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Abstract
We extend several classical invariants of links in the 3-sphere to links in

so-called quasi-cylinders. These invariants include the linking number, the
Seifert form, the Alexander module, the Alexander-Conway polynomial and the
Murasugi-Tristram-Levine signatures.

Introduction

The aim of this paper is to introduce a generalization of several classical knot
and link invariants including the linking numbers, the Alexander-Conway polynomial,
and the Murasugi-Tristram-Levine signatures of links in Euclidean 3-space. These in-
variants are generalized to links in so-called quasi-cylinders. A quasi-cylinder over a
commutative ringR is an oriented 3-manifoldM endowed with a submoduleV of the
R-module H1(�M; R) such that the inclusion homomorphismV ! H1(M; R) is an iso-
morphism. The main example is the cylinderM = 6 � [0, 1] where6 is an oriented
surface andV = H1(6 � 0; Z) � H1(�M; Z). (Here, R = Z). For homologically trivial
links in a quasi-cylinderM with H2(M; Z) = 0, we define a generalized Seifert form
and derive from it several other invariants, namely, a generalized Alexander-Conway
polynomial and generalized signatures (see [6] for relatedconstructions). The most in-
teresting feature of our invariants is the appearance of additional parameters which are
absent in the classical case.

The organization of the paper is as follows. In Section 1 we introduce generalized
linking numbers of links in quasi-cylinders. In Section 2 wedefine the generalized
Seifert form for links in quasi-cylinders. In Section 3 we study the derived Alexander
invariants. In Section 4 we discuss simple estimates of the link genus. In Section 5 we
study the concordance of links. In Section 6 we consider the signatures. In Section 7
we introduce a multivariable extension of the theory. In Section 8 we discuss various
generalizations of our invariants and in particular an extention to homologically non-
trivial links.
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In this paper, all manifolds are smooth. The boundary of an oriented manifold is
orientedvia the “outward normal vector first” convention.

Throughout the paper, we fix a commutative ring with unityR.

1. Linking numbers and quasi-cylinders

1.1. Knots and links. By a link in an oriented 3-manifoldM, we mean a finite
system of disjoint oriented circles embedded in Int(M) = M � �M. Each link L in M
viewed as a geometric 1-cycle represents a homology class [L] 2 H1(M; R). A link L
is R-homologically trivialif [ L] = 0. For R = Z, we say simplyhomologically trivial.

Two links L and L 0 in M are said to beambient isotopicif there is an ambient
isotopy ht (0 � t � 1) of M, keeping�M fixed, such thath0 = id, h1(L) = L 0, and
h1jL : L �= L 0 is orientation-preserving.

A knot is a link consisting of a single circle. Let us stress that allknots and links
in this paper are oriented.

1.2. Linking numbers. The classical linking number of disjointR-homologically
trivial knots K , L in an oriented 3-manifoldM is defined by

lk(K , L) = K � B = B � K 2 R

where � = �M is the standard homological intersection inM and B is a 2-chain inM
(with coefficients inR) such that�B = L. The independence of the choice ofB follows
from the fact that given another 2-chainB0 with �B0 = L, one hasK �B�K �B0 = K �b
where b = B � B0 is a 2-cycle inM. The R-homological triviality of K implies that
K � b = [K ] � b = 0. One easily checks the symmetrylk(K , L) = lk(L, K ).

We introduce ageneralized linking numberas follows. Suppose that�M 6= ; and
denote byc the inclusion homomorphismH1(�M; R)! H1(M; R). Fix a submodule
V of the R-module H1(�M; R) such thatV \ Ker(c) = 0. For disjoint knotsK , L in
M such that [K ], [ L] 2 c(V), set

lkV (K , L) = K � B = B � K 2 R

where B is any 2-chain inM (with coefficients in R) such that�B = L � v for a
1-cycle v on �M representing an element ofV . The homological intersectionK � B
does not depend on the choice ofB. Indeed, consider another 2-chainB0 in M with�B0 = L � v0 where v0 is a 1-cycle on�M representing an element ofV . Then b =
B� B0 is a relative 2-cycle in (M, �M) in the sense that its boundary lies on�M. Let
u be a 1-cycle on�M whose homology class [u] 2 H1(�M; R) satisfiesc([u]) = [ K ]
and let ũ be a 1-cycle obtained by pushingu slightly inside Int(M). Then

K � B� K � B0 = K � b = ũ � b = u ��M �b
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where ��M is the homological intersection of 1-cycles in�M. We haveu ��M �b = 0
since [�b] = [v � v0] 2 V \ Ker(c) = 0.

The linking numberlkV satisfies

lkV (L, K ) = lkV (K , L) + u ��M v.

where u, v are 1-cycles on�M representing elements ofV homological to K , L
respectively. Indeed, let̃u be a 1-cycle in Int(M) obtained fromu as above and let
A be a 2-chain inM with �A = K � ũ. Then A is disjoint from v and therefore

lkV (L, K ) = L � A = (L � v) � A = �B � A = B � �A

= B � K � B � ũ = B � K � v ��M u

= lkV (K , L) + u ��M v.

It is clear that lkV (K , L) is invariant under deformations ofK and L in M keeping
them disjoint. If K , L are R-homologically trivial (in particular, if they lie in a 3-ball
inside M), then lkV (K , L) = lk(K , L).

The definition of lkV (K , L) extends in the obvious way to the case whereK , L
are disjoint 1-cycles inM.

1.3. Quasi-cylinders. By a quasi-cylinder(over R), we mean a pair consisting
of a connected oriented 3-manifoldM with non-empty boundary and a submoduleV
of the R-module H1(�M; R) such that the restriction of the inclusion homomorphism
H1(�M; R) ! H1(M; R) to V yields an isomorphismV ! H1(M; R). The inverse
isomorphism is denoteddV .

The constructions of the previous section show that for a quasi-cylinder (M, V)
over R and any disjoint knotsK , L in M, we have a well-defined linking number
lkV (K , L) 2 R satisfying

lkV (L, K ) = lkV (K , L) + dV ([K ]) ��M dV ([L]).

We say that a quasi-cylinder (M, V) has trivial 2-homology ifH2(M) = 0. Here
and below, the unspecified group of coefficients in homology/cohomology isZ.

Note the following lemma.

Lemma 1.1. Let (M, V ) be a quasi-cylinder such that M is compact. The equal-
ity H2(M) = 0 holds if and only if �M is connected.

Proof. The components of�M represent elements ofH2(M) subject to only one
relation: their sum is equal to zero. Therefore the equalityH2(M) = 0 implies that�M is connected. Let us prove the converse. Since the inclusionhomomorphism
H1(�M; R) ! H1(M; R) is onto and the inclusion homomorphismH0(�M; R) !
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H0(M; R) is an isomorphism, the homology sequence of the pair (M, �M) gives that
H1(M, �M; R) = 0. Observe thatH1(M, �M; R) = R
Z H1(M, �M). Therefore the
group H1(M, �M) is finite and

H2(M) = H1(M, �M) = Hom(H1(M, �M), Z) = 0.

EXAMPLES. 1. The pair consising of a 3-ballD3 and V = H1(�D3) = 0 is a
quasi-cylinder overZ. Clearly, lkV (K , L) = lk(K , L) 2 Z is the usual linking number
of knots in the 3-ball.
2. Let6 be a connected oriented surface andM =6� [0, 1] with product orientation.
Set V = H1(6 � 0; R) � H1(�M; R). It is clear that (M, V) is a quasi-cylinder. The
linking number lkV (K , L) of knots K , L � M can be computed as follows. Present
the link K [ L by a link diagram on6. Let k, l be the components of the diagram
representingK and L, respectively. ThenlkV (K , L) = n+ � n� wheren+ (resp.n�) is
the number of positive (resp. negative) crossing points on the diagram wherek passes
underl . The quasi-cylinder (6�[0, 1],V ) has trivial 2-homology if and only if�6 6= ;.
3. Let N be an R-homology 3-sphere, i.e., a closed oriented 3-manifold with
H�(N; R) = H�(S3; R). Let G be a non-empty finite graph inN and M � N be its
exterior, that is the complement of an open regular neighborhood of G in N. Let
V � H1(�M; R) be the submodule generated by the homology classes of the meridians
of the edges ofG. Then the pair (M, V ) is a quasi-cylinder. For any knotsK , L � M,
we have lkV (K , L) = lk(K , L) 2 R where the right-hand side is the linking number
of K , L in N. The quasi-cylinder (M, V) has trivial 2-homology if and only ifG is
connected.

REMARK . The constructions above suggest that the definition of the Milnor num-
bers of classical links may be extended to links in quasi-cylinders. We shall not pursue
this line here.

2. Generalized Seifert forms

2.1. Bilinear forms associated with surfaces. Let (M, V) be a quasi-cylinder
over R. Consider an oriented embedded surfaceF � Int(M) (possibly, �F 6= ;). For a
1-cycle a on F , denote bya+ (resp.a�) the 1-cycle in Int(M)nF obtained by pushing
a along the positive (resp. negative) normal direction onF in M. For 1-cyclesa, b on
F representing homology classes [a], [b] 2 H1(F ; R), set

#([a], [b]) = lkV (a+, b).

