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Abstract
We extend several classical invariants of links in the 3esphto links in
so-called quasi-cylinders.  These invariants include tinkilg number, the
Seifert form, the Alexander module, the Alexander-Conwaymomial and the
Murasugi-Tristram-Levine signatures.

Introduction

The aim of this paper is to introduce a generalization of sdvelassical knot
and link invariants including the linking numbers, the Adexier-Conway polynomial,
and the Murasugi-Tristram-Levine signatures of links in li€lean 3-space. These in-
variants are generalized to links in so-called quasi-dgis. A quasi-cylinder over a
commutative ringR is an oriented 3-manifoldM endowed with a submodule of the
R-module H1(dM; R) such that the inclusion homomorphisth— H;(M; R) is an iso-
morphism. The main example is the cylindsr = X x [0, 1] where X is an oriented
surface andv = Hi(2 x 0;Z) c H1(dM; Z). (Here, R=Z). For homologically trivial
links in a quasi-cylindetM with H,(M; Z) = 0, we define a generalized Seifert form
and derive from it several other invariants, namely, a gaizd Alexander-Conway
polynomial and generalized signatures (see [6] for relamustructions). The most in-
teresting feature of our invariants is the appearance oitiaddl parameters which are
absent in the classical case.

The organization of the paper is as follows. In Section 1 weduce generalized
linking numbers of links in quasi-cylinders. In Section 2 wefine the generalized
Seifert form for links in quasi-cylinders. In Section 3 weidy the derived Alexander
invariants. In Section 4 we discuss simple estimates ofitiledenus. In Section 5 we
study the concordance of links. In Section 6 we consider ifpeatures. In Section 7
we introduce a multivariable extension of the theory. Int®&c8 we discuss various
generalizations of our invariants and in particular an mbo®m to homologically non-
trivial links.
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In this paper, all manifolds are smooth. The boundary of danted manifold is
orientedvia the “outward normal vector first” convention.
Throughout the paper, we fix a commutative ring with uny

1. Linking numbers and quasi-cylinders

1.1. Knots and links. By alink in an oriented 3-manifold, we mean a finite
system of disjoint oriented circles embedded in M= M — 9M. Each linkL in M
viewed as a geometric 1-cycle represents a homology class Hi(M; R). A link L
is R-homologically trivialif [L] = 0. For R=7Z, we say simplyhomologically trivial

Two links L and L’ in M are said to beambient isotopidf there is an ambient
isotopy h; (0 <t < 1) of M, keepingdM fixed, such thathy = id, h;(L) = L’, and
hy|L: L = L' is orientation-preserving.

A knotis a link consisting of a single circle. Let us stress thatkalbts and links
in this paper are oriented.

1.2. Linking numbers. The classical linking number of disjoifR-homologically
trivial knots K, L in an oriented 3-manifoldM is defined by

k(K,L)=K-B=B-K e R

where - = -\ is the standard homological intersectionNh and B is a 2-chain inM

(with coefficients inR) such thatoB = L. The independence of the choice Bffollows
from the fact that given another 2-chaBi with 9B’ =L, one hasKk -B—K-B'=K-b
whereb = B — B’ is a 2-cycle inM. The R-homological triviality of K implies that
K -b=[K] -b=0. One easily checks the symmetk(K, L) = Ik(L, K).

We introduce ageneralized linking numbeas follows. Suppose th&tM # ¢ and
denote byc the inclusion homomorphisni;(dM; R) — Hi(M; R). Fix a submodule
V of the R-module H1(dM; R) such thatV N Ker(c) = 0. For disjoint knotskK, L in
M such that K], [L] € c(V), set

lkv(K,L)=K-B=B-K e R

where B is any 2-chain inM (with coefficients inR) such thatoB = L — v for a
1-cycle v on M representing an element &. The homological intersectioi - B
does not depend on the choice Bf Indeed, consider another 2-chai in M with
oB" =L — v wherev' is a 1-cycle ondM representing an element &f. Thenb =
B — B’ is a relative 2-cycle in1, 9M) in the sense that its boundary lies 6M. Let
u be a 1-cycle ordM whose homology classu] € H1(dM; R) satisfiesc([u]) = [K]
and letd be a 1-cycle obtained by pushingslightly inside IntM). Then

K~B—K~B/=K~b=ﬂ-b=u-3M8b
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where -5y is the homological intersection of 1-cycles #M. We haveu -5y db =0
since pb] = [v —v'] € V NKer(c) = 0.
The linking numberky satisfies

lky (L, K) = lky(K, L)+ U -3y v.

where u, v are 1-cycles ondM representing elements df homological to K, L
respectively. Indeed, lefi be a 1-cycle in Inti) obtained fromu as above and let
A be a 2-chain inM with 9A =K — {. Then A is disjoint fromv and therefore

lky(L, K)=L-A=(L—v)-A=3B-A=B.9JA
=B-K—B-G=B~K—v-3Mu
:”(\/(K, L)+U~3M V.

It is clear thatlky (K, L) is invariant under deformations df and L in M keeping
them disjoint. IfK, L are R-homologically trivial (in particular, if they lie in a 3-ltla
inside M), thenlky (K, L) = Ik(K, L).

The definition oflky (K, L) extends in the obvious way to the case wh&relL
are disjoint 1-cycles irM.

1.3. Quasi-cylinders. By a quasi-cylinder(over R), we mean a pair consisting
of a connected oriented 3-manifold with non-empty boundary and a submodie
of the R-module H1(dM; R) such that the restriction of the inclusion homomorphism
Hi(0M; R) - Hi(M; R) to V yields an isomorphisnV — H;(M; R). The inverse
isomorphism is denotedy .

The constructions of the previous section show that for asigedinder (M, V)
over R and any disjoint knotK, L in M, we have a well-defined linking number
Iky (K, L) € R satisfying

kv (L, K) = lky (K, L) +dv([K]) -am dv([L]).

We say that a quasi-cylindei(, V) has trivial 2-homology ifH,(M) = 0. Here
and below, the unspecified group of coefficients in homologlydmology isZ.
Note the following lemma.

Lemma 1.1. Let(M, V) be a quasi-cylinder such that M is compadthe equal-
ity Ho(M) =0 holds if and only ifoaM is connected

Proof. The components &fM represent elements dfi,(M) subject to only one
relation: their sum is equal to zero. Therefore the equatp{M) = 0 implies that
dM is connected. Let us prove the converse. Since the inclusmmomorphism
Hi(0M; R) — Hi(M; R) is onto and the inclusion homomorphisidy(dM; R) —
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Ho(M; R) is an isomorphism, the homology sequence of the pdir {M) gives that
Hi(M, dM; R) = 0. Observe thaH;(M, dM; R) = R ®z Hi(M, dM). Therefore the
group Hy(M, aM) is finite and

Ho(M) = HY(M, M) = Hom(H.(M, M), Z) = 0. O

EXAMPLES. 1. The pair consising of a 3-balD® andV = H,(dD%) =0 is a
quasi-cylinder ovetZ. Clearly, lky (K, L) =Ik(K, L) € Z is the usual linking number
of knots in the 3-ball.

2. LetX be a connected oriented surface avid= X x [0, 1] with product orientation.
SetV = Hy (£ x 0; R) € Hi(dM; R). It is clear that M, V) is a quasi-cylinder. The
linking numberlky (K, L) of knots K, L ¢ M can be computed as follows. Present
the link K U L by a link diagram onX. Let k,| be the components of the diagram
representingK and L, respectively. Therky (K, L) =n, —n_ wheren, (resp.n_) is
the number of positive (resp. negative) crossing pointshendiagram wheré passes
underl. The quasi-cylinderX x [0, 1],V) has trivial 2-homology if and only i X # @.

