segregated clasp by attaching a
sequence ofH ’s until we get the desired shape of edge orientations. Fortunately, there
is a canonical way to find them by puttingH ’s from the leftmost string of weight�2

or � until it reach to the desired position. The left side of the equation in Fig. 8
is an example of a non-segregated clasp of weight (2, 3). the right-hand side of the
equation in Fig. 8 shows a sequence ofH ’s which illustrates how we obtain it from
the segregated clasp of weight (2, 3).

First of all, we can show that the non-segregated clasps are well-defined [15, Lem-
ma 2.6]. One can prove that non-segregated clasps also satisfy two properties of seg-
regated clasps: 1) two consecutive non-segregated clasps is equal to a non-segregated
clasp, 2) if we attach a web to a non-segregated clasp and if ithas a cut path whose
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Fig. 8. A non-segregated clasp of weight (2, 3).

Fig. 9. Fillings for the boxes in equation (5).

weight is less than the weight of the clasp, then it is zero [15, Lemma 2.7]. We find
a single clasp expansion of a non-segregated clasp of weight(a, b) as shown in equa-
tion (5). Kuperberg showed that for a fixed boundary, the interior can be filled by a
cut out from the hexagonal tiling of the plane with the given boundary [21]. For our
cases, there are two possible fillings but we use the maximal cut out of the hexagonal
tiling. We draw examples of the casei = 6, j = 5 and the first one in Fig. 9 is not
a maximal cut out and the second one is the maximal cut out which fits to the left
rectangle and the last one is the maximal cut out which fits to the right rectangle as
the number indicated in equation (5). An example of a single clasp expansion of a
segregated clasp of weight (2, 2) can be found in [15, pp.18].
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Theorem 3.2. For a, b � 1,

(5)

=
bX

i =1

aX
j =0

[b� i + 1][b + j + 1]

[b][a + b + 1]
.

Proof. Let us denote the web corresponding to the coefficient[b� i + 1][b + j +
1]=[b][a + b + 1] = ai , j by Di , j . First of all, all these webs in the equation (5) are
nonzero because they are cut outs from the hexagonal tiling of the plane. These webs
in the right hand side of the equation form a basis because their cardinality is the same
as the dimension of the invariant space ofVa�1+(b�1)�2 
 V
a+1�1


 V
b�1�2
and they are

linearly independent. Suppose that a linear combination ofwebs in the right-hand side
of the equation (5) is zero for some choice ofai , j . By attaching the clasp of weight
(0,b� i + 1) to the left top and (a+ 1� j , 0) on right top of webs one can see all webs
but the websDs,t , 1� s � i , 0� t � j vanish. It is clear thata1,0 = 0 by attaching
the clasp of weight (0,b) and (0,a + 1). Inductively, we can showai , j = 0 for all i , j .

To find ai , j , we attach a or a to find one exceptional and three types of
equations as follow.

[3]a1,0� [2]a1,1� [2]a2,0 + a2,1 = 0.

Type I: For j = 0, 1, : : : , a,

ab�1, j � [2]ab, j = 0.

Type II: For i = 1, 2, : : : , b� 2 and j = 0, 1, : : : , a.

ai , j � [2]ai +1, j + ai +2, j = 0.

Type III: For i = 1, 2, : : : , b and j = 0, 1, : : : , a� 2.

ai , j � [2]ai , j +1 + ai , j +2 = 0.
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If we set a1,0 = x, then inductively one can see that the coefficientai , j in the equa-
tion (5) is

[b� i + 1][b + j + 1]

[b][b + 1]
x.

One might check that these are the right coefficients. Usually we normalize one
basis web in the expansion to get a known value. But we can not normalize for this
expansion yet because it is not a segregated clasp. Thus we use a complicate procedure
in Lemma 6.2 to find that the coefficient ofa1,a is 1. Then, we find thata1,0 is [b +
1]=[a + b + 1] and it completes the proof of the theorem.

We find a double clasps expansion as shown in Theorem 3.3, the box between two
clasps is filled by the unique maximal cut out from the hexagonal tiling with the given
boundary as we have seen in Fig. 9.

Theorem 3.3. For a, b � 1,

Proof. It follows from Lemma 6.1 and Lemma 6.2.