This number only depends on the homology classes ofa and b in H1(F ; R). Indeed,
if a1, a2, b1 and b2 are 1-cycles onF such thata1 � a2 = �A and b1 � b2 = �B for
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some 2-chainsA and B in F , then

lkV (a+
1 , b1)� lkV (a+

2 , b2) = lkV (a+
1 � a+

2 , b1) + lkV (a+
2 , b1 � b2)

= �A+ � B1 + a+
2 � B = A+ � �B1 + a+

2 � B
= A+ � b1� A+ � v1 + a+

2 � B,

where A+ denotes the 2-chainA pushed along the positive normal direction onF in M.
Since A+, a+

2 � Int(M) n F and b1, B � F , v1 � �M, these three intersection number
are zero. Hence, we have a well-defined bilinear form

# = #F : H1(F ; R)� H1(F ; R)! R.

We call it thegeneralized Seifert formof F .

Lemma 2.1. Let d: H1(F ; R) ! V be the composition of the inclusion homo-
morphism H1(F ; R)! H1(M; R) with the isomorphism dV : H1(M; R)! V . For all
a, b 2 H1(F ; R),

a �F b = #(a, b)� #(b, a)� d(a) ��M d(b).

Proof. By abuse of notation, we shall denote 1-cycles representing a, b, d(a),
d(b) by the same symbolsa, b, d(a), d(b). Consider the bilinear form#�: H1(F ; R)�
H1(F ; R)! R defined as#+ = # but usinga� instead ofa+. We claim that

#+(a, b)� #�(a, b) = a �F b.(2.a)

Indeed, letB be a 2-cycle inM such that�B = b � d(b), and let� be the 2-cycle
[�1, 1]� a in Int(M) with �� = a+ � a�. We have

#+(a, b)� #�(a, b) = a+ � B� a� � B = �� � B
= � � �B = � � b� � � d(b).

Now, � and d(b) are disjoint, so� � d(b) = 0. Since� � b = a �F b, this gives (2.a).
We now verify that

#+(a, b)� #�(b, a) = d(a) ��M d(b).(2.b)

Indeed,

#+(a, b) = lkV (a+, b) = lkV (b, a+) + d(a) ��M d(b)

= lkV (b�, a) + d(a) ��M d(b) = #�(b, a) + d(a) ��M d(b).

Combining formulas (2.a) and (2.b), we obtain the claim of the lemma.
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2.2. Algebraic digression. Let W be an arbitraryR-module. A Seifert triple
over W is a triple (H , # , d), where H is a free R-module of finite rank,# a bilinear
form H � H ! R, andd a homomorphismH ! W. Two Seifert triples (H1, #1, d1),
(H2, #2, d2) over W are isomorphic if there is anR-isomorphism f : H1 ! H2 such
that #2 Æ ( f � f ) = #1 and d2 Æ f = d1.

A Seifert triple (H 0, # 0, d0) is obtained from a Seifert triple (H , # , d) by an ele-
mentary enlargement(and (H , # , d) from (H 0, # 0, d0) by an elementary reduction) if
the following conditions hold:H 0 = H � Ra� Rb, d0jH = d, d0(b) = 0, # 0jH�H = # ,# 0(H , b) = # 0(b, H ) = # 0(b, b) = 0 and either# 0(a, b) = 1, # 0(b, a) = 0 or # 0(a, b) =
0, # 0(b, a) = 1. If h is a basis ofH , then h [ fa, bg is a basis ofH 0 and the matrix20 of # 0 with respect toh [ fa, bg is computed from the matrix2 of # with respect
to h by

20 =

0
� 2 ? 0? ? 0

0 1 0

1
A or 20 =

0
� 2 ? 0? ? 1

0 0 0

1
A.

We say that two Seifert triples overW are equivalentif they can be related by a finite
sequence of isomorphisms and elementary enlargements and reductions.

2.3. Surgeries on surfaces. Given a quasi-cylinder (M, V) over R and a com-
pact connected oriented surfaceF � Int(M), the constructions above yield a Seifert
triple (H1(F ; R), # , d) over V . Note that theR-module H1(F ; R) is free of rank 2g +
m � 1, where g is the genus ofF and m is the number of connected components
of �F . Suppose that a surfaceF 0 � Int(M) is obtained fromF by surgery along an
embedded arc in Int(M) meeting F exactly at its endpoints and approachingF either
from the positive side or from the negative side at both endpoints. The transformation
F 7! F 0 and the inverse transformation are calledsurgeries. It is easy to see that the
Seifert triple of F 0 is obtained from the Seifert triple ofF by an elementary enlarge-
ment. Therefore the equivalence class of the Seifert tripleof an embedded surface is
invariant under surgeries.

Observe that any given class inH2(M) can be realized by a closed connected ori-
ented surface and any two such surfaces are related by a sequence of surgeries and
isotopies. This leads to algebraic invariants of integral 2-homology classes of quasi-
cylinders. We shall however focus on quasi-cylinders with trivial 2-homology.

2.4. Seifert forms of links. A Seifert surfacefor a link L in a 3-manifold M
is a compact connected oriented surface in Int(M) that hasL as its oriented boundary.
Clearly, if L has a Seifert surface, then [L] = 0 in H1(M). It is well-known that this
is the only obstruction. For completeness, we outline a proof.

Lemma 2.2. Any homologically trivial link in an oriented3-manifold has a
Seifert surface.



CLASSICAL INVARIANTS OF L INKS 537

Proof. Let L be a homologically trivial link in an oriented 3-manifoldM. Then
L is homologically trivial in a compact 3-dimensional submanifold M 0 of M such that
M 0 � L. Let N be a closed tubular neighborhood ofL in Int(M 0). Set X = M 0n Int(N).
Since [L] = 0 2 H1(M 0), an appropriate choice of longitudes ofL gives a link L 0 ��N � �X whose class inH1(X) is equal to 0. Then [L 0] 2 H1(�X) is the boundary
of an element ofH2(X, �X) = H1(X). The latter is the pull-back of a generator of
H1(S1) = Z under a mapX ! S1. For an appropriate choice of this map, the pre-
image of a point ofS1 is a compact oriented surface bounded byL 0 in X. Adding if
necessary 1-handles to this surface one can make it connected. The resulting surface
extends to a Seifert surface forL in M 0.

Given two Seifert surfacesF , F 0 for a link L in an oriented 3-manifoldM, the
union F [ (�F 0) is a closed oriented surface representing an element ofH2(M). This
element is an obstruction to transformingF into F 0 by surgeries. It is well-known that
this is the only obstruction (see e.g. [7, p.64]). In particular, if H2(M) = 0, thenF , F 0
can be related by a finite sequence of surgeries and ambient isotopies in M (which
can be chosen to keep�M fixed). Combining this fact with the observations above,
we obtain the following.

Theorem 2.3. Let (M, V) be a quasi-cylinder over R with H2(M) = 0. For any
homologically trivial link L� M, the equivalence class of the Seifert triple of a Seifert
surface for L does not depend on the choice of the surface and provides an isotopy
invariant of L.

3. Alexander invariants

Throughout this section, (M, V) is a quasi-cylinder overR with H2(M) = 0.

3.1. The Alexander module. Fix a commutative unital ringR0 containingR as
a subring. We also fix anR-bilinear pairing : V�V! R0. Consider a homologically
trivial link L in M. Let (H ,#: H�H ! R, d: H ! V) be the Seifert triple associated
with a Seifert surface forL. Let 2 and9 be the matrices of the bilinear forms# and Æ (d � d) with respect to a basis ofH . The Alexander moduleA (L) of L is the
R0[t , t�1]-module presented by the matrixt2�2T +9, where the superscriptT denotes
the matrix transposition.

Proposition 3.1. The Alexander module is an isotopy invariant of L.

Proof. Obviously, this module does not depend on the choice of a basis of H .
By Theorem 2.3, we just need to check that if (H 0, # 0, d0) is obtained from (H , # , d)
by an elementary enlargement, then the corresponding matrices00 = t20 � (20)T +9 0
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and0 = t2�2T +9 present isomorphicR0[t , t�1]-modules. Clearly,

9 0 =

0
� 9 ? 0? ? 0

0 0 0

1
A.

Therefore,

00 =

0
� 0 ? 0? ? �1

0 t 0

1
A or 00 =

0
� 0 ? 0? ? t

0 �1 0

1
A.

In both cases, the corresponding modules overR0[t , t�1] are isomorphic.

For M = D3, V = 0, R0 = R = Z and  = 0, the moduleA (L) is the usual
Alexander module.

Mimicking the standard definitions, we can introduce the Alexander ideals and
Alexander polynomials ofL (provided R0 is a unique factorization domain). In particu-
lar, the first Alexander polynomial ofL can be defined as the determinant of a square
presentation matrix ofA (L). This polynomial is an element of the ringR0[t , t�1]
defined up to multiplication by units of this ring. As in the classical case, the first
Alexander polynomial has a canonical normalization which we now discuss.

3.2. The Alexander-Conway polynomial. Using the notation of the previous
subsection, we define the (extended) Alexander-Conway polynomialof L by

1L, (t) = det(t1=22� t�1=22T + t�1=29).

As in the proof of Proposition 3.1, one checks that this element of R0[t1=2, t�1=2] is a
well-defined isotopy invariant ofL.