3. Let N be an R-homology 3-sphere, i.e., a closed oriented 3-manifoldhwit
H.(N; R) = H,(S% R). Let G be a non-empty finite graph il and M c N be its
exterior, that is the complement of an open regular neididimmt of G in N. Let

V C H1(dM; R) be the submodule generated by the homology classes of thdiams

of the edges of. Then the pair {1, V) is a quasi-cylinder. For any knots, L C M,

we havelky (K, L) = Ik(K, L) € R where the right-hand side is the linking number
of K, L in N. The quasi-cylinder {1, V) has trivial 2-homology if and only ifG is
connected.

REMARK. The constructions above suggest that the definition of tHadvinum-
bers of classical links may be extended to links in quadindgrs. We shall not pursue
this line here.

2. Generalized Seifert forms

2.1. Bilinear forms associated with surfaces. Let (M, V) be a quasi-cylinder
over R. Consider an oriented embedded surf&ce Int(M) (possibly,dF #@). For a
1-cyclea on F, denote bya* (resp.a~) the 1-cycle in IntM)\F obtained by pushing
a along the positive (resp. negative) normal directionfForin M. For 1-cyclesa, b on
F representing homology classes,[[b] € Hi(F; R), set

?([a], [b]) = lkv(a", b).

This number only depends on the homology classea ehd b in Hy(F; R). Indeed,
if ay, ap, by and b, are 1-cycles orF such thata; — a, = 9A andb; — b, = 9B for
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some 2-chainsA and B in F, then

lkv (a5, by) — Iky (@, by) = Iky (a} — a3, by) + lky (a3, by — by)
=9A".By+al-B=A". 9B, +al- B

=A".by— A" v +al - B,

where A* denotes the 2-chaiA pushed along the positive normal direction Brin M.
Since A", a; C Int(M) \ F andb;, B C F, v1 C dM, these three intersection number
are zero. Hence, we have a well-defined bilinear form

Y =0V Hl(F; R) X H]_(F; R) - R.
We call it thegeneralized Seifert forrof F.

Lemma 2.1. Let d: Hi(F; R) = V be the composition of the inclusion homo-
morphism H(F; R) - Hi(M; R) with the isomorphism\d: H;(M; R) — V. For all
a, b e Hi(F; R),

a-gb=9v(a, b)— (b, a) —d(@) -sm d(b).

Proof. By abuse of notation, we shall denote 1-cycles remtasy a, b, d(a),
d(b) by the same symbols, b, d(a), d(b). Consider the bilinear forn#~: H;(F; R) x
H:(F; R) — R defined as9™ =9 but usinga~ instead ofa®. We claim that

(2.a) v (@ b)—v (a,b)=a-rb.

Indeed, letB be a 2-cycle inM such thatoB = b — d(b), and leta be the 2-cycle
[-1, 1] x a in Int(M) with 9a =a* —a~. We have

v*(@,b)—v (a,b)=a*-B—a -B=09x-B
Za-dB=a-b—a-d(b).

Now, « andd(b) are disjoint, sox - d(b) = 0. Sincea - b=a g b, this gives (2.a).
We now verify that

(2.b) 9*(a, b) — 9~ (b, a) = d(a) -ym d(b).
Indeed,

9*(a, b) = lky(a*, b) = lky (b, a*) + d(a) -sm d(b)
=lky(b™, @) +d(a) -pm d(b) = ¥ (b, @) +d(a) -om d(b).

Combining formulas (2.a) and (2.b), we obtain the claim & tbmma. Ul
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2.2. Algebraic digression. Let W be an arbitraryR-module. A Seifert triple
over W is a triple H, ¢, d), whereH is a free R-module of finite rank, a bilinear
form H x H - R, andd a homomorphisnH — W. Two Seifert triples Hy, 91, di),
(Hz, 92, d2) over W are isomorphic if there is afR-isomorphismf: H; — H, such
thatﬁzo(f X f):ﬂl andd20 f :dl.

A Seifert triple H’, ¢/, d’) is obtained from a Seifert tripleH, ¢, d) by anele-
mentary enlargementand H, ¢, d) from (H’, ¢/, d) by an elementary reductionif
the following conditions hold:H' = H & Ra® Rb, d'|y =d, d'(b) =0, #'|nxn =,
¥ (H, b) = ¢#/(b, H) = ¢¥/(b, b) = 0 and either¥’(a, b) = 1, 9'(b, a) = 0 or ¥#(a, b) =
0,%'(b,a) = 1. If his a basis ofH, thenh U {a, b} is a basis ofH” and the matrix
®" of ¥ with respect toh U {a, b} is computed from the matri® of ¢ with respect
to h by

® x 0 ® x 0
=1 % 0 or =] x « 1
0O 1 0 0O 0O

We say that two Seifert triples ovél are equivalentif they can be related by a finite
sequence of isomorphisms and elementary enlargementsedndtions.

2.3. Surgeries on surfaces. Given a quasi-cylinderNl, V) over R and a com-
pact connected oriented surfaée c Int(M), the constructions above yield a Seifert
triple (Hy(F; R), 9, d) over V. Note that theR-module Hi(F; R) is free of rank @ +
m — 1, whereg is the genus ofF and m is the number of connected components
of dF. Suppose that a surfade’ C Int(M) is obtained fromF by surgery along an
embedded arc in Ink]) meeting F exactly at its endpoints and approachikgeither
from the positive side or from the negative side at both emmdpo The transformation
F — F’ and the inverse transformation are callgtgeries It is easy to see that the
Seifert triple of F’ is obtained from the Seifert triple df by an elementary enlarge-
ment. Therefore the equivalence class of the Seifert trgplan embedded surface is
invariant under surgeries.

Observe that any given class ky(M) can be realized by a closed connected ori-
ented surface and any two such surfaces are related by aneeqoé surgeries and
isotopies. This leads to algebraic invariants of integrdlothology classes of quasi-
cylinders. We shall however focus on quasi-cylinders withial 2-homology.

2.4. Seifert forms of links. A Seifert surfacefor a link L in a 3-manifold M
is a compact connected oriented surface inNWtg¢hat hasL as its oriented boundary.
Clearly, if L has a Seifert surface, theh][=0 in Hy(M). It is well-known that this
is the only obstruction. For completeness, we outline a fproo

Lemma 2.2. Any homologically trivial link in an oriented3-manifold has a
Seifert surface
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Proof. LetL be a homologically trivial link in an oriented 3-manifoldl. Then
L is homologically trivial in a compact 3-dimensional subiifield M’ of M such that
M’ D> L. Let N be a closed tubular neighborhood lofin Int(M”). SetX = M"\ Int(N).
Since L] =0 € Hy(M’), an appropriate choice of longitudes bf gives a linkL" C
dN c 9X whose class inH;(X) is equal to 0. Thenl'] € Hyi(9X) is the boundary
of an element ofHy(X, 3X) = HY(X). The latter is the pull-back of a generator of
H(S') = Z under a mapX — S'. For an appropriate choice of this map, the pre-
image of a point ofS* is a compact oriented surface bounded lbyin X. Adding if
necessary 1-handles to this surface one can make it codneTtee resulting surface
extends to a Seifert surface farin M’. U

Given two Seifert surface&, F’ for a link L in an oriented 3-manifoldM, the
union F U (—F’) is a closed oriented surface representing an elemeit,(f1). This
element is an obstruction to transformifginto F’ by surgeries. It is well-known that
this is the only obstruction (see e.g. [7, p.64]). In patacuif Hy(M) =0, thenF, F’
can be related by a finite sequence of surgeries and ambietapies in M (which
can be chosen to keepM fixed). Combining this fact with the observations above,
we obtain the following.