The expansion in equation depicted in Proposition 3.4 was first used to define the
segregated clasp of weight (a, b) [28]. The clasps can be constructed from web spaces
[21] and these two are known to be equal. We will apply Theorem3.2 to demon-
strate the effectiveness of single clasp expansions by deriving the coefficients in Propo-
sition 3.4.
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Fig. 10. Induction step for the proof of Proposition 3.4.

Proposition 3.4 ([28]). A quadruple clasps expansion of the segregated clasp of
weight (a, b) is

Proof. Let us denote thek-th term in the right-hand side of equation byD(k). We
induct ona + b. It is clear for a = 0 or b = 0. If a 6= 0 6= b then we use a segregated
single clasp expansion of weight (a, b) in the middle for the first equality. Even if
we do not use the entire single clasp expansion of a segregated clasp, once we attach
clasps of weight (a, 0), (0,b) on the top, there are only two nonzero webs which are
webs with just oneU -turn. One of resulting webs has someH ’s as in Fig. 10 but
if we push them down to the clasp of weight (a, b � 1) in the middle, it becomes
a non-segregated clasp. For the second equality we use a non-segregated single clasp
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expansion at the clasp of weight (a, b� 1) for which clasps of weight (a � 1, b� 1)
are located at northeast corner. By the induction hypothesis, we have

=
b�1X
k=0

(�1)k
[a]! [ b�1]! [a + b� k]!

[a� k]! [ b�1� k]! [ k]! [ a + b]!
D(k)

� [a + 1][a]

[a + b+ 1][a + b]

b�1X
k=0

(�1)k
[a�1]! [b�1]! [a + b�1� k]!

[a�1� k]! [ b�1� k]! [ k]! [ a + b�a]!
D(k + 1)

= 1 � D(0) +
b�1X
k=1

�
(�1)k

[a]! [ b�1]! [a + b� k]!

[a� k]! [ b�1� k]! [ k]! [ a + b]!

+ (�1)k
[a + 1]! [b�1]! [a + b� k]!

[a� k]! [ b�1� k]! [ k�1]! [a + b]!

�
D(k)

� (�1)b�1 [a + 1][a]

[a + b+ 1][a + b]

[a�1]! [b�1]! [a]!

[a�b]! [0]! [ b�1]! [a + b�1]!
D(b)

= D(0)

+
b�1X
k=1

(�1)k
[a]! [ b]! [ a + b+ 1� k]!

[a� k]! [ b� k]! [ k]! [ a + b+ 1]!

�
[b� k][a + b+ 1] + [k][a + 1]

[b][a + b+ 1� k]

�
D(k)

+ (�1)b
[a]! [ b�1]! [a + 1]!

[a�b]! [0]! [ b�1]! [a + b+ 1]!
D(b)

=
bX

k=0

(�1)k
[a]! [ b]! [ a + b+ 1� k]!

[a� k]! [ b� k]! [ k]! [ a + b+ 1]!
D(k)

4. Single clasp expansion for the quantumsp(4)

The quantumsp(4) webs are generated by a single web in Fig. 11 and a complete
set of relations is given in Fig. 12 [21]. Again, an algebraicproof of the existence
of the clasp of the weight (a, b) using the annihilation axiom and the idempotent ax-
iom is given in [21]. On the other hand, one can use the double clasps expansions
in Corollary 4.3 and Corollary 4.5 to define the clasps of the weight (n, 0) and (0,n).
Unfortunately, we do not have any expansion formula for the clasp of the weight (a, b)
where a 6= 0 6= b. Using these expansions one can find Example 4.1. We can define
tetravalent vertices to achieve the same end as in Fig. 13. Wewill use the these shapes
to find a single clasp expansion otherwise there is an ambiguity of a preferred direction
by the last relation presented in Fig. 12.

First we will find single clasp expansions of clasps of weight(n, 0) and (0,n) and
then use them to find coefficients of double clasps expansionsof clasps of weight (n, 0)
and (0,n). But we are unable to find a single clasp expansion of the clasp of weight
(a, b) wherea 6= 0 6= b. Remark that the cut weight is defined slightly different way. A
cut path may cut diagonally through a tetravalent vertex, and its weight is defined as



JONES-WENZL IDEMPOTENTS 707

Fig. 11. The generator of the quantumsp(4) web space.