Observe that the size of the matrices2, 9 is equal to 2g + m� 1, whereg is the
genus of the Seifert surface andm is the number of components ofL. Therefore

1L, (t) = t (1�m)=2�g det(t2�2T +9).

Thus,1L, (t) 2 R0[t , t�1] for odd m and t1=21L, (t) 2 R0[t , t�1] for even m.
We now establish a skein formula for1L, (t).

Proposition 3.2. Let L+, L� and L0 be homologically trivial links in M which
coincide everywhere except in a small3-ball where they are related as illustrated
below.



CLASSICAL INVARIANTS OF L INKS 539

Then, the corresponding Alexander-Conway polynomials satisfy the following relation:

1L+, (t)�1L�, (t) = (t�1=2 � t1=2)1L0, (t , s).

Proof. Let F0 be a Seifert surface forL0. Then a Seifert surfaceF+ for L+

(resp. F� for L�) is obtained fromF0 by adding a band in the small 3-ball with
one negative (resp. positive) half-twist. SinceF0 is connected, a basis forH1(F+; R)
(resp. for H1(F�; R)) is obtained from a basis forH1(F0; R) by adding a 1-cyclea+

(resp. a�). Clearly, a+ and a� can be chosen to coincide as 1-cycles inM. Let v
be a 1-cycle on�M with coefficients inR such that [v] 2 V � H1(�M; R) and v is
homologous toa+ = a� in M. Let B be a 2-cycle inM such that�B = a� � v. Then

#F+(a+, a+)� #F�(a�, a�) = a+
+ � B� a+� � B = (a+

+ � a+�) � B = �1.

This leads to the following equalities between the corresponding matrices:

2F+ =

� 2F0 vw �
�

, 2F� =

� 2F0 vw � + 1

�
and 9F+ = 9F� =

� 9F0 x
y �

�

for some� 2 R, � 2 R0, columnv and roww over R, and columnx and row y over
R0. The skein formula follows.

The skein formula implies in particular that1L, (1) 2 R0 is unchanged when one
replaces an undercrossing by an overcrossing. Hence, it depends only on the homotopy
type of the components ofL.

If L 0 is a link in an oriented 3-ballD3 and L is the image ofL 0 under an ori-
entation preserving embeddingD3 ,! M, then1L, (t) = 1L 0(t) is the usual Conway-
normalized Alexander polynomial ofL 0.

3.3. A special case. Let R0 = R[s1, : : : , sn] be the polynomial ring overR gen-
erated byn commuting variabless1, : : : , sn. Let  1, : : : ,  n : V � V ! R be bilinear
forms. We can apply the definitions and results of the previous subsections to the bi-
linear form

 = s1 1 + � � � + sn n : V � V ! R0.
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This gives a polynomial invariant

1L, 1,:::, n(t , s1, : : : , sn) = 1L, (t) = det

 
t�1=22� t1=22T + t�1=2 nX

i =1

si9i

!
,

where2 and9i are the matrices of the bilinear forms# and i Æ (d�d) with respect
to a basis ofH . The polynomial1L, 1,:::, n(t , s1, : : : , sn) lies in R[t , t�1, s1, : : : , sn]
for odd m and in t1=2 � R[t , t�1, s1, : : : , sn] for even m.

The degree insi of 1L, 1,:::, n(t , s1, : : : , sn) is bounded from above by a number
independent ofL. Namely, this degree is smaller than or equal to the rank of the form i . Indeed, it follows from the definitions that

degsi
1L, 1,:::, n(t , s1, : : : , sn) � rank(9i ) = rank i .

For a bilinear form : V � V ! R0 we denote by T its transpose defined by T (a, b) =  (b, a) for a, b 2 V .

Proposition 3.3.

1L, 1,:::, n(t
�1, s1t�1, : : : , snt�1) = (�1)m�11L,� T

1 ,:::,� T
n
(t , s1, : : : , sn).

Proof. Transposing matrices, we obtain

1L, 1,:::, n(t
�1, s1t�1, : : : , snt�1) = det

 
t�1=22� t1=22T + t1=2 nX

i =1

si t
�19i

!

=

 
t�1=22T � t1=22 + t�1=2 nX

i =1

si9T
i

!

= (�1)m�11L,� T
1 ,:::,� T

n
(t , s1, : : : , sn).

For example, if i is symmetric fori = 1, : : : , p and skew-symmetric fori = p + 1, : : : ,
n, then

1L, 1,:::, n(t
�1, s1t�1, : : : , snt�1) = (�1)m�11L,� 1,:::,� p, p+1,:::, n(t , s1, : : : , sn)

= (�1)m�11L, 1,:::, n(t , �s1, : : : , �sp, sp+1, : : : , sn).

The polynomial1L, 1,:::, n(t , s1, : : : , sn) leads to other polynomial invariants ofL.
First of all, we can expand

1L, 1,:::, n(t , s1, : : : , sn) =
X

i1,:::,in�0

1(i1,:::,in)
L (t)si1

1 � � � sin
n ,
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where1(i1,:::,in)
L (t) belongs toR[t , t�1] for odd m and to t1=2 � R[t , t�1] for even m.

The sum on the right-hand side is finite since1(i1,:::,in)
L (t) = 0 provided ik > rank ik

for somek = 1, : : : , n. For any triple (L+, L�, L0) as in Proposition 3.2 and for any
i1, : : : , in � 0,

1(i1,:::,in)
L+

(t)�1(i1,:::,in)
L� (t) = (t1=2 � t�1=2)1(i1,:::,in)

L0
(t).

Another interesting restriction of1L, 1,:::, n is obtained by the substitutiont = 1.
By the skein relation, the resulting polynomial depends only on the homotopy type of
the components ofL.

If V is a free module, then we can take as 1, : : : ,  n a basis in theR-module
of bilinear formsV 
 V ! R. This results in a link polynomial on 1 +v2 variables,
wherev is the rank ofV .

EXAMPLE . Take n = 1 and let 1 = ��M : V � V ! R be the homological inter-
section on�M restricted toV . This gives a polynomial invariant1L (t , s) = det(t1=22�
t�1=22T + t�1=2s9) where 2 and 9 are the matrices of the bilinear forms# and��M Æ (d � d) with respect to a basis ofH . We leave to the reader to check the fol-
lowing three properties of1L (t , s), wherem denotes the number of components ofL:
– 1L (1,�1) = 1 if m = 1 and1L (1,�1) = 0 otherwise;
– 1L (t�1, st�1) = (�1)m�11L (t , s);
– 1�L (t , s) = 1L (t , �(s + t + 1)), where�L is L with opposite orientation.
We can sometimes explicitly compute1L (t , s) for links L represented by simple closed
curves on�M. Let 6 � �M be a compact connected surface of genus g with bound-
ary, such that the image of the inclusion homomorphismH1(6; R) ! H1(�M; R) is
contained inV . We endow6 with the orientation induced by the orientation on�M
(which in its turn is induced by the one onM). Let 6̃ � Int(M) be the oriented surface
obtained by pushing6 inside M and reversing its orientation. Clearly,L = �6̃ � M is
a homologically trivial link with Seifert surfacẽ6. It is easy to see that the form# as-
sociated with6̃ is identically zero. It follows from the definitions that1L (t ,s) = t�gs2g

if L is a knot, and1L (t , s) = 0 else.

REMARK . Let 6 be a compact connected oriented surface of genusg with �6 6=;. Consider the quasi-cylinderM = 6 � [0, 1], V = H1(6 � 0) over Z. For any knot
K in M, the Laurent polynomial1 = 1K (t , s) 2 Z[t , t�1, s] introduced in the previ-
ous example satisfies1(t�1, st�1) = 1(t , s), 1(1,�1) = 1 and degs 1 � 2g. If g = 0
(that is, if 6 is a disc with holes), then these conditions characterize completely the
polynomials1 which can be realized as the Alexander-Conway polynomial ofa knot
in M. Indeed, in this case1 2 Z[t , t�1], 1(t�1) = 1(t), 1(1) = 1 so that1 can be
realized as the Alexander-Conway polynomial of a knot in a 3-ball in M. We do not
know whether the conditions above are sufficient forg > 0.
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4. The genus

The genus of a homologically trivial linkL in a 3-manifoldM is defined by

g(L) = minfgenus(F) : F is a Seifert surface forL in Mg.
If M is a 3-ball, then Seifert proved thatg(L) � (1=2)(span1L (t)+1�m), where span
is the usual span of a Laurent polynomial in one variablet and m is the number of
components ofL. This result extends to our setting as follows.

Proposition 4.1. Let L be a homologically trivial m-component link in a quasi-
cylinder (M, V) with H2(M) = 0. Let  : V � V ! R0 be a pairing as inSection 3.1.
Then

g(L) � 1

2
(span1L, (t) + 1�m).

Proof. Let F be a Seifert surface forL realizing the genusg(L), and let2, 9
be corresponding matrices. By definition of1L, (t),

span1L, (t) = spanjt1=22� t�1=22T + t�1=29j
= spanjt2�2T +9j � rankH1(F) = 2g(L) + m� 1.

The inequality follows.