Theorem 2.3. Let (M, V) be a quasi-cylinder over R with 4M) = 0. For any
homologically trivial link Lc M, the equivalence class of the Seifert triple of a Seifert
surface for L does not depend on the choice of the surface amddps an isotopy
invariant of L.

3. Alexander invariants

Throughout this section,M, V) is a quasi-cylinder oveR with Hy(M) = 0.

3.1. The Alexander module. Fix a commutative unital ringR’ containingR as
a subring. We also fix aR-bilinear pairingy: V xV — R’. Consider a homologically
trivial link L in M. Let (H,9: HxH — R,d: H — V) be the Seifert triple associated
with a Seifert surface foL.. Let ® and W be the matrices of the bilinear forms and
¥ o (d x d) with respect to a basis dfi. The Alexander moduled, (L) of L is the
R'[t,t~%]-module presented by the matri® —©T +W¥, where the superscrit denotes
the matrix transposition.

Proposition 3.1. The Alexander module is an isotopy invariant of L
Proof. Obviously, this module does not depend on the chofca basis ofH.

By Theorem 2.3, we just need to check thatkf’(¥’, d’) is obtained from H, , d)
by an elementary enlargement, then the corresponding gesaffi =t®’ — (0')" + W’



538 D. QMASONI AND V. TURAEV

andI =t® — O + ¥ present isomorphi®’[t, t~1]-modules. Clearly,

v x 0
=] x x« O
0 0O
Therefore,
r ~ O r = 0O
I'=|  » -1 or I"=| « « t
0ot O 0 -1 0
In both cases, the corresponding modules dvgt, t—1] are isomorphic. O

For M =D3 V =0, R=R=2Z and ¢ =0, the module4, (L) is the usual
Alexander module.

Mimicking the standard definitions, we can introduce the Alger ideals and
Alexander polynomials of. (provided R’ is a unique factorization domain). In particu-
lar, the first Alexander polynomial of can be defined as the determinant of a square
presentation matrix of4,(L). This polynomial is an element of the ring[t, t 1]
defined up to multiplication by units of this ring. As in theaskical case, the first
Alexander polynomial has a canonical normalization which mow discuss.

3.2. The Alexander-Conway polynomial. Using the notation of the previous
subsection, we define thextendell Alexander-Conway polynomialf L by

ALy (t) = dett20 — 7207 + t7Y2y),

As in the proof of Proposition 3.1, one checks that this elenoé R[tY?, t=?] is a
well-defined isotopy invariant of.

Observe that the size of the matric®s ¥ is equal to +m— 1, whereg is the
genus of the Seifert surface anais the number of components &f Therefore

ALy () =tE/2-9 detto — O + W),

Thus, AL 4(t) € R[t, t~Y] for odd m andt?A_ ,(t) € R[t, t~2] for evenm.
We now establish a skein formula fax, ,(t).

Proposition 3.2. Let L, L_ and Ly be homologically trivial links in M which
coincide everywhere except in a sm&iball where they are related as illustrated
below
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PRATRA

Then the corresponding Alexander-Conway polynomials satiséy following relation
ALy(®) = ALy () = 2 =tY9) ALy (t, 9).

Proof. Let Fy be a Seifert surface fot.g. Then a Seifert surfacé, for L.
(resp. F_ for L_) is obtained fromF, by adding a band in the small 3-ball with
one negative (resp. positive) half-twist. SinEg is connected, a basis fdf;(F:; R)
(resp. for Hi(F_; R)) is obtained from a basis foH;(Fo; R) by adding a 1-cyclea.
(resp.a_). Clearly, a. and a_ can be chosen to coincide as 1-cyclesNh Let v
be a 1-cycle ordM with coefficients inR such that {] € V C H1(0M; R) and v is
homologous tca, =a_ in M. Let B be a 2-cycle inM such thatoB =a. —v. Then

Ok (ar, ) — v (a,a)=al-B—a’-B=(al —a’)-B=-1.

This leads to the following equalities between the corraedpty matrices:

®|:0 v ®Fo v ‘I/FO X
= = Ve =W =
OF, < w a)' OF_ ( w a+1) and Wg, F < y B

for somea € R, B € R, columnv and roww over R, and columnx and rowy over
R'. The skein formula follows. ]

The skein formula implies in particular that, ,(1) € R is unchanged when one
replaces an undercrossing by an overcrossing. Hence, éndsponly on the homotopy
type of the components df.

If L’ is a link in an oriented 3-balD® and L is the image ofL’ under an ori-
entation preserving embeddir@® < M, then A ,(t) = A/(t) is the usual Conway-
normalized Alexander polynomial df’.

3.3. A special case. Let R = R[sy, ..., Sy] be the polynomial ring oveR gen-
erated byn commuting variables,, ..., s,. Let ¥1, ..., ¥n: V x V — R be bilinear
forms. We can apply the definitions and results of the previsubsections to the bi-
linear form

Y=gyt -+ S¥n: VxV >R,
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This gives a polynomial invariant

n
ALyt S1 o S0) = ALy () = de[<t‘1/2® —t72eT +t712 3" swi>,

i=1

where® and ¥; are the matrices of the bilinear formis and v; o (d x d) with respect
to a basis ofH. The polynomialAL y, 4. (t, S1, ..., ) lies in R[t, t™L, s, ..., )]
for oddm and int¥?2 x R[t,t7%, s, ..., s,] for evenm.

The degree i of ALy, y.(t, S, ..., S) is bounded from above by a number
independent oL.. Namely, this degree is smaller than or equal to the rank @fféhm
Y¥i. Indeed, it follows from the definitions that

deg, AL yy,..yn(t, Sty .oy S) < rank@;) = ranky;.

For a bilinear formy: V x V — R we denote byy " its transpose defined by
VT(a, b)=vy(b, a) for a,be V.

Proposition 3.3.

Al st ™, st ™) = (DM ALyt sy S0)

Proof. Transposing matrices, we obtain

n
AL g st ™ o st = de\<t1/2® —t2eT +t123 " stlwi)
i=1

n
- <t1/2®T ~ 20+t 123 g q,iT)
i=1
= (D" AL gt (t s s). O

For example, if; is symmetric fori = 1,..., p and skew-symmetric far=p+1,...,
n, then

AL g @ sit™ o st = ()AL o tprtrtn(E SLy oy Sn)
= (_1)m71AL:‘//1 ----- '/fn(t' _Sl’ R | _Sp’ Sp+l: LR S‘I)

The polynomialA y, 4. (t,S1,...,s) leads to other polynomial invariants &f.
First of all, we can expand

ALypon(tsnos)= Y Al)si g,

i1,..,in>0
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for somek =1,...,n. For any triple L+, L_, Lo) as in Proposition 3.2 and for any
il!"'yinzoa

Another interesting restriction oA, 4, is obtained by the substitution= 1.
By the skein relation, the resulting polynomial dependsy @ the homotopy type of
the components oL.