Fig. 12. A complete set of relations of the quantumsp(4) web
space.

Fig. 13. Tetravalent vertices.

n�1 +(k+k0)�2, wheren is the number of type “1”, single strands, that it cuts,k is the
number of type “2”, double strands, that it cuts, andk0 is the number of tetravalent
vertices that it bisects.

EXAMPLE 4.1. The complete expansions of the clasps of weight (2, 0) and
(3, 0) are
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We demonstrate Theorem 4.2 forn = 2, 3 by using the presentations of clasps in
Example 4.1. Forn = 2, Theorem 4.2 is identical to the first formula of Example 4.1.
For n = 3, we first attach the clasp of weight (2, 0) to the southwest corner of each

web in the second formula of Example 4.1. Since = 0 and = 0, we find

We can confirm these coefficients are the same as given in Theorem 4.2.

Now, we state a single clasp expansion of the clasp of weight (n, 0).

Theorem 4.2. For a positive integer n,

(6)

Proof. By combining with the weight diagram ofV
n�1
and minimal cut paths, we

can find a set of nonzero webs for single clasp expansion of a clasp of weight (n, 0) as
in equation (6). Let us denote the web corresponding to thei -th in the first summation
and j -th in the second summation byDi , j and its coefficient byai j . First we will
show that these webs are linearly independent. Suppose thata linear combination of
the right-hand side of the equation in Fig. 5 is zero for some choice of ai j . It is clear
that ai ,i +1 = 0 by attaching the clasp of weight (n � i , 0) to left top of webs and the
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Fig. 14. Useful relations of webs for Theorem 4.2.

clasp of weight (i , 0) to the right top of each webs. By attaching the clasp of weight
(n� j +1, 0) to left top of webs and the clasp of weight (i , 0) to the right top of webs,
inductively we can showai j = 0 for all j � i + 1. By Lemma 2.2, we know that the

dimension of the web space ofV
n+1�1

 V(n�1)�1 is n(n + 1)=2. Thus, these webs in

right hand side of the equation form a basis.
Now we are set to findsai , j . For equations, we remark that the relations of webs

shown in Fig. 14 can be easily obtained from the relations depicted in Fig. 12. Using
these relations, we get the followingn� 1 equations by attaching a . By attaching
a , we have (n� 1)2 equations. There are two special equations and four different
shapes of equation as follows.

an�2,n�1 +
[2][6]

[3]
an�2,n � [2][6]

[3]
an�1,n = 0,

� [2][6]

[3]
a12 +

[2][6]

[3]
a13 + a23 + 1 +

[2][6]

[3]
b2 � [2][4]b3 = 0.

Type I: For i = 1, 2, : : : , n� 3,

ai ,i +1 +
[2][6]

[3]
ai ,i +2� [2][4]ai ,i +3� [2][6]

[3]
ai +1,i +2 +

[2][6]

[3]
ai +1,i +3 + ai +2,i +3 = 0.

Type II: For i = 0, 1, : : : , n� 2,

ai ,n�1 � [2]2ai ,n = 0.

Type III: For i = 0, 1, 2,: : : , n� 3, k = 2, 3, : : : , n� i � 1,

ai ,n�k � [2]2ai ,n�k+1 + [2]2ai ,n�k+2 = 0.

Type IV: For i = 3, 4, : : : , n, k = n� i + 3, n� i + 4, : : : , n,

[2]2an�k,i � [2]2an�k+1,i + an�k+2,i = 0.
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Fig. 15. Useful relations of webs for Theorem 4.4.

Then we check our answer satisfies the equations and it is clear that a0,1 = 1 by a
normalization. Since these webs in the equation (6) form a basis, the coefficients are
unique. Therefore, it completes the proof.

By attaching the clasp of weigh (n� 1, 0) on the top of all webs in the equation
presented in equation (6), we find the double clasp expansionof the clasp of weight
(n, 0).