Consider now a homologically trivialm-component linkL in 6� [0, 1], where6
is a compact connected oriented surface of genusg. The following algorithm (due to
Seifert in the case where6 is a 2-disc) produces a Seifert surface forL from a con-
nected diagram ofL on 6. (A link diagram is connected if it cannot be presented as
a union of disjoint non-empty link diagrams.) Letn be the number of crossings on the
diagram. Smoothing these crossings in the unique way compatible with the orientation
of L, one obtains a closed oriented 1-manifold0 � 6 consisting of
 � 1 disjoint
simple closed curves on6. Note that [0] = [ L] = 0 2 H1(6). Therefore, there is a
finite collection of oriented connected subsurfaces61, : : : , 6c of 6 = 6 � 0 whose
boundaries are disjoint and

S
i �6i = 0. A Seifert surfaceF for L can be obtained

from the6i by pushing their interiors into6 � [0, 1] and adding a half-twisted band
at each crossing.

Proposition 4.2. Let 
0 be the number of discs among the surfaces61, : : : , 6c.
Then
0 � 
 and

g(L) � 1 +
1

2
(n� 
 �m) + (
 � 
0) maxf1, gg.
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Proof. We have

2� 2g(F)�m = �(F) =
cX

i =1

�(6i )� n = 2c� 2
cX

i =1

gi � 
 � n

where gi is the genus of6i . Clearly gi � g and gi = 0 if 6i is a disc. Hence

g(L) � g(F) = 1 +
1

2
(n� 
 �m) + (
 � c) +

cX
i =1

gi

� 1 +
1

2
(n� 
 �m) + (
 � c) + (c� 
0)g.

The inequalities
0 � c � 
 now give the result.

Note that if g = 0, then 
 = 
0 and we obtain Seifert’s inequalityg(L) � 1 +
(1=2)(n� 
 �m) for links in the 3-ball.

Combining Propositions 4.1 and 4.2, we obtain in the case�6 6= ; that

span1L, (t) � n + 1� 
 + 2(
 � 
0) maxf1, gg.
5. Concordance invariants

Two links L0, L1 in a 3-manifoldM are concordantif there is a smooth oriented
surfaceS� M � [0, 1] such that�S = (L1� 1)[ (�L0� 0) and each component ofS
is an annulus with one boundary component onM � 0 and the other one onM � 1.
Concordant links have the same number of components.

Lemma 5.1. Assume that R is a principal ideal domain. Let (M, V) be a quasi-
cylinder over R such that M is compact and H2(M) = 0. Let  : V � V ! R0 be a
bilinear pairing with values in an integral domain R0 containing R as a subring. Let
L0, L1 be concordant homologically trivial links in M and F0, F1 be their Seifert sur-
faces with associated Seifert triples(H1(F0; R), #0, d0), (H1(F1; R), #1, d1). Then there
is a basis x1, : : : , x2g of the R-module H= H1(F0; R)� H1(F1; R) such that the bilinear
forms

# = (�#0)� #1 and  ̃ = �( Æ (d0 � d0))� ( Æ (d1 � d1))

satisfy#(xi , x j ) =  ̃(xi , x j ) = 0 for all i , j > g.

Proof. LetS� M�[0, 1] be a surface as in the definition of the link concordance.
Then S[ (F0� 0)[ (�F1� 1) is a closed connected oriented surface inM � [0, 1].

Claim 1. There is a compact oriented3-manifold N� M� [0, 1] such that�N =
S[ (F0 � 0)[ (�F1� 1).
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Indeed, letUk be a closed tubular neighborhood ofLk = �Fk in Fk for k = 0, 1.
Let F 0

k be the closure ofFk n Uk. Deforming if necessaryS, we can assume thatS
meets�(M � [0, 1]) precisely along�S = (L1 � 1)[ (�L0 � 0). Let U = S� D2 be
a closed tubular neighborhood ofS in M � [0, 1]. Deforming if necessaryU , we can
assume thatU \ (Fk�k) = Uk�k for k = 0, 1. LetY be the closure of (M� [0, 1])nU .
Then Y is a compact oriented 4-manifold with boundary andF 0

k� k � �Y for k = 0, 1.
We define a continuous mapf : �Y! S1 as follows. Fork = 0, 1, let F 0

k� [�1, 1]
be a closed tubular neighborhood ofF 0

k � k in Y \ (M � k) � �Y. Then, f restricted
to F 0

k � [�1, 1] is given by f (x, t) = ei� t for x 2 F 0
k, t 2 [�1, 1]. On S� �D2 � �Y,

the map f is such that f �1(1) = S� ? for some ? 2 �D2. Finally, f (x) = �1 for
all x 2 �M � [0, 1] and all x 2 ((M � k) \ Y) n (F 0

k � [�1, 1]) wherek = 0, 1. By
elementary obstruction theory, the mapf : �Y! S1 extends toY if and only if there
is a homomorphism� : H1(Y) ! Z such that� Æ i� = f�, where i is the inclusion�Y ,! Y. Using the exact homology sequence of the pair (M� [0, 1], Y), the excision
theorem, and the assumptionH2(M) = 0, we obtain thatH3(Y) = 0 and H2(Y) = Zm

wherem is the number of components ofL0 (and of L1). A basis of H2(Y) is given
by the homology classes ofm tori T1, : : : , Tm � �Y forming �(U \ (M � 0)). We
have H1(Y, �Y) = H3(Y) = 0 and H2(Y, �Y) = H2(Y) = Zm � G where G is a finite
abelian group. The summandZm � H2(Y, �Y) has a basisy1, : : : , ym dual to the basis
[T1], : : : , [Tm] of H2(Y). The homological sequence of the pair (Y, �Y) yields

H2(Y, �Y)
��! H1(�Y)

i��! H1(Y)! 0.

Clearly, f�(�(G)) = 0. Using the assumption�M 6= ;, it is easy to construct for each
j = 1, : : : , m, a loop in f �1(�1) � �Y piercing Tj once and disjoint from the other
m� 1 tori. This loop represents�(y j ) mod �(G). Therefore, f�(�(y j )) = 0 for all j .
Thus, the obstruction to the extension off to Y mentioned above is 0. Let̃f : Y! S1

be a continuous extension off . Deform f̃ so that 1 is one of its regular values. Then
the 3-manifoldN = f̃ �1(1) satisfies the conditions of Claim 1.

Set H 0 = H1(F 0
0; R)�H1(F 0

1; R), which we identify withH = H1(F0; R)�H1(F1; R)
via the inclusion homomorphism. Let̃K (resp.K ) be the kernel of the inclusion homo-
morphism H1(�N; Q)! H1(N; Q) (resp. H 
 Q! H1(N; Q)), where
 = 
R and
Q = Q(R) denotes the field of fractions ofR. By the standard argument using the
Poincaré-Lefschetz duality, the dimension ofK̃ is half of the dimension ofH1(�N; Q).
Furthermore, one easily checks that both the kernel and the cokernel of the inclusion
homomorphismH 
 Q! H1(�N; Q) have dimensionm� 1. Therefore,

dimQ K � dimQ K̃ =
1

2
dimQ H1(�N; Q) =

1

2
dimQ(H 
 Q).

We now use this fact to show a second claim. The proof is adapted from [8, p.89].
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Claim 2. There is an R-basis x1, : : : , x2g of H such that xi maps to zero in
H1(N; Q) for all i > g.

Observe first thatH is a free R-module of rang 2g where g is the genus of�N.
Then H 
 Q is a vector space overQ of dimension 2g and dimQ K � g. Pick a
g-dimensional subspaceE of K . Clearly, E admits aQ-basis consisting of elements
in H : just take anyQ-basis ofE and multiply its vectors by non-zero scalars. LetE0

be the R-span of these elements inH . Since R is a principal ideal domain,H=E0 =
F � T where F is a free R-module of rankg and T a torsion R-module. LetT̃ be
the pre-image ofT under the projectionH ! H=E0. Then E0 � T̃ � H \ E and
T̃=E0 = T . Since R is a principal ideal domain andH is free, T̃ is free as well.
Since the sequence 0! T̃ ! H ! F ! 0 is exact andF is free, a basis for̃T can
be completed to anR-basis of H which satisfies the conditions of Claim 2.

The lemma now follows from one last claim.

Claim 3. If a, b 2 H map to zero in H1(N; Q), then  ̃(a, b) = #(a, b) = 0.

Indeed, ifa, b 2 H map to zero inH1(N; Q) = H1(N; R)
 Q, then r �a and r 0 �b
map to zero inH1(N; R) for some non-zeror , r 0 2 R. By R-bilinearity of  ̃ and# and
the assumption thatR0 is an integral domain, it is enough to consider the case where
a, b 2 H map to zero inH1(�N; R). We havea = a0�a1 andb = b0�b1 with a0, b0 2
H1(F0; R) and a1, b1 2 H1(F1; R). Consider the following inclusion homomorphisms

H ! H1(�N; R)! H1(N; R)! H1(M � [0, 1]; R) = H1(M; R) = V .

Clearly, the composition is given byx0 � x1 7! d0(x0) + d1(x1). Sincea, b are in the
kernel of this composition,d0(a0) + d1(a1) = d0(b0) + d1(b1) = 0. Hence,

 ̃(a, b) = � (d0(a0), d0(b0)) + (d1(a1), d1(b1)) = 0.

By the assumptions ona, b, there are 2-chains�, � in N such that�� = a0 + a1 and�� = b0 + b1. Let Bk be a 2-cycle inM � k such that�Bk = bk � dk(bk) for k = 0, 1.
Then

#(a, b) = #1(a1, b1)� #0(a0, b0) = a+
1 �M�1 B1� a+

0 �M�0 B0.