If V is a free module, then we can take @s, ..., ¥, a basis in theR-module
of bilinear formsV ® V — R. This results in a link polynomial on 14? variables,
wherev is the rank ofV.

ExAamMPLE. Taken=1 and lety; =-3m: V x V — R be the homological inter-
section ond M restricted toV. This gives a polynomial invarian, (t, s) = dett/26 —
t=120T + t~Y2sw) where ® and ¥ are the matrices of the bilinear form$ and
-am o (d x d) with respect to a basis dfl. We leave to the reader to check the fol-
lowing three properties of\| (t, s), wherem denotes the number of componentslof
- AL(L,-D)=1ifm=1andA (1, —1) = 0 otherwise;

— ALY st = ()M AL, S);

— A_L(t,s)=AL(t, —(s+t+1)), where—L is L with opposite orientation.

We can sometimes explicitly computg, (t,s) for links L represented by simple closed
curves ondM. Let ¥ ¢ aM be a compact connected surface of genus g with bound-
ary, such that the image of the inclusion homomorphisa{X; R) — Hi(dM; R) is
contained inV. We endowX with the orientation induced by the orientation 6M
(which in its turn is induced by the one dvl). Let £ C Int(M) be the oriented surface
obtained by pushing inside M and reversing its orientation. Clearli,=9% c M is

a homologically trivial link with Seifert surfac&. It is easy to see that the form as-
sociated withS is identically zero. It follows from the definitions that, (t,s) = t=9s%

if L is a knot, andA(t, s) =0 else.

REMARK. Let ¥ be a compact connected oriented surface of genwéth 0% #
@. Consider the quasi-cylindevl = ¥ x [0, 1], V = Hy(X x 0) overZ. For any knot
K in M, the Laurent polynomialA = Ak(t, s) € Z[t, t~1, s] introduced in the previ-
ous example satisfiea(t=%, st™1) = A(t, s), A(L,-1)=1 and degA < 2g. If g=0
(that is, if ¥ is a disc with holes), then these conditions characterizaptetely the
polynomials A which can be realized as the Alexander-Conway polynomiah &hot
in M. Indeed, in this case\ € Z[t, t71], A(t™1) = A(t), A(1) =1 so thatA can be
realized as the Alexander-Conway polynomial of a knot in baB-in M. We do not
know whether the conditions above are sufficient gos 0.
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4. The genus

The genus of a homologically trivial link in a 3-manifoldM is defined by
g(L) = min{genusF): F is a Seifert surface foL in M}.

If M is a 3-ball, then Seifert proved thg{L) > (1/2)(spamA_(t)+1—m), where span
is the usual span of a Laurent polynomial in one variablend m is the number of
components ofL. This result extends to our setting as follows.

Proposition 4.1. Let L be a homologically trivial m-component link in a quasi-
cylinder (M, V) with Hy(M) =0. Lety: V x V — R be a pairing as inSection 3.1.
Then

(L) = S(spanar (0 +1 - m)

Proof. LetF be a Seifert surface fok realizing the genug(L), and let®, ¥
be corresponding matrices. By definition af_ ,(t),

spanAL , () = spant’/?e — t 2@ +t 12y
= spant® — @7 +W| < rankH;(F) = 2g(L) + m — 1.

The inequality follows. [

Consider now a homologically triviah-component linkL in X x [0, 1], whereX
is a compact connected oriented surface of gemudhe following algorithm (due to
Seifert in the case wherE is a 2-disc) produces a Seifert surface forfrom a con-
nected diagram of. on . (A link diagram is connected if it cannot be presented as
a union of disjoint non-empty link diagrams.) Letbe the number of crossings on the
diagram. Smoothing these crossings in the unique way cobhpatith the orientation
of L, one obtains a closed oriented 1-manifdldC ¥ consisting ofy > 1 disjoint
simple closed curves oXx. Note that ['] = [L] = 0 € Hi(X). Therefore, there is a
finite collection of oriented connected subsurfages ..., X; of ¥ = ¥ x 0 whose
boundaries are disjoint and), 9%; = T'. A Seifert surfaceF for L can be obtained
from the &; by pushing their interiors int& x [0, 1] and adding a half-twisted band
at each crossing.

Proposition 4.2. Let y be the number of discs among the surfaggs. .., =.
Thenyy < y and

1
gLy <1+ E(n —y —m)+(y — yo) max{1, g}.
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Proof. We have

2-29(F)-m=x(F)=) x(%)-n=2-23 g —y—n

i=1 i=1

whereg; is the genus ofy;. Clearlyg < g andg =0 if & is a disc. Hence

o) < gF) =1+ S~y ~m+(r ~ )+ g

i=1
1
<1+SM—y—m+(y -0+ (=)o
The inequalitiesyy < ¢ < y now give the result. O

Note that if g = 0, theny = 3 and we obtain Seifert’s inequalitg(L) < 1 +
(1/2)(n — y — m) for links in the 3-ball.
Combining Propositions 4.1 and 4.2, we obtain in the cise# ¢ that

spanA y(t) <n+1—y+2(y — y) maxl, g}.

5. Concordance invariants

Two links Lg, L; in a 3-manifold M are concordantif there is a smooth oriented
surfaceSc M x [0, 1] such thatoS=(L; x 1)U (—Lg x 0) and each component &
is an annulus with one boundary component Mdnx 0 and the other one oM x 1.
Concordant links have the same number of components.

Lemma 5.1. Assume that R is a principal ideal domaihet (M, V) be a quasi-
cylinder over R such that M is compact ang(M) =0. Lety:V xV — R be a
bilinear pairing with values in an integral domain’Rontaining R as a subringLet
Lo, L1 be concordant homologically trivial links in M andgFF; be their Seifert sur-
faces with associated Seifert tripl€sli(Fo; R), 9o, do), (Hi(F1; R), #1, di). Then there
is a basis ¥, . . ., Xog 0of the R-module H- Hi(Fo; R) @ H1(Fy; R) such that the bilinear
forms

9= (—0) @1 and ¥ = —(¥ o (do x do)) & (¥ o (dh x dy))
satisfy 9 (x;, X;) = ¥(x, x;) =0for all i, j > g.

Proof. LetSc M x[0, 1] be a surface as in the definition of the link concordance
Then SU (Fg x 0)U (—F; x 1) is a closed connected oriented surfaceMnx [0, 1].

Claim 1. There is a compact orientegtmanifold NC M x [0, 1] such thatdN =
SU (Fg x 0)U (—Fy x 1).
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Indeed, letUx be a closed tubular neighborhood bf = dF in F¢ for k =0, 1.
Let F; be the closure off \ Ux. Deforming if necessarys, we can assume th&
meetsd(M x [0, 1]) precisely alongdS = (L; x 1)U (—Lg x 0). LetU = Sx D? be
a closed tubular neighborhood &in M x [0, 1]. Deforming if necessar{J, we can
assume that) N(Fx x k) = Uy x k for k=0, 1. LetY be the closure of M x [0, 1])\ U.
ThenY is a compact oriented 4-manifold with boundary afdx k C Y for k=0, 1.