Corollary 4.3. For a positive integer n,

Then we look at the clasp of weight (0,n). The main idea for the clasp of weight
(n, 0) works exactly same except we replace the basis as shown inequation (7). For
the linear independency, every idea of the proof of Theorem 4.2 works with the fact

= 0. As we did for the clasp of weight (n, 0), we first find the equations as

illustrated in Fig. 15 for the next step. The same as before, we set ai j be the co-
efficient of the web of (i , j ) in the summation. By attaching a and a , we get
the following equations and we can solve them successively as in Theorem 4.4.

an�2,n�1 � [5][2]2an�2,n +
[6][5]

[3][2]
an�1,n = 0,

�[3][2]2an�2,n + [5]an�1,n = 0.
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Type I: For i = 0, 1, : : : , n� 3,

ai ,i +1� [5][2]2ai ,i +2 + [3][2]4ai ,i +3 +
[6][5]

[3][2]
ai +1,i +2� [5][2]2ai +1,i +3 + ai +2,i +3 = 0.

Type II: For i = 0, 1, : : : , n� 2,

ai ,n�1 � [4][2]ai ,n = 0.

Type III: For i = 0, 1, : : : , n� 3 and j = i + 1, i + 2, : : : , n� 2,

ai , j � [4][2]ai , j +1 + [2]4ai , j +2 = 0.

Type IV: For i = 0, 1, : : : , n� 3 and j = i + 3, i + 4, : : : , n,

[2]4ai , j � [4][2]ai +1, j + ai +2, j = 0.

Type V: For i = 1, 2, : : : , n� 2

�[3][2]2ai�1,i +1 + [2]4ai�1,i +2 + [5]ai ,i +1� [3][2]2ai ,i +2 = 0.

Theorem 4.4. For a positive integer n,
(7)

By attaching the clasp of weigh (0,n� 1) on the top of all webs shown in equa-
tion (7) we find the double clasps expansion of the clasp of weight (0,n).

Corollary 4.5. For a positive integer n,
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Fig. 16. The shape ofL+, L� and L0.

Fig. 17. Expansion of crossings forP3(q).

5. Applications of the quantum sl(3) representation theory

In the section we will discuss some applications of the quantum sl(3) representa-
tion theory.

5.1. Polynomial invariants of links. The HOMFLY polynomial P3(q) can be
obtained by coloring all components by the vector representations of the quantumsl(3)
and the following skein relations

P3(;) = 1,

P3( [ D) = [3]P3(D),

q3=2P3(L+)� q�3=2P3(L�) = (q1=2 � q�1=2)P3(L0),

where ; is the empty diagram, is the trivial knot andL+, L� and L0 are three
diagrams which are identical except at one crossing as illustrated in Fig. 16. On the
other hand, the polynomialP3(q) can be computed by linearly expanding each crossing
into a sum of webs as shown in Fig. 17 then by applying relations in Fig. 5 [1, 20,
27]. A benefit of using webs is that we can easily definethe coloredsl(3) HOMFLY
polynomial G3(L, �) of L as follows. LetL be a colored link ofl components say,
L1, L2, : : : , L l , where each componentL i is colored by an irreducible representation
Vai �1+bi �2 of the quantumsl(3) and �1, �2 are the fundamental weights ofsl(3). The
coloring is denoted by� = (a1�1 + b1�2, a2�1 + b2�2, : : : , al�1 + bl�2). First we replace
each componentL i by ai +bi copies of parallel lines and each ofai lines is colored by
the weight�1 and each ofbi lines is colored by the weight�2. Then we put a clasp of
the weight (ai �1 + bi�2) for L i . If we assume the clasps are far away from crossings,
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Fig. 18. Trihedron coefficients forsl(2).

we expand each crossing as depicted in Fig. 17, then expand each clasp inductively
by Theorem 3.3. The value we find after removing all faces by using the relations
in Fig. 5 is the coloredsl(3) HOMFLY polynomial G3(L, �) of L. One can find the
following theorem which is a generalization of a criterion to determine the periodicity
of a link [1, 3].

Theorem 5.1. Let p be a positive integer and L be a p-periodic link in S3 with
the factor link L. Let � be a p-periodic coloring of L and� be the induced coloring
of L. Then

G3(L, �) � G3(L, �)p, moduloI3,

where L is the factor link andI3 is the ideal of Z[q�1=2] generated by p and
[3] p � [3].