The equalityd0(b0) + d1(b1) = 0 implies that there is a 2-chainZ in �M � [0, 1] such
that �Z = d0(b0) + d1(b1). Since Z is disjoint from a+

0 and a+
1 , and a+

k is disjoint from
Bl for k 6= l ,

#(a, b) = (a+
0 + a+

1 ) ��(M�[0,1]) (B0 + B1 + Z).

Here we used the fact that the orientation on�(M � [0, 1]) matches the one onM � 1
and is opposite to the one onM � 0. There is a mapN! (M � [0, 1]) n N extending
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the push in the positive normal directionF 0
k ! (M � k) n F 0

k for k = 0, 1. Let �+ be
the image of� under this map. Then

#(a, b) = �+ �M�[0,1] (B0 + B1 + Z) = �+ �M�[0,1] �,

since B0 + B1 + Z� � is a 2-cycle, and therefore a 2-boundary, inM � [0, 1]. Finally,� � N and�+ � (M � [0, 1]) n N are disjoint, so�+ �M�[0,1] � = 0. This concludes the
proof.

The following theorem generalizes the results of Fox-Milnor[5] for knots in S3.

Theorem 5.2. Let L0, L1 be concordant homologically trivial links in a quasi-
cylinder (M, V ) over a principal ideal domain R such that M is compact and H2(M) =
0. Let  1, : : : ,  n : V � V ! R be bilinear forms such that u is symmetric for u=
1, : : : , p and skew-symmetric for u= p+1,: : : , n. Then for some f2 R[t1=2, s1, : : : , sn],

1L0, 1,:::, n(t
�1, �s1t�1=2, : : : , �spt�1=2, sp+1t

�1=2, : : : , snt�1=2)

�1L1, 1,:::, n(t , s1t1=2, : : : , snt1=2)

= f (t�1, �s1, : : : , �sp, sp+1, : : : , sn) f (t , s1, : : : , sn).

Proof. By Lemma 5.1, the matrices of the bilinear pairings# = (�#0)� #1 and

 ̃ = �
 X

u

su u Æ (d0� d0)

!
�
 X

u

su u Æ (d1 � d1)

!

with respect to a certain basis ofH = H1(F0; R)� H1(F1; R) have the form

2 =

� ? A
B 0

�
and 9̃ =

X
u

su ̃u =

0
B�

? X
u

suCuX
u

suC0
u 0

1
CA,

where A, B, Cu, C0
u are square matrices overR of equal size. Note thatC0

u = CT
u for

u = 1, : : : , p and C0
u = �CT

u for u = p + 1, : : : , n.
Let m be the number of components ofL0 (and of L1). By Proposition 3.3,

1L0, 1,:::, n(t
�1, �s1t�1=2, : : : , �spt�1=2, sp+1t

�1=2, : : : , snt�1=2)

�1L1, 1,:::, n(t , s1t1=2, : : : , snt1=2)

= (�1)m�11L0, 1,:::, n(t , s1t1=2, : : : , snt1=2)1L1, 1,:::, n(t , s1t1=2, : : : , snt1=2)

= jt1=22� t�1=22T + 9̃j
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=

�������
? t1=2A� t�1=2BT +

X
u

suCu

t1=2B� t�1=2AT �X
u

suC0
u 0

�������
= f (t�1, �s1, : : : , �sp, sp+1, : : : , sn) f (t , s1, : : : , sn),

where f (t , s1, : : : , sn) =
��t1=2A� t�1=2BT +

P
u suCu

��. (The sign (�1)m�1 disappears

because of the minuses in the definition of the forms# and  ̃ .)

6. Signatures and derived invariants

6.1. Signatures. The classical Murasugi-Tristram-Levine signature of a linkL
in the 3-ball is the function�L : S1! Z whose value on! 2 S1 � C is the signature
of the Hermitian matrix (1�!)2+ (1�!)2T , where2 is a Seifert matrix ofL. This
function is a well-defined invariant ofL. It is a concordance invariant away from the
roots of1L on S1. We now extend these results to our setting.

Consider a quasi-cylinder (M, V) over R = R. Fix p symmetric bilinear forms 1, : : : , p: V �V ! R and n� p skew-symmetric bilinear forms p+1, : : : , n : V �
V ! R. Let L be a homologically trivial link inM and (H , # , d) be the Seifert triple
associated with a Seifert surface forL. The signature of L is the function

�L, 1,:::, n : S1 � Rn! Z

sending a tuple (! 2 S1, � = (�1, : : : , �n) 2 Rn) to the signature of the Hermitian form

(1� !)# + (1� !)#T +

 
pX

u=1

�u u + i
nX

u=p+1

�u u

!
Æ (d � d)

on C 
R H . Using Theorem 2.3, one easily checks that�L does not depend on the
choice of the Seifert surface (see e.g. [8, Chapter 8] for a proof which extends to our
setting). Thus, it is a well-defined isotopy invariant ofL.

Theorem 6.1. Let L0, L1 be concordant homologically trivial links in a quasi-
cylinder (M, V) over R such that M is compact and H2(M) = 0. Then

�L0, 1,:::, n(!, �) = �L1, 1,:::, n(!, �)

for all ! 6= 1 and � 2 Rn such that both1L0, 1,:::, n and1L1, 1,:::, n do not vanish on
(!, ��1, : : : , ��p, i ��p+1, : : : , i ��n) where� = (1� !�1)�1.
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Proof. We shall use the notation introduced in the proof of Theorem 5.2. Clearly,�L1, 1,:::, n(!, �)� �L0, 1,:::, n(!, �) = sgn(8), where

8 = (1� !)2 + (1� !)2T +
pX

u=1

�u9u + i
nX

u=p+1

�u9u

=

� ? (1� !)A + (1� !)BT + C
(1� !)B + (1� !)AT + C0 0

�
,

with A, B, C, C0 square matrices overC of equal size. Therefore, sgn(8) = 0 unless8 is degenerate. We have

det8 = � Y
k=0,1

�����(1� !)2k + (1� !)2T
k +

pX
u=1

�u9k,u + i
nX

u=p+1

�u9k,u

�����,
where2k and9k,u are the matrices of the forms#k and u Æ (dk � dk) on H1(Fk; R).
For k = 0, 1, thek-th determinant on the right-hand side is equal to

!�rk=2(1� !)rk1Lk, 1,:::, n(!, ��1, : : : , ��p, i ��p+1, : : : , i ��n),

whererk = dim H1(Fk; R). This proves the theorem.

6.2. Further invariants. We assume in this subsection that the ground ringR
is a field andW is a vector space overR. More invariants of Seifert triples can be
obtained using the following construction. A Seifert triple (H , # , d) over W gives a
Seifert triple (H 0,# 0, d0) over any submoduleW0 of W by H 0 = d�1(W0), # 0 = # jH 0�H 0 ,
andd0 = djH 0 . The latter triple is said to be arestriction of (H , # , d). Note that equiv-
alent Seifert triples may give non-equivalent restrictions. To handle this, we introduce
a notion of stable equivalence for Seifert triples.

We say that a Seifert triple (H2, #2, d2) over W is obtained from a Seifert triple
(H1, #1, d1) over W by a trivial enlargement (and (H1, #1, d1) is obtained from
(H2, #2, d2) by a trivial reduction) if H2 = H1� Rb, d2jH1 = d1, d2(b) = 0, #2jH1�H1 =#1, #2(H1, b) = #2(b, H1) = #2(b, b) = 0. Thus, a matrix of#2 is obtained from a matrix
of #1 by adding a zero row and a zero column. Two Seifert triples over W are stably
equivalent if they can be related by (a finite sequence of) isomorphisms,elementary
enlargements and reductions, and trivial enlargements andreductions.

It is easy to check that stably equivalent Seifert triples over W restrict to stably
equivalent Seifert triples over submodules ofW. Therefore a stable equivalence in-
variant of Seifert triples generates a family of such invariants by applying it to all pos-
sible restrictions of a given Seifert triple.

Given a Seifert triple (H , # , d) over W, the associated polynomial det(t1=22 �
t�1=22T + t�1=29) as in Section 3.2 is not preserved under trivial enlargements. The
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Fig. 1. A clasp intersection.

module presented by the matrixt2 � 2T + 9 is preserved up to taking direct sums
with free R0[t , t�1]-modules of finite rank. The sequence of elementary ideals of this
module is preserved up to shifts of the index.

The signatures of Seifert triples are easily seen to be invariant under stable equiv-
alence. This generates a family of stable equivalence invariants obtained by taking the
signatures of the restrictions.

Applying the constructions above to homologically triviallinks in a quasi-cylinder
(M, V ) over R, we obtainderived signaturesindexed by the subspaces ofV . They are
isotopy invariants. We do not know whether they are concordance invariants or not.

7. The multivariable case

The classical theory of Seifert surfaces for oriented linksin S3 has been extended
to �-colored links inS3 using ‘C-complexes’ (see [3, 4] for 2-component links and [1,
2] for the general case). The aim of the present section is to sketch a further extension
of this theory to�-colored links in quasi-cylinders.