We define a continuous map: 3Y — St as follows. Fork=0, 1, letF, x[—1, 1]
be a closed tubular neighborhood Bf x k in Y N (M x k) C Y. Then, f restricted
to F, x [—1, 1] is given by f(x, t) = €7 for x € F, t e [-1, 1]. OnSx aD? C dY,
the map f is such thatf ~1(1) = S x  for somex € dD?. Finally, f(x) = —1 for
all x e aM x [0, 1] and allx € (M x k) N Y) \ (F; x [-1, 1]) wherek =0, 1. By
elementary obstruction theory, the mdp oY — S extends toY if and only if there
is @ homomorphismy: Hi(Y) — Z such that¢ o i, = f,, wherei is the inclusion
dY — Y. Using the exact homology sequence of the pdrx [0, 1],Y), the excision
theorem, and the assumptidfp(M) = 0, we obtain thatHz(Y) = 0 and Hy(Y) = Z™
wherem is the number of components &f, (and of L;). A basis of Hx(Y) is given
by the homology classes ah tori Ty, ..., Ty € Y forming (U N (M x 0)). We
have Hi(Y, 3Y) = H3(Y) = 0 and Hyx(Y, 3Y) = H%(Y) = Z™ & G where G is a finite
abelian group. The summar&" C Hy(Y, dY) has a basiyj, . .., yn dual to the basis
[T1], ..., [Tm] of Hx(Y). The homological sequence of the paif, 0Y) yields

Ha(Y, 8Y) 5 Hi(8Y) 55 Hi(Y) = O.

Clearly, f.(3(G)) = 0. Using the assumptioAM # @, it is easy to construct for each
j=1,...,m, aloop in f (1) c 9Y piercing Tj once and disjoint from the other
m — 1 tori. This loop represent8(y;) mod 3(G). Therefore, f.(3(y;)) = 0 for all j.
Thus, the obstruction to the extension bfto Y mentioned above is 0. Lef: Y — St

be a continuous extension df. Deform f so that 1 is one of its regular values. Then
the 3-manifoldN = f (1) satisfies the conditions of Claim 1.

SetH’ = Hy(F}; R)® Hi(F;; R), which we identify withH = H;(Fo; R)® Hi(F1; R)
via the inclusion homomorphism. L& (resp.K) be the kernel of the inclusion homo-
morphism Hi(dN; Q) — Hi(N; Q) (resp.H ® Q — Hi(N; Q)), where® = ®r and
Q = Q(R) denotes the field of fractions oR. By the standard argument using the
Poincaré-Lefschetz duality, the dimensiontofis half of the dimension of;(aN; Q).
Furthermore, one easily checks that both the kernel and dkeriel of the inclusion
homomorphismH ® Q — H;(dN; Q) have dimensiorm — 1. Therefore,

. 1 1
dimQ K > dImQ K= > dImQ Hi(ON; Q) = > dImQ(H ® Q).

We now use this fact to show a second claim. The proof is adafpten [8, p.89].
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Claim 2. There is an R-basisiX..., Xoy of H such that x maps to zero in
Hi(N; Q) for all i > g.

Observe first thaH is a free R-module of rang 8§ whereg is the genus obN.
Then H ® Q is a vector space ove@ of dimension 8 and dimp K > g. Pick a
g-dimensional subspack of K. Clearly, E admits aQ-basis consisting of elements
in H: just take anyQ-basis of E and multiply its vectors by non-zero scalars. L&
be the R-span of these elements iH. SinceR is a principal ideal domainH /Ep =
F & T whereF is a free R-module of rankg and T a torsion R-module. LetT be
the pre-image ofl under the projectiorH — H/Eo. ThenEo c T c HNE and
T/Eo = T. SinceR is a principal ideal domain and is free, T is free as well.
Since the sequence-8 T — H — F — 0 is exact andF is free, a basis foil can
be completed to arR-basis ofH which satisfies the conditions of Claim 2.

The lemma now follows from one last claim.

Claim 3. If a,be H map to zero in H(N; Q), then(a, b) = ¥(a, b) = 0.

Indeed, ifa,be H map to zero inHy(N; Q) = Hi(N; R)® Q, thenr -a andr’-b
map to zero inHy(N; R) for some non-zero,r’ € R. By R-bilinearity of  and# and
the assumption thaR’ is an integral domain, it is enough to consider the case where
a,b e H map to zero inH.(dN; R). We havea=ay®a; andb =by®b; with ag, by €
Hi(Fo; R) and ag, b; € Hy(F1; R). Consider the following inclusion homomorphisms

H — Hi(3N; R) — Hi(N; R) = Hy(M x [0, 1]; R) = Hy(M: R) = V.

Clearly, the composition is given by ® X3 — do(Xg) + di(x1). Sincea, b are in the
kernel of this compositionds(ag) + di(a1) = do(bo) + di(b1) = 0. Hence,

¥ (a, b) = —¥(do(ao), do(bo)) + ¥ (ch(a), du(bn)) = 0.

By the assumptions onm, b, there are 2-chaina, 8 in N such thatda = ag+a; and
9B =bg +b;. Let By be a 2-cycle inM x k such thato By = by — d(bx) for k =0, 1.
Then

%(a, b) = ¥1(a1, by) — Po(ao, bo) = a7 ‘mx1 Br — a3 ‘mxo Bo.

The equalitydy(bp) + di(b1) = 0 implies that there is a 2-chai in aM x [0, 1] such
that 9Z = dy(bp) + di(b1). SinceZ is disjoint fromaj anda;, anda; is disjoint from
B for k #1,

*a, b) = (a3 +a7) “smxo,1) (Bo + By + Z).

Here we used the fact that the orientation &M x [0, 1]) matches the one oM x 1
and is opposite to the one dl x 0. There is a mapN — (M x [0, 1])\ N extending
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the push in the positive normal directidfy — (M x k) \ F; for k=0, 1. Leta™ be
the image ofo under this map. Then

(@, b) =a” ‘mxp,17 (Bo+ Bi+Z) =" -mxo,11 B,
sinceBy+ By +Z — B is a 2-cycle, and therefore a 2-boundary,Nhx [0, 1]. Finally,
B C N anda® C (M x [0, 1])\ N are disjoint, scx™ -mxjo,178 = 0. This concludes the
proof. O

The following theorem generalizes the results of Fox-Milf}r for knots in S°.

Theorem 5.2. Let Ly, L; be concordant homologically trivial links in a quasi-
cylinder (M, V) over a principal ideal domain R such that M is compact ang( M) =

0. Let ¥y, ..., ¥n: V xV — R be bilinear forms such that, is symmetric for L=
1,..., p and skew-symmetric forsp+1,...,n. Then for some & R[tY2,s,,...,s],
ALQ,]//l ..... Wn(t_ll _Sﬂ.t_l/za vy _Spt_l/za Sp+lt_1/2, LR | S’]t_l/z)

X ALy int SISt
= f@t % =S, ..., =Sp, St - - ) T (L, Sty -y S0)

Proof. By Lemma 5.1, the matrices of the bilinear pairings (—9o) ® 1 and

= —<Z Sutu o (do x do)) ® <Z Sutu o (di x d1)>
u u
with respect to a certain basis &f = H;(Fo; R) ® Hi(F1; R) have the form

* Zsucu

* A ~ ~
Q= and W= = u ,
(B o) 2 sl > sC, 0
u

u

where A, B, C,, C|, are square matrices ovét of equal size. Note that, = C! for
u=1,...,pandC,=-Cl foru=p+1,...,n
Let m be the number of components bf (and of L;). By Proposition 3.3,

ALy =it Y2 st V2 s Y2 gt Y2
X ALy (b St st
= (_1)m_1AL0,1//1 ..... Ijln(tl Sﬂ.tl/zr cre S’\tl/Z)Alellfl ..... '\/fn(t; Sltl/zy ey S’]tl/z)

= tY?0 —t720T + |
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* t2A—t72BT + ) " s,C,
u

tY2B —t72AT — 3 "5,C| 0

u

f(t_11 _Sly "'y_SpISp+la "'ys'])f(tysla "'13'1)1

where f(t, sy, ..., s) = [tY2A -t Y2BT + Y, 5,Cy|. (The sign (1) disappears
because of the minuses in the definition of the fornand v.) Ul

6. Signatures and derived invariants

6.1. Signatures. The classical Murasugi-Tristram-Levine signature of a link
in the 3-ball is the functiorr, : St — Z whose value omw € S' c C is the signature
of the Hermitian matrix (= 0)® + (1—)OT, where® is a Seifert matrix ofL. This
function is a well-defined invariant of. It is a concordance invariant away from the
roots of A, on St. We now extend these results to our setting.