Proof. Since the clasps are idempotents, for each component, we put p� 1 extra
clasps for each copies of components by the rotation of orderp. First we keep the
clasps far away from the crossings. The key idea of the proof given in [1] is that if
any expansion of crossings occurs in the link diagram, it must be used identically for
all other p�1 copies of the diagram. Otherwise there will bep identical shapes by the
rotation of orderp, then it is congruent to zero modulop. By the same philosophy,
if any application of relations occurs, it must be used identically for all other p � 1
copies. Otherwise it is congruent to zero modulop. Once there is an unknot in the
fundamental domain of the action of orderp, there arep identical unknots by the
rotation which occurs only once in the factor link. Therefore, we get the congruence
[3] p � [3].

5.2. 3j and 6j symbols for the quantum sl(3) representation theory. 3 j sym-
bols and 6j symbols for the quantumsl(2) representation theory have many significant
implications in mathematics and physics. 3j symbols are given in the equation shown
in Fig. 18 [25]. Its natural generalization for the quantumsl(3) representation theory
was first suggested [21] and studied [16]. Let�1, �2 be the fundamental dominant
weights ofsl(3, C). Let Va�1+b�2 be an irreducible representation ofsl(3, C) of highest
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Fig. 19. General shape of2(a1, b1, a2,b2,a3,b3; i , j )

weight a�1 + b�2. Now each edge of2 is decorated by an irreducible representation
of sl(3), let sayVa1�1+b1�2, Va2�1+b2�2 and Va3�1+b3�2 where ai , b j are nonnegative inte-
gers. Letd = minfa1, a2, a3, b1, b2, b3g. If dim(Inv(Va1�1+b1�2
Va2�1+b2�2
Va3�1+b3�2)) is
nonzero, in factd+1, then we say a triple of ordered pairs ((a1,b1), (a2,b2), (a3,b3)) is
admissible. One can show ((a1, b1), (a2, b2), (a3, b3)) is admissible if and only if there
exist nonnegative integersk, l , m, n, o, p, q such thata2 = d + l + p, a3 = d + n + q,
b1 = d + k + p, b2 = d + m + q, b3 = d + o and k � n = o � l = m. For an admissi-
ble triple, we can write its trihedron coefficients as a (d + 1)� (d + 1) matrix. Let us
denote it by M2 (a1, b1, a2, b2, a3, b3) or M2(�) where � = a1�1 + b1�2 + a2�1 +
b2�2 + a3�1 + b3�2. Also we denotes its (i , j ) entry by2(a1, b1, a2, b2, a3, b3; i , j ) or2(�; i , j ) where 0� i , j � d. The trihedron shape of2(a1, b1, a2, b2, a3, b3; i , j ) is
given in Fig. 19 where the triangles are filled by cut outs fromthe hexagonal tiling of
the plane [21].M2(0, m + n, l , m + q, n + q, m + l ), M2(0, n + p, p + l , q, n + q, l ) and
M2(i , j +k, k+ l , m, j +m, j + l ;0, 0) were found in [16]. All other cases of 3j symbols
and 6j symbols are left open.

5.3. sl(3) invariants of cubic planar bipartite graphs. The sl(3) webs are di-
rected cubic bipartite planar graphs together circles (no vertices) where the direction
of the edges is from one set to the other set in the bipartition. From a given directed
cubic bipartite planar graph, we remove all circles by the relation (1) and then remove
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Fig. 20. Prime web 61.

the multiple edges by the relation (2) in Fig. 5. Using a simple application of the Euler
characteristic number of a graphs in the unit disc, we can show the existence of a rect-
angular face [28]. By inducting on the number of faces, we provides the existence of
the quantumsl(3) invariants of directed cubic bipartite planar graphs. It is fairly easy
to prove the quantumsl(3) invariant does not depend on the choice of directions in
the bipartition. Thus, the quantumsl(3) invariant naturally extends to any cubic bipar-
tite planar graphG, let us denote it byPG(q). By using a flavor of graph theory, we
find a classification theorem and provide a method to find all 3-connected cubic bipar-
tite planar graphs which is calledprime webs[18]. As little as it is known about the
properties of the quantum invariants of links, we know a verylittle how PG(q) tells us
about the properties of graphs.