7.1. Colored links. Let � be a fixed positive integer. A�-colored link L =
L1[ � � � [ L� in an oriented 3-manifoldM is an oriented link in the interior ofM to-
gether with a surjective map assigning to each component ofL a color in f1, : : : , �g.
The sublink L i is constituted by the components ofL with color i for i = 1, : : : , �.
We shall say that two colored linksL, L 0 in M are isotopic if there is an ambient iso-
topy betweenL and L 0, fixing �M, and preserving the orientation and color of every
component. A�-colored link L = L1 [ � � � [ L� is homologically trivial if [ L i ] = 0 in
H1(M) for all i = 1, : : : , �.

Note that a 1-colored link is an ordinary link, as defined in Section 1. Setting� = 1 in the present section, we obtain the theory developed in the previous sections.

7.2. C-complexes. A C-complexfor a �-colored link L = L1 [ � � � [ L� in an
oriented 3-manifoldM is a union F = F1 [ � � � [ F� of surfaces inM such thatF is
connected, and the following conditions hold:
(i) for all i , Fi is a Seifert surface forL i ;
(ii) for all i 6= j , Fi \ F j is either empty or a union of clasps (see Fig. 1);
(iii) for all i , j , k pairwise distinct,Fi \ F j \ Fk is empty.
In the case� = 1, a C-complex forL is simply a Seifert surface forL.
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Fig. 2. The transformations T2 and T3 in Proposition 7.1.

In order to have a C-complex, a�-colored link clearly needs to be homologically
trivial. One easily checks that it is the only obstruction: every homologically trivial�-colored link L = L1 [ � � � [ L� in an oriented 3-manifold has a C-complex. In-
deed, by Proposition 2.2, every sublinkL i admits a Seifert surfaceFi . Then, by [1,
Lemma 1], eachFi can be isotoped keeping its boundary fixed to give a C-complex
for L.

Proposition 7.1. Let F and F0 be C-complexes for isotopic colored links in a
quasi-cylinder(M, V) over R. If H2(M) = 0, then F and F0 can be transformed into
each other by a finite number of the following operations and their inverses:
(T0) Ambient isotopy keeping�M fixed;
(T1) surgery on one surface;
(T2) addition of a ribbon intersection, followed by a‘push along an arc’ through this
intersection(seeFig. 2);
(T3) the transformation described inFig. 2.

Proof. By the first move, it may be assumed that�Fi = �F 0
i = L i for all i . Since

H2(M) = 0, Fi and F 0
i are related by ambient isotopies (keepingL i fixed) and surgeries.

Clearly, a surgery onFi can be performed avoidingF n Fi , giving move T1. Now, for
every ambient isotopy betweenFi and F 0

i , we can apply [1, Lemma 3], whose proof
extends to our setting: such an ambient isotopy can be induced by a finite sequence
of moves T0, T2, T3 and their inverses.

7.3. Seifert forms for colored links. Let us now define the corresponding
generalization of the Seifert form. Let as aboveR be an arbitrary commutative ring
with unit. Let Ni = Fi � [�1, 1] be a bicollar neighborhood ofFi in the interior of
M. Given a sign"i = �1, let F"i

i be the translated surfaceFi � f"i g � Ni . Also, let
T(L i ) be a tubular neighborhood ofL i in Int(M), and let Y be the complement ofS�

i =1 Int(Ni [ T(L i )) in M. Given a sequence" = ("1, : : : , "�) of �1, set

F" =
�[

i =1

F"i
i \ Y.
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See Fig. 3 for an illustration ofF" near a clasp. Since all the intersections are clasps,
there is an obvious homotopy equivalence betweenF and F" inducing an isomorphism
H1(F ; R) ! H1(F"; R), a 7! a". Note also thatF" is a smooth surface, endowed
with a canonical orientation: the orientation that matchesthe one onFi if and only if"i = +1. Hence, we have a well-defined Seifert form#F" on H1(F"; R) as in Section 2.
Therefore, each choice of signs" = ("1, : : : , "�) leads to a Seifert form#" and to an
intersection form'" on H1(F ; R) defined by

#"(a, b) = #F" (a", b") and '"(a, b) = a" �F" b"
for all a, b in H1(F ; R). These forms are related as follows.

Lemma 7.2. For all a, b in H1(F ; R) and all signs" = ("1, : : : , "�),

#"(a, b)� #�"(a, b) = '"(a, b) and #"(a, b)� #�"(b, a) = d(a) ��M d(b),

where ��M is the intersection pairing on�M and d: H1(F ; R)! V the composi-
tion of the inclusion homomorphism H1(F ; R) ! H1(M; R) with the isomorphism
dV : H1(M; R)! V .

Proof. Let i " : H1(F ; R) ! H1(F"; R) denote the isomorphism given bya 7!
a". As an oriented smooth surface,F" is diffeomorphic to�F�", the surfaceF�"
with the opposite orientation. This leads to a canonical isomorphismh" : H1(F"; R)!
H1(F�"; R) such thath" Æ i " = i�" and#+

F�" Æ (h" � h") = #�F" . (Recall that the bilinear
form #�F" is defined as#+

F" = #F" but usinga� instead ofa+.) Therefore:

#" � #�" = #+
F" Æ (i " � i ")� #+

F�" Æ (i�" 
 i�")
= #+

F" Æ (i " � i ")� #+
F�" Æ (h" � h") Æ (i " � i ")

= (#+
F" � #�F" ) Æ (i " � i ").

By formula (2.a) applied toF", this is equal to �F" Æ (i " � i ") giving the result. The
second equality follows from formula (2.b) in a similar way.

This result leads to the following definition. A�-colored Seifert tripleover an
R-module W is a triple (H , f#"g", d), where H is a free R-module of finite rank,f#"g" a family of 2��1 bilinear forms onH indexed by the set

E = f("1, "2, : : : , "�) : "1 = +1, "i = �1 for i > 1g,
and d a homomorphismH ! W. (Note that we don’t consider the forms#" with"1 = �1 since they can be recovered from the other forms via Lemma 7.2.)

A �-colored Seifert triple (̃H , f#̃"g, d̃) is obtained from another�-colored Seifert
triple (H , f#"g, d) by a type I elementary enlargementif the following conditions hold:
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Fig. 3. The surfaceF" near a clasp; the arrow offFi indicates
the "i -normal direction onFi in M.

H̃ = H�Ra�Rb, d̃jH = d, d̃(b) = 0, and there is some indexi and some sign� =�1
such that for all" 2 E, the matrix2" for #" with respect to a basish of H is related
to the matrix2̃" with respect to the basish [ fa, bg of H̃ by

2̃" =

0
� 2" ? 0? ? Æ� ,"i

0 Æ�� ,"i 0

1
A,

whereÆ is the Kronecker symbol. Similarly, one speaks oftype II elementary enlarge-
ment if the following conditions hold:H̃ = H�Ra�Rb, d̃jH = d, d̃(b) = 0, and there
is some indicesi 6= j and some signs� , � 0 such that

2̃" =

0
� 2" ? 0? ? Æ� ,"i Æ� 0," j

0 Æ�� ,"i Æ�� 0," j 0

1
A.

We shall say that two�-colored Seifert triples overW are equivalent if they can be
related by a finite number of type I and II elementary enlargements (and reductions).

Theorem 7.3. Let (M, V) be a quasi-cylinder over R with H2(M) = 0. For any
homologically trivial �-colored link L in M, the equivalence class of the�-colored
Seifert triple of a C-complex for L does not depend on the choice of the C-complex
and provides an isotopy invariant of the�-colored link L.

Proof. By Proposition 7.1, we are left with the proof that if two C-complexes are
related by transformations T0 to T3, then the correspondingSeifert triples are equiv-
alent. Obviously, transformation T0 does not change the Seifert triple. It is an easy
exercice to check that if a C-complex̃F is obtained from a C-complexF via surgery
on Fi , then the corresponding Seifert triples are related by a type I elementary en-
largement with indexi . (The sign� is determined by the side ofFi along which the
surgery is performed.) Also, one verifies that transformation T2 involving surfacesFi
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and F j corresponds to a type II elementary enlargement with indices i , j , and some
signs� , � 0 given by the orientations ofFi and F j . Finally, consider two C-complexes
related by a T3 transformation. Then, the two correspondingSeifert triples can be un-
derstood as two distinct type II elementary enlargements ofsome fixed Seifert triple.
This concludes the proof.

7.4. The Conway function. Fix a commutative unital ringR0 containing R as
a subring, and anR-bilinear pairing : V �V ! R0. Consider a homologically trivial�-colored link L in M, and let (H , f#"F g", d) be the�-colored Seifert triple associated
with a C-complexF for L. Let 2"

F and9 be the matrices of the bilinear forms#"F
and Æ (d � d) with respect to a basis ofH .

Let 3R0,� denote the localization of the ringR0[t�1
1 , : : : , t�1� ] with respect to the

multiplicative system generated byfti � t�1
i g1�i��. The (extended) Conway functionof

L is the element of3R0,� defined by

�L, (t1, : : : , t�) = (�1)(c�l )=2 �Y
i =1

�
ti � t�1

i

��(FnFi )�1
det(�AF +9),

wherec is the number of clasps inF , l =
P

i< j lkV (L i , L j ), and

AF =
X
"2E

"2 � � � "��t1t"2
2 � � � t"�� 2"

F + (�1)��t1t"2
2 � � � t"�� ��1

(2"
F )T

�
.