Consider a quasi-cylinderM, V) over R = R. Fix p symmetric bilinear forms
Yi,...,¥p: VxV — R andn— p skew-symmetric bilinear formgp.1, ..., ¥n: V x
V — R. Let L be a homologically trivial link inM and H, ¢, d) be the Seifert triple
associated with a Seifert surface for The signature of Lis the function

OL Yt ¥n - StxR" > 7

sending a tupled € St, A = (A1, ..., An) € R") to the signature of the Hermitian form

n

p
Q- +Q-—a)" + <Z hu i Y xu¢u> o(d x d)
u=1

u=p+1

on C ®g H. Using Theorem 2.3, one easily checks thatdoes not depend on the
choice of the Seifert surface (see e.g. [8, Chapter 8] foramfpwhich extends to our
setting). Thus, it is a well-defined isotopy invariant lof

Theorem 6.1. Let Lo, L; be concordant homologically trivial links in a quasi-
cylinder (M, V) over R such that M is compact and M) = 0. Then

Olo, Y1, 1/fn(w1 )‘) = O—lell'h---,l/'n(w’ )‘)

for all w #1 and A € R" such that bothA( y, .y, and Ap, y,
(w, €A1y .o EXp, 1EApet, - .., 1EAn) WhereE = (1— 0 1)L,

v, do not vanish on

.....
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Proof. We shall use the notation introduced in the proof oédrem 5.2. Clearly,
6L1,¢1,---,¢n(w1 A) — OLo, Y1, 1l'n(a)' 1) = sgn@), where

p n
P=(1-w)O+1-)0 +> AWy +i > AW,
u=1 u=p+1

B * (1-w)A+(1l—w)BT+C
‘((1—w)B+(1—a)AT+C/ 0 )

with A, B, C, C’ square matrices ovel of equal size. Therefore, sghf =0 unless
® is degenerate. We have

P n
1— )0+ (1-2)Of +> AWy +i Y AWy
u=1 u=p+1

detd = + ]‘[
k=0, 1|

where ®, and ¥y, are the matrices of the form& and v, o (dk x di) on Hi(Fy; R).
For k =0, 1, thek-th determinant on the right-hand side is equal to

a)_rk/z(l — w)rkALk’wl _____ ‘/,n(a), f)\l, ey é)»p, ié)»p+1, ey iéj)nn),

wherery = dim Hy(Fg; R). This proves the theorem. Ol

6.2. Further invariants. We assume in this subsection that the ground g
is a field andW is a vector space oveR. More invariants of Seifert triples can be
obtained using the following construction. A Seifert teép{H, ¢, d) over W gives a
Seifert triple (H’, ', d’) over any submodul®/’ of W by H' =d=Y(W’), 9’ = 9 |nxh's
andd’ =d|y.. The latter triple is said to be mstriction of (H, ©#,d). Note that equiv-
alent Seifert triples may give non-equivalent restricsiodo handle this, we introduce
a notion of stable equivalence for Seifert triples.

We say that a Seifert tripleH), 9, d;) over W is obtained from a Seifert triple
(H1, 91, d;) over W by a trivial enlargement(and Hi, 94, d;) is obtained from
(H2, o, dg) by atrivial reduction) if H,=H; & Rb, dz||-|1 = dl, dz(b) =0, 192|H1x Hy =
1, ¥2(H1, b) = 92(b, Hi) = 92(b, b) = 0. Thus, a matrix ofj; is obtained from a matrix
of ¥; by adding a zero row and a zero column. Two Seifert triples &Veare stably
equivalentif they can be related by (a finite sequence of) isomorphisetsmentary
enlargements and reductions, and trivial enlargementsreahactions.

It is easy to check that stably equivalent Seifert triplegeroW restrict to stably
equivalent Seifert triples over submodules \W. Therefore a stable equivalence in-
variant of Seifert triples generates a family of such irmat$ by applying it to all pos-
sible restrictions of a given Seifert triple.

Given a Seifert triple 1, ©#, d) over W, the associated polynomial det€® —
t~Y20T +t-Y2¥) as in Section 3.2 is not preserved under trivial enlargaseihe
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Fig. 1. A clasp intersection.

module presented by the matrt® — ©T + WU is preserved up to taking direct sums
with free R[t, t=*]-modules of finite rank. The sequence of elementary idefiltie
module is preserved up to shifts of the index.

The signatures of Seifert triples are easily seen to be iemaunder stable equiv-
alence. This generates a family of stable equivalence ianvi@ obtained by taking the
signatures of the restrictions.

Applying the constructions above to homologically triviadks in a quasi-cylinder
(M, V) over R, we obtainderived signatureéndexed by the subspaces ¥t They are
isotopy invariants. We do not know whether they are conawdanvariants or not.

7. The multivariable case

The classical theory of Seifert surfaces for oriented linksS® has been extended
to u-colored links inS® using ‘C-complexes’ (see [3, 4] for 2-component links and [1
2] for the general case). The aim of the present section i&dtcls a further extension
of this theory tou-colored links in quasi-cylinders.

7.1. Colored links. Let u be a fixed positive integer. Au-colored link L=
LiU---UL, in an oriented 3-manifoldV is an oriented link in the interior oM to-
gether with a surjective map assigning to each componemt afcolor in{1, ..., u}.
The sublinkL; is constituted by the components bf with colori fori =1,..., u.
We shall say that two colored links, L” in M are isotopicif there is an ambient iso-
topy betweenL andL’, fixing dM, and preserving the orientation and color of every
component. Au-colored linkL =L;U---UL, is homologically trivialif [L;]=0 in
Hi(M) foralli=1,...,pun.

Note that a 1-colored link is an ordinary link, as defined ircti®s 1. Setting
u =1 in the present section, we obtain the theory developedhénptevious sections.

7.2. C-complexes. A C-complexfor a u-colored linkL =L;U---UL, in an
oriented 3-manifoldM is a unionF = F, U- .- U F, of surfaces inM such thatF is
connected, and the following conditions hold:

(i) for alli, F is a Seifert surface foL;;

(i) forall i #Zj, /N F; is either empty or a union of clasps (see Fig. 1),
(iii) for all i, j, k pairwise distinct,F; N F; N F is empty.

In the caseu =1, a C-complex forl is simply a Seifert surface fok.
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T2 T3

[ \

Fig. 2. The transformations T2 and T3 in Proposition 7.1.

In order to have a C-complex, @-colored link clearly needs to be homologically
trivial. One easily checks that it is the only obstructionveiy homologically trivial
pn-colored linkL =L; U---UL, in an oriented 3-manifold has a C-complex. In-
deed, by Proposition 2.2, every sublihk admits a Seifert surfac€&;. Then, by [1,
Lemma 1], eachF can be isotoped keeping its boundary fixed to give a C-complex
for L.