For symmetries of cubic bipartite planar graph, the idea of the Theorem 5.1 and 5.3
works for thesl(3) graph invariants with one exception. There is a criticaldifference
between these two invariants which is illustrated in Theorem 5.2.

Theorem 5.2 ([18]). Let G be a planar cubic bipartite graph with the group of
symmetries0 of order n. Let 0d be a subgroup of0 of order d such that the funda-
mental domain of G=0d is not a basis web with the given boundary. Then

PG(q) � (PG=0d (q))d moduloId,

whereId is the ideal ofZ[q�1=2] generated by d and[3]d � [3].

If the fundamental domain ofG=0 is a basis web with the given boundary, then
the main idea of the theorem no longer works and a counterexample was found as
follows [18]. We look at an example 61 as shown in Fig. 20. By a help of a machine,
we can see that there does not exist an� 2 Z[q�1=2] such that

(�)6 � [2]4[3] + 2[2]2[3] mod I6

even though there do exist a symmetry of order 6 for 61.

5.4. Applications for the quantum sp(4) representation theory. A quantum
sp(4) polynomial invariantGsp(4)(L, �) can be defined [20, 21] where� is a funda-
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mental representation of the quantumsp(4). Since we have found single clasp expan-
sion of the clasps of weight (a, 0) and (0,b), we can extendGsp(4)(L, �) for � is an
irreducible representations of weight either (a, 0) and (0,b). If we assume a coloring� = (a, 0) or � = (0, b), by the same idea of the proof of Theorem 5.1, we can find
the following theorem from Corollary 4.3 and 4.5.

Theorem 5.3. Let p be a positive integer and L be a p-periodic link in S3 with
the factor link L. Let � be a p-periodic coloring of L and� be the induced coloring
of L. Then

Gsp(4)(L, �) � Gsp(4)(L, �)p moduloIsp(4),

where L is the factor link andIsp(4) is the ideal of Z[q�1=2] generated by p,
(�[6][2]=[3]) p + [6][2]=[3] and ([6][5]=[3][2]) p � [6][5]=[3][2].

In fact, Theorem 5.3 remains true even if� is any finite dimensional irreducible
representation ofsp(4), but we would not be able to obtain the actual polynomialsbe-
cause any expansion is not known for the clasp of the weight (a, b) wherea 6= 0 6= b.

6. The proof of lemmas

Let us recalled that the relation (3) in Fig. 5 is called arectangular relationand
the first (second) web in the right-hand side of the equality is called ahorizontal (ver-
tical, respectively)splitting. The web in the equation shown in Fig. 5 corresponding
to the coefficientai , j is denoted byDi , j . After attachingH ’s to Di , j as illustrated in
Fig. 21, the resulting web is denoted bỹDi , j . We find thatD̃i , j contains some elliptic
faces. If we decompose each̃Di , j into a linear combination of webs which have no
elliptic faces, then the union of all these webs forms a basis. Let us prove that these
webs actually form a basis which will be denoted byD0

i 0, j 0 . As vector spaces, this
change, addingH ’s as in Fig. 21, induces an isomorphism between two web spaces
because its matrix representation with respect to these webbasesfDi , j g and fD0

i 0, j 0g is

an (a+1)b�(a+1)b matrix whose determinant is�[2]ab because a singleH contributes�[2] depends on the choice of the direction ofH .
To find a single clasp expansion of the segregated clasp of weight (a, b), we have

to find all linear expansions of̃Di , j into a new web basisD0
i 0, j 0 . In general this is very

complicate. Instead of using relations for linear expansions, we look for an alternative.
From D̃i , j we see that there area +b+ 1 nodes on top anda +b�1 nodes right above
the clasp. AY shape in the webDi , j forces D̃i , j to have at least one rectangular face.
Each splitting creates another rectangular face until it becomes a basis web (possibly
using the relation (2) in Fig. 5 once). If we repeatedly use the rectangular relations as
in equation (3) in Fig. 5, we can push upY’s so that there are either twoY’s or one
U shape at the top. Astemof a web isa +b�1 disjoint union of vertical lines which
connect topa + b� 1 nodes out ofa + b + 1 nodes to the clasp of weight (a, b� 1)
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Fig. 21. A sequence of H’s which transformsDi j to a linear
combinations of webs in the single clasp expansion of segregated
clasp of weight (a, b� 1).