Proposition 7.4. The extended Conway function is an isotopy invariant of the�-colored link L.

Proof. By Proposition 7.1 and the proof of Theorem 7.3, we just need to check
that�L, remains unchanged if the C-complexF is transformed via moves T1 and T2.
So, let F̃ be a C-complex obtained fromF by a surgery onFk. Clearly, the number
of claspsc remains the same, while

�(F̃ n F̃i ) =

��(F n Fi ) if i = k,�(F n Fi )� 2 otherwise.

Furthermore, the corresponding�-colored Seifert triples are related by a type I ele-
mentary enlargement (with indexi = k). Using the equalityX

"2E

"2 � � � "��t1t"2
2 � � � t"�� Æ� ,"k + (�1)��t1t"2

2 � � � t"�� ��1Æ�� ,"k

�
=
X
"1,:::,"� "1 � � � "�t"1

1 � � � t"�� Æ� ,"k = � t�k Y
i 6= k

(ti � t�1
i ),
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we get

AF̃ =

0
BBBB�

AF ? 0? ? � t�k Y
i 6= k

(ti � t�1
i )

0 �� t��k

Y
i 6= k

(ti � t�1
i ) 0

1
CCCCA, 9̃ =

0
� 9 ? 0? ? 0

0 0 0

1
A.

Therefore, det(�AF̃ + 9̃) =
Q

i 6= k(ti � t�1
i )2 det(�AF +9). The equality follows. Now,

let F̃ be a C-complex obtained fromF by a move T2 involvingFk and Fl . The num-
ber of clasps̃c of F̃ is given byc + 2, and

�(F̃ n F̃i ) =

��(F n Fi ) if i = k, l ,�(F n Fi )� 2 otherwise.

The corresponding�-colored Seifert triples are related by a type II elementaryenlarge-
ment with indicesk, l . By the equalityX

"2E

"2 � � � "��t1t"2
2 � � � t"�� Æ� ,"kÆ� 0,"l + (�1)��t1t"2

2 � � � t"�� ��1Æ�� ,"kÆ�� 0,"l

�
=
X
"1,:::,"� "1 � � � "�t"1

1 � � � t"�� Æ� ,"kÆ� 0,"l = �� 0t�k t� 0l

Y
i 6= k,l

(ti � t�1
i ),

we get

AF̃ =

0
BBBB�

AF ? 0? ? �� 0t�k t� 0l

Y
i 6= k,l

(ti � t�1
i )

0 �� 0t��k t�� 0l

Y
i 6= k,l

(ti � t�1
i ) 0

1
CCCCA .

The invariance follows.

In the case� = 1, F is a Seifert surface forL, and the unique Seifert matrix
coincides with the matrix2 constructed in Section 2. Furthermore, we havec = l = 0,�(F n F1) = �(;) = 0. Hence, the Conway function is given by

�L, (t1) =
1

t1� t�1
1

det(�t12 + t�1
1 2T +9) =

(�1)m�1

t1� t�1
1

1L,� (t2
1 ),

wherem is the number of components ofL.
If L 0 is a �-colored link in an oriented 3-ballD3 and L is the image ofL 0 under

an orientation preserving embeddingD3 ,! M, then�L, (t1, : : : , t�) = �L 0(t1, : : : , t�)
is the usual Conway function ofL 0, as constructed in [1].



CLASSICAL INVARIANTS OF L INKS 555

Let us conclude this paragraph with a list of properties of�L, generalizing well-
known properties of the Conway function of colored links inS3. We refer to [1] for
the proofs which easily extend to our setting.

Proposition 7.5. (i) Let L+, L� and L0 be homologically trivial�-colored links
which coincide everywhere except in a small3-ball where they are related as illustrated
below. (Here, i denotes the color of the strands in the3-ball.)

Then, the corresponding Conway functions satisfy the following relation:

�L+, (t1, : : : , t�)��L�, (t1, : : : , t�) = (ti � t�1
i )�L0, (t1, : : : , t�).

(ii) Similarly, if L ++, L�� and L00 are homologically trivial�-colored links which dif-
fer by the following local operation,

then we have the equality

�L++, (t1, : : : , t�) +�L��, (t1, : : : , t�) =
�
ti t j + t�1

i t�1
j

��L00, (t1, : : : , t�).

(iii) For any homologically trivial�-colored link L with m components,

�L, �t�1
1 , : : : , t�1� �

= (�1)m�L, 0(t1, : : : , t�),

where 0 is the bilinear form given by 0(a, b) = (�1)� (b, a).

7.5. Multivariable signatures. As in Section 6, consider a quasi-cylinder (M, V)
over R = R, and fix p symmetric bilinear forms 1, : : : ,  p : V � V ! R and n� p
skew-symmetric bilinear forms p+1, : : : ,  n : V � V ! R. Let L be a �-colored
homologically trivial link in M and (H , f#"g", d) be the�-colored Seifert triple asso-
ciated with a C-complex forL. Finally, let T� denote the�-dimensional torusT� =
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S1� � � � � S1 � C�. The (extended) signature of L is the function

�L, 1,:::, n : T� � Rn! Z

sending a tuple (! = (!1, : : : , !�) 2 T�, � = (�1, : : : , �n) 2 Rn) to the signature of the
Hermitian form

X
"2E

"
(1� !1)

Y
i>1

(1� !"i
i )#" + (1� !1)

Y
i>1

(1� ! "i
i )(#")T

#
+ 

on C
R H , where =
�Pp

u=1 �u u + i
Pn

u=p+1 �u u
� Æ (d � d).

Proposition 7.6. The extended signature is an isotopy invariant of the�-colored
link L.

Proof. Note that if!i = 1 for somei , then the signature is equal to zero. There-
fore, it may be assumed that!i 6= 1 for all i . By Theorem 7.3, we just need to check
that the signatures corresponding to equivalent�-colored Seifert triples are equal. So,
let us assume that a Seifert triple (H̃ , f#̃"g, d̃) is obtained from another Seifert triple
(H , f#"g, d) by a type I elementary enlargement (with indexi = k). Using the equality

X
"2E

"
(1� !1)

Y
i>1

(1� !"i
i )Æ� ,"k + (1� !1)

Y
i>1

(1� ! "i
i )Æ�� ,"k

#

=
X
"1,:::,"�

�Y
i =1

(1� !"i
i ) Æ� ,"k = (1� !�k )

Y
i 6= k

j1� !i j2,

we see that the corresponding Hermitian matricesM̃ and M are related by

M̃ =

0
BBBBB�

M ? 0

? ? (1� !�k )
Y
i 6= k

j1� !i j2
0 (1� ! �

k )
Y
i 6= k

j1� !i j2 0

1
CCCCCA .

Since!i 6= 1 for all i , the signatures ofM̃ and M coincide by the usual argument.
The invariance of the signature under elementary enlargement of type II follows from
the equality

X
"2E

�
(1� !1)

Y
i>1

(1� !"i
i )Æ� ,"kÆ� 0,"l + (1� !1)

Y
i>1

(1� ! "i
i )Æ�� ,"kÆ�� 0,"l

�
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=
X
"1,:::,"�

�Y
i =1

(1� !"i
i )Æ� ,"kÆ� 0,"l = (1� !�k )(1� !� 0l )

Y
i 6= k,l

j1� !i j2

in the same way.

In the case� = 1, we obviously get back the extended signatures defined in Sec-
tion 6. If L 0 is a �-colored link in an oriented 3-ballD3 and L is the image ofL 0
under an orientation preserving embeddingD3 ,! M, then �L, (!, �) = �L 0(!) is the
multivariable signature of the�-colored link L 0, as constructed in [2].

We don’t know to which extent the concordance properties of these two special
cases (see Theorem 6.1 and [2, Section 7]) hold in the generalcase considered here.

8. Generalizations

Our invariants of links are defined under rather strong assumptions: the links
are supposed to be homologically trivial; the ambient manifold, M, is supposed to
have trivial 2-homology and the inclusion homomorphismH1(�M; R)! H1(M; R) is
supposed to be surjective and to have a section. We explain how to weaken these
conditions.

8.1. Homologically non-trivial links. Let (M, V) be a quasi-cylinder overR
with H2(M) = 0. Let h 2 H1(M) belong to the image of the inclusion homomorphism
H1(�M) ! H1(M). To construct non-trivial invariants of links inM representingh,
one can proceed as follows. Pick a linkL� in a cylinder neighborhoodU � M of�M such that [L�] = �h. Any link L � M may be isotopically deformed intoM �U
uniquely up to isotopy inM � U . If L � M � U and [L] = h, then L̃ = L [ L� is a
homologically trivial link in M. The isotopy type ofL̃ is entirely determined by the
isotopy type ofL and the isotopy type ofL� in U . The invariants of homologically
trivial links in M defined above may be applied tõL. This yields isotopy invariants
of L depending onV and L�. In particular, concordance invariants of homologically
trivial links yield concordance invariants ofL. Indeed, if two linksL0, L1 in M are
concordant, theñL0 and L̃1 are concordant.