Proposition 7.1. Let F and F be C-complexes for isotopic colored links in a
quasi-cylinder(M, V) over R If Hy(M) =0, then F and F can be transformed into
each other by a finite number of the following operations amgirtinverses
(TO) Ambient isotopy keepingM fixed
(T1) surgery on one surface
(T2) addition of a ribbon intersectigrfollowed by a‘push along an arcthrough this
intersection(seeFig. 2);

(T3) the transformation described iRig. 2.

Proof. By the first move, it may be assumed th& = dF = L; for all i. Since
Hx(M) =0, F andF/ are related by ambient isotopies (keepingfixed) and surgeries.
Clearly, a surgery orF can be performed avoiding \ F, giving move T1. Now, for
every ambient isotopy betwedR and F/, we can apply [1, Lemma 3], whose proof
extends to our setting: such an ambient isotopy can be iddbgea finite sequence
of moves TO, T2, T3 and their inverses. ]

7.3. Seifert forms for colored links. Let us now define the corresponding
generalization of the Seifert form. Let as aboRebe an arbitrary commutative ring
with unit. Let N; = F x [—1, 1] be a bicollar neighborhood d¥ in the interior of
M. Given a signe; = +1, let F be the translated surfadg x {&i} C N;. Also, let
T(L;) be a tubular neighborhood df; in Int(M), and letY be the complement of

L, Int(Nj UT(Li)) in M. Given a sequence = (1, .. ., g,) of +1, set

"
Fe={JF"nY.
i=1
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See Fig. 3 for an illustration oF¢ near a clasp. Since all the intersections are clasps,
there is an obvious homotopy equivalence betwEeand F* inducing an isomorphism
Hi(F; R) —»> Hy(F%; R), a+— a*. Note also thatF* is a smooth surface, endowed
with a canonical orientation: the orientation that matctiess one onF; if and only if

& =+1. Hence, we have a well-defined Seifert fof on H,(F#; R) as in Section 2.
Therefore, each choice of siges= (e1, . .., ¢,) leads to a Seifert form#* and to an
intersection formg® on Hy(F; R) defined by

¥¢(a, b) = 9g:(a°, b®) and ¢°(a, b)=2a° g b°
for all a, b in Hy(F; R). These forms are related as follows.

Lemma 7.2. For all a, b in Hi(F; R) and all signse = (1, . .., €,),
?¥(a, b) — 97 %(a, b) = ¢°(a, b) and o°(a, b) — v ~*(b, a) = d(a) -sm d(b),

where -5 is the intersection pairing oroM and d: Hy(F; R) — V the composi-
tion of the inclusion homomorphism fF; R) — Hi(M; R) with the isomorphism
dy: Hl(M; R) — V.

Proof. Leti®: Hi(F; R) - Hi(F®; R) denote the isomorphism given by —
a’. As an oriented smooth surfac&? is diffeomorphic to—F~¢, the surfaceF—
with the opposite orientation. This leads to a canonicami@phismh®: H;(F*; R) —
Hi(F~%; R) such thath® ci® =i~ and 9f_. o (h* x h*) = ¥¢.. (Recall that the bilinear
form 9. is defined asyf. = ¥ but usinga™ instead ofa®.) Therefore:

95— =9k o (i x i) — 9. o (i @)
=0f 0 (i° xi¢) = 0f . o (n® x h*) o (i* x i)
=@ —95) o (i xi%).

By formula (2.a) applied td=¢, this is equal to-g- o (i x i¥) giving the result. The
second equality follows from formula (2.b) in a similar way. U

This result leads to the following definition. A-colored Seifert tripleover an
R-module W is a triple H, {¢¢}., d), where H is a free R-module of finite rank,
{(9¢}, a family of 2*~1 bilinear forms onH indexed by the set

E={(c1,62,...,64) 81 =41, & =Xl fori > 1},

and d a homomorphismH — W. (Note that we don’t consider the form%® with
&1 = —1 since they can be recovered from the other forms via Lemr2g 7.

A pu-colored Seifert triple K, {9}, d) is obtained from another-colored Seifert
triple (H, {#°}, d) by atypel elementary enlargemeiit the following conditions hold:
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F; e

——

&

&j

Fig. 3. The surfacd-¢ near a clasp; the arrow off; indicates
the ¢j-normal direction onF; in M.

H=H®Ra®Rb, d|y =d, d(b) =0, and there is some indéxand some sign = +1
such that for allse € E, the matrix®® for ¢ with respect to a basis of H is related
to the matrix®® with respect to the basis U {a, b} of H by

(CH * 0
e°f = * * e
0 d6_54 0

wheres is the Kronecker symbol. Similarly, one speakstgbe Il elementary enlarge-
mentif the following conditions hold:H = H & Ra® Rb, d|y =d, d(b) =0, and there
is some indices # j and some signg, o’ such that

CN * 0
eFf = * * 30,3, 80’,8,
0 a—o,si 8—0’,£j 0

We shall say that twqu-colored Seifert triples oveW are equivalentif they can be
related by a finite number of type | and Il elementary enlargei® (and reductions).

Theorem 7.3. Let (M, V) be a quasi-cylinder over R with JM) = 0. For any
homologically trivial u-colored link L in M, the equivalence class of the-colored
Seifert triple of a C-complex for L does not depend on the aghaif the C-complex
and provides an isotopy invariant of the-colored link L

Proof. By Proposition 7.1, we are left with the proof thatvifot C-complexes are
related by transformations TO to T3, then the correspondaiert triples are equiv-
alent. Obviously, transformation TO does not change théeBetriple. It is an easy
exercice to check that if a C-compléX is obtained from a C-complek via surgery
on F;, then the corresponding Seifert triples are related by & tyglementary en-
largement with index. (The signo is determined by the side df along which the
surgery is performed.) Also, one verifies that transforomaff2 involving surfaced
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and F; corresponds to a type Il elementary enlargement with irsdicg, and some

signso, o’ given by the orientations of; and F;. Finally, consider two C-complexes
related by a T3 transformation. Then, the two correspondaiert triples can be un-
derstood as two distinct type Il elementary enlargementsoofie fixed Seifert triple.

This concludes the proof. U

7.4. The Conway function. Fix a commutative unital ringR’" containing R as
a subring, and arfR-bilinear pairingy: V x V — R'. Consider a homologically trivial
u-colored linkL in M, and let H, {¢{}., d) be theu-colored Seifert triple associated
with a C-complexF for L. Let ©¢ and ¥ be the matrices of the bilinear formg
and ¥ o (d x d) with respect to a basis dfi.

Let Ar,, denote the localization of the rinB/[tfl, ey tjl] with respect to the

multiplicative system generated —tfl}lfisu. The Extende)l Conway functiorof
L is the element ofAr , defined by

QL ..., 1) = (1) '>/2]_[ HXEF get Ap + W),
i=1
wherec is the number of clasps iR, | = Zi<i lky(Li, Lj), and
Ar =D e g ltats? - GUOF + (1Y (tats? - ) Yen].
ecE

Proposition 7.4. The extended Conway function is an isotopy invariant of the
u-colored link L

Proof. By Proposition 7.1 and the proof of Theorem 7.3, we peed to check
that 2.y remains unchanged if the C-compléxis transformed via moves T1 and T2.
So, letF be a C-complex obtained frori by a surgery onF,. Clearly, the number
of claspsc remains the same, while

= =y _ Jx(F\F) if i =Kk,
X(F\F')_{X(F\Fi)—z otherwise.