together aU -turn or two Y’s on top. It is clear that these connecting lines should be
mutually disjoint, otherwise, we will have a cut path with weight less than (a, b� 1),
i.e., the web is zero. Unfortunately some of stems do not arise naturally in the lin-
ear expansion ofD̃i , j because it may not be obtained by removing elliptic faces. Ifa
stem appears, we call it anadmissible stem. For single clasp expansions, finding all
these admissible stems will be more difficult than linear expansions by relations. But
for double clasp expansions of segregated clasps of weight (a, b) there are only few
possible admissible stems whose coefficients are nonzero.

Lemma 6.1. After attaching the clasp of weight(a, b� 1) to the top left side of
webs D̃i , j from the equation inFig. 21, the only non-vanishing webs are those three
webs as depicted inFig. 22.

Proof. It is possible to have two adjacentY’s which appear in the second and
third webs in Fig. 22 but aU -turn can appear in only two places because of the ori-
entation of edges. If we attach the clasp of weight (a, b� 1) to the northwest corner
of the resulting web and if there is aU or a Y shape just below the clasp of weight
(a, b� 1), the web becomes zero. Therefore only these three webs do not vanish.

In the following lemma, we find allD̃i , j ’s which can be transformed to each of
the web in Fig. 22.

Lemma 6.2. Only D̃1,a(D̃2,a) can be transformed to the first(second, respectively)
web in Fig. 22. Only the three webs, D̃1,a�1, D̃1,a and D̃2,a�1 can be transformed to
the last web. Moreover, all of these transformations use only rectangular relations as
in equation(3) except the transformation from̃D1,a�1 to the third web uses the rela-
tion (2) in Fig. 5 exactly once.
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Fig. 22. Three webs which do not vanish after attaching the clasp
of weight (a, b � 1) to the top left side of webs̃Di , j from the
equation in Fig. 21.

Fig. 23. Di ,a where i > 1.

Proof. For the first web shown in Fig. 22, it is fairly easy to see that we need
to look at D̃i ,a, for i = 1, 2, : : : , b, otherwise the last two strings can not be changed
to the first web presented in Fig. 22 with aU -turn. Now we look at theDi ,a where
i > 1 as illustrated in Fig. 23. Since we picked where theU turn appears already, only
possible disjoint lines are given as thick and lightly shaded lines but we can not finish
to have a stem because the darkly shaded string from the left top can not be connected
to the bottom clasp without being zero, i.e., if we connect the tick line to clasp, there
will be either or a right above of the clasp of weight (a, b� 1).

So only nonzero admissible stems should be obtained fromD̃1,a. As we explained
before, one can see that there is a rectangular face in the webD̃1,a. Since the hori-
zontal splitting makes it zero, we have to split vertically.For the resulting web, this
process created one rectangular face at right topside of previous place. We have to split
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Fig. 24. The webD̃1,a.

Fig. 25. The nonzero admissible stem forD̃1,a�1.

vertically and the process are repeated until the last step,both splits do not vanish. The
web in the last step is drawn in Fig. 24 with the rectangular face, darkly shaded. The
vertical split gives us the first web in Fig. 22 and the horizontal split gives the third
web in Fig. 22.

A similar argument works for the second web illustrated in Fig. 22. The third web
depicted in Fig. 22 is a little subtle. First one can see that none of D̃i , j can be trans-
formed if eitheri > 2 or j < a�1. Thus, we only need to check̃D1,a�1, D̃1,a, D̃2,a�1

and D̃2,a but we already know about̃D1,a, D̃2,a. Fig. 25 shows the nonzero admissi-
ble stem forD̃1,a�1. As usual, we draw a stem as a union of thick and darkly shaded
lines. Note that we have used relation (3) in Fig. 5 exactly once which contributes�[2]. The Fig. 26 shows the nonzero admissible stem forD̃2,a�1. This completes the
proof of the lemma.
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Fig. 26. The nonzero admissible stem forD̃2,a�1.
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