8.2. Generalized quasi-cylinders. A generalized quasi-cylinderover R is a pair
consisting of an oriented 3-manifoldM and a submoduleV of H1(�M; R) such that the
inclusion homomorphismi : V ! H1(M; R) is injective. The theory of Seifert triples
associated with surfaces in quasi-cylinders extend to generalized quasi-cylinders as fol-
lows. Given an oriented surfaceF in the interior of M, set H = j�1(i (V)) � H1(F ; R)
where j is the inclusion homomorphismH1(F ; R)! H1(M; R). For 1-cyclesa, b on
F representing homology classes [a], [b] 2 H , set#([a], [b]) = lkV (a+, b). This yields
a well-defined bilinear form# : H � H ! R. Applying this construction to the Seifert
surface for a linkL in M, we obtain the Seifert triple (H , # , d : H ! V) of L. If
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H2(M) = 0 and R is a field, then the stable equivalence class of (H , # , d) does not
depend on the choice ofF and yields an isotopy invariant ofL.

8.3. High-dimensional generalizations. The constructions of this paper can be
easily generalized to codimension 1 submanifolds of odd-dimensional manifolds with
boundary and to codimension 2 links in such manifolds.

8.4. The case of non-connected boundary.The definitions of linking numbers
and generalized Seifert forms given in Sections 1 and 2 make perfect sense whether
H2(M) is trivial or not (that is, whether�M is connected or not). However, the triv-
iality of H2(M) is needed for Theorem 2.3 to hold. Indeed, this result is based on
the fact that two Seifert surfaces for a link inM can be related by surgeries. This is
clearly not true if H2(M) 6= 0. Therefore, the general theory of Sections 3 to 7 does
not hold if the boundary ofM is non-connected, and it is very unlikely that any Seifert
type invariant can be constructed in this general setting.

Nevertheless, parts of the theory can be developed in the following special case.
Let (M, V) be a quasi-cylinder overR, and let us assume thatM has exactly two
boundary components6 and60, with V = H1(6; R). This is a natural class of quasi-
cylinders, as it contains the prototypical exampleM =6� [0, 1] with 6 closed. LetF
be a Seifert surface in such a quasi-cylinder (M, V), and let6̃ denote a parallel copy
of 6 obtained by pushing6 in Int(M) n F . Suppose that there is a solid cylinder
[0, 1]� D2 in the interior of M such that ([0, 1]� D2) \ F = f0g � D2 and ([0, 1]�
D2) \ 6̃ = f1g � D2. Then we shall say that the surface

F 0 = (F n (f0g � D2)) [ ([0, 1]� �D2) [ (6̃ n (f1g � D2))

is obtained fromF by adding 6̃ along the arc[0, 1]� f0g. Here, the orientation of6̃ is chosen so that the orientation ofF extends toF 0.
Proposition 8.1. Let (M, V ) be a compact quasi-cylinder over R with�M = 6 t60 and V = H1(6; R). Any two Seifert surfaces F, F 0 for isotopic links in a(M, V)

can be related by a finite number of ambient isotopies keeping�M fixed, surgeries,
and additions of parallel copies of6 along embedded arcs inInt(M).

Proof. Consider a path
 : [0, 1]! M such that
 ([0, 1])\6 = 
 (0), 
 ([0, 1])\60 = 
 (1), and such that
 intersects6, 60, F and F 0 transversally. Let us assume
that F intersects
 in n points. Let6̃ be a parallel copy of6 pushed intoM, disjoint
from F , and which intersects
 transversally in
 (t0). Let t1 be the smallest number
such that
 (t1) 2 F . Consider the surfaceF1 obtained fromF by adding6̃ along the
arc 
 ([t0, t1]). Clearly, F1 intersects
 in n � 1 points. Iterating this construction,
we obtain a Seifert surfacêF for L disjoint from 
 . Similarly, we obtain a Seifert
surface F̂ 0 from F 0 disjoint from 
 . Now, consider the compact manifold̂M given
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by the complement inM of an open tubular neighborhood of
 . Also, let 6̂ be the
surface with boundary given bŷ6 = 6 \ M̂. By excision, H�(M, M̂) = H�(D2, S1), so
the homological sequence of (M, M̂) reads

0! H2(M̂)! H2(M)
�! Z.

Since�M has exactly two components, one of which is6, the inclusion homomorphism

H2(6)
i�! H2(M) is an isomorphism, as well as the compositionH2(6)

�Æi��! Z. There-
fore, � is an isomorphism, andH2(M̂) = 0. So, we have two Seifert surfaceŝF and
F̂ 0 in M̂ for a fixed link L in (M̂ , 6̂), with H2(M̂) = 0. By the standard argument,
F̂ and F̂ 0 are related by surgeries in Int(M̂) � Int(M) and by isotopies ofM̂ keeping
its boundary fixed. Such an isotopy obviously extends to an isotopy of M fixing �M.
This concludes the proof.

Note thatV = H1(6; R) is endowed with a naturalR-bilinear form: the intersection
form on 6. This leads to the following definition.

Let W be a freeR-module of finite rank equipped with bilinear form' : W �
W! R. Let (H , # , d) and (H 0, # 0, d0) be two Seifert triples overW. We shall say
that (H 0, # 0, d0) is obtained from (H , # , d) by a '-enlargement(and (H , # , d) from
(H 0, # 0, d0) by a '-reduction) if the following conditions hold:H 0 = H �W, d0jH = d,
d0jW = idW, # 0jH�H = # , # 0jH�W = 0, # 0jW�H = ' Æ (idW � d) and # 0jW�W = 0 or '.
If h is a basis ofH andw a basis ofW, then h [w is a basis ofH 0 and the matrix20 for # 0 with respect toh [w is computed from the matrix2 for # with respect to
h by

20 =

� 2 0
C D

�
or

� 2 0
C 0

�
,

where C is the matrix of' Æ (idW � d), and D the matrix of '. We shall say that
two Seifert triples overW are '-equivalentif they can be related by a finite number
of isomorphisms, elementary enlargements, elementary reductions,'-enlargements and'-reductions.

Theorem 8.2. Let (M, V) be a quasi-cylinder over R and let us assume that M
has exactly two boundary components6 and 60, with V = H1(6; R). Finally, let '
denote the intersection form on V. For any homologically trivial link L� M, the'-equivalence class of the Seifert triple of a Seifert surface for L does not depend
on the choice of the surface and provides an isotopy invariant of L.

Proof. By Proposition 8.1, we just need to check that the addition of a parallel
copy of 6 induces a'-enlargement of the corresponding Seifert triple. LetF 0 de-
note the Seifert surface obtained fromF by the addition of6̃ along an arc, and let
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# 0 denote the corresponding form. Clearly,H1(F 0) = H1(F) � H1(6), d0jH1(F) = d,
d0jH1(6) = idH1(6) and # 0 restricted to H1(F) � H1(F) is equal to# . Furthermore,# 0(a, b) = a+ ��M B = 0 for (a, b) in H1(F) � H1(6), since B can be chosen to be
a thin annulusb� [0, �] disjoint from a+. For a, b in H1(6),

# 0(a, b) = a+ ��M (b� [0, �]) = a ��M b

if the orientation of6̃ is induced by the one of6 and

# 0(a, b) = a+ ��M (b� [0, �]) = 0

if the orientation of6̃ is opposite to the one induced from6. Finally, for (a, b) in
H1(6)� H1(F), Lemma 2.1 and the above computation give

# 0(a, b) =

=0z }| {# 0(b, a) +d0(a) ��M d0(b) +

=0z }| {
a �F 0 b = a ��M d(b).

This concludes the proof.

Using this theorem, let us now see to which extent the resultsof Sections 3 to 7
hold true in the case under study.

The R0[t , t�1]-moduleA (L) is no longer an invariant ofL in general. However,
it is an invariant in the special caseR0 = R and = �', where' is the intersection
form on V . Indeed, if (H 0, # 0, d0) is obtained from (H , # , d) by a '-enlargement, then
the corresponding matrices00 = t20 � (20)T +9 0 and0 = t2�2T +9 are related by

00 =

� 0 0
(t � 1)C t D

�
or 00 =

� 0 0
(t � 1)C �D

�
.

Since D is congruent to the matrix
�

0 1�1 0

��g
, A�'(L) is an invariant of the linkL.

Now, consider the element ofR[t1=2, t�1=2] given by

1̃L (t) = 1L,�'(t) = det(t1=22� t�1=22T + t�1=29).

It is well-defined up to multiplication bytg, whereg denotes the genus of6. Indeed,
if ( H 0, # 0, d0) is obtained from (H , # , d) by a '-enlargement, then

det(t1=220 � t�1=2(20)T + t�1=29 0) = det(t1=22� t�1=22T + t�1=29) � det(�t�1=2D).

Since D is a matrix of the intersection form on6, det(�t�1=2D) = t�g, giving the
result. One easily checks the following properties: Ifm is odd, then1̃L (t) 2 R[t , t�1].
If m is even, thent1=21̃L (t) 2 R[t , t�1]. Finally, 1̃L (1) = 1 if L is a knot, and1̃L (1) =
0 else.
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Proposition 4.1 translates into the inequality

g(L) � 1

2
(span1̃L (t) + 1�m).

Furthermore, the Seifert algorithm and Proposition 4.2 extend verbatim to our case.
Generally speaking, the signatures introduced in Section 6are not invariant under'-enlargements.
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