Furthermore, the correspondingcolored Seifert triples are related by a type | ele-
mentary enlargement (with indax= k). Using the equality

Y er e[ 8 (Y (1) B ]

ecE

= > eeeutyt 408, = oty [ -7,

€1, Ep i Zk
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we get
A|: * 0
* * otf [Tt —t™h N v o« 0
Ag = g I , =] x x O
0 —ot° H(ti—ti_l) 0 0 00
i zk

Therefore, det{ Az + ) = ]’[i¢k(ti — t(l)2 det(— Ar + W). The equality follows. Now,
let F be a C-complex obtained fro by a move T2 involvingF, and F. The num-
ber of claspst of F is given byc+ 2, and

x(F\F) if i =k,

x(F\F)= {X(F \ F)—2 otherwise.

The correspondingc-colored Seifert triples are related by a type Il elementamiarge-
ment with indicesk, I. By the equality

Z Ep - &‘M[tltsz t 't/iuan,sk‘grr’,a + (_l)ﬂ (tlt;2 Tt t/iﬂ)_l‘s—o,ska—a’,a]

ecE
= Y ereutft o 48y 080 =o't [T -7,
E11emnp i #k,l
we get
A|: * 0
* * ooty [T -t
Ag = i#k,|
0 oot "t [T -t 0
i #k,|
The invariance follows. ]

In the casen = 1, F is a Seifert surface fotL, and the unique Seifert matrix
coincides with the matriX® constructed in Section 2. Furthermore, we havel =0,
x(F \ F1) = x(@) = 0. Hence, the Conway function is given by

1 “14T (—ymt 2
QL,lﬂ(tl) = — det(—t]_@ +t1 e'+ \IJ) = 7_1A|_’_¢(tl),
th—t; th—t;
wherem is the number of components &f.
If L’ is a u-colored link in an oriented 3-balD® and L is the image ofL’ under
an orientation preserving embeddii — M, then QLy(ty, . )= Qu(ty, ... ty)
is the usual Conway function df’, as constructed in [1].
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Let us conclude this paragraph with a list of propertie<2f, generalizing well-
known properties of the Conway function of colored links$h We refer to [1] for
the proofs which easily extend to our setting.

Proposition 7.5. (i) Let L., L_ and Ly be homologically trivialu-colored links

which coincide everywhere except in a sn@aball where they are related as illustrated
below (Here i denotes the color of the strands in ti3eball.)

K€

Then the corresponding Conway functions satisfy the followiatatiort

QL+,w(tly ey tﬂ) — QLﬂ]/,(tl, ey tu) = (ti — tiil)QLO’]/,(tl, ey tu).

(i) Similarly, if L.+, L__ and Ly are homologically trivialu-colored links which dif-
fer by the following local operatign

i\(/ j i X{ j i
R
Ly,

L__ Lo

then we have the equality
Quyylty - t) + QU (o ) = (6t + ) Qg p (b, . ).
(iii) For any homologically triviali-colored link L with m components
Quy(tyh ) = (D"t . L),
where v/’ is the bilinear form given by/'(a, b) = (—1)*¥ (b, a).

7.5. Multivariable signatures. As in Section 6, consider a quasi-cylindé (V)
over R=R, and fix p symmetric bilinear formsjy, ..., ¥,:VxV — R andn—p
skew-symmetric bilinear formgypiq, ..., ¥n: V x V — R. Let L be a u-colored
homologically trivial link in M and H, {9#¢}., d) be theu-colored Seifert triple asso-
ciated with a C-complex foL. Finally, let T# denote theu-dimensional torusT# =
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St x ---x St c C*. The xtendell signature of Lis the function
oL y,..., ¢n: T x Rn —> 7

sending a tupled = (w1, ..., w,) € T#, A = (A1, ..., An) € R") to the signature of the
Hermitian form

Z[(l —on) [Ja-ofyw +@-a) [Ja- wfi)(ﬂf)T} ry
ceE i>1 o1

on C®g H, wherey = (30 Auy +i Zﬂzpﬂ Auy) o (d x d).

Proposition 7.6. The extended signature is an isotopy invariant of theolored
link L.

Proof. Note that ifw; = 1 for somei, then the signature is equal to zero. There-
fore, it may be assumed that # 1 for all i. By Theorem 7.3, we just need to check
that the signatures corresponding to equivalertolored Seifert triples are equal. So,
let us assume that a Seifert triplél ({3}, d) is obtained from another Seifert triple
(H, {9¥*},d) by a type | elementary enlargement (with index k). Using the equality

Z|:(l — o) [[@= )80 e + (L —@1) [ (21— wﬁi)a_“,sk}

ceE i>1 i>1

iz
= 2 [la-esn=0-ep) [[L-al

£l 1=1 i Zk

we see that the corresponding Hermitian matritésand M are related by

M * 0
. * * A-e)[[11-wl
M = ik
0 (1-a))[]1-wl? 0
i #k

Sincew; # 1 for all i, the signatures oM and M coincide by the usual argument.
The invariance of the signature under elementary enlargemietype Il follows from
the equality

Z[(l - wl) H(l - wfl)aa,akao’,8| + (1 - wl) l_[(l - wigl)a—a,sk‘s—n’,a]

ceE i>1 i>1
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n
= 2 [la-eMbondon =@-oda=of) [[11-a?

£1,..8y 1=1 i #k,l
in the same way. [l

In the casex = 1, we obviously get back the extended signatures definecetn S
tion 6. If L’ is a u-colored link in an oriented 3-balD® and L is the image oflL’
under an orientation preserving embeddid§ — M, theno| ,(w, 1) = o () is the
multivariable signature of the-colored link L', as constructed in [2].

We don’t know to which extent the concordance propertieshesé two special
cases (see Theorem 6.1 and [2, Section 7]) hold in the geoasal considered here.

8. Generalizations

Our invariants of links are defined under rather strong apsioms: the links
are supposed to be homologically trivial; the ambient nwdjf M, is supposed to
have trivial 2-homology and the inclusion homomorphistp(dM; R) — Hi(M; R) is
supposed to be surjective and to have a section. We explaintboweaken these
conditions.

8.1. Homologically non-trivial links. Let (M, V) be a quasi-cylinder oveR
with Hy(M) = 0. Leth € H;(M) belong to the image of the inclusion homomorphism
Hi(0M) — Hi(M). To construct non-trivial invariants of links iM representingh,
one can proceed as follows. Pick a link, in a cylinder neighborhood) ¢ M of
dM such that [,] = —h. Any link L ¢ M may be isotopically deformed intt — U
uniquely up to isotopy inM —U. If Lc M —U and [L]=h, thenL =L UL, is a
homologically trivial link in M. The isotopy type of_ is entirely determined by the
isotopy type ofL and the isotopy type of, in U. The invariants of homologically
trivial links in M defined above may be applied fo This yields isotopy invariants
of L depending onV and L,. In particular, concordance invariants of homologically
trivial links yield concordance invariants df. Indeed, if two linksLg, L1 in M are
concordant, theriy and L; are concordant.

8.2. Generalized quasi-cylinders. A generalized quasi-cylindesver R is a pair
consisting of an oriented 3-manifold and a submodul® of Hy(0M;R) such that the
inclusion homomorphisni: V. — H;(M; R) is injective. The theory of Seifert triples
associated with surfaces in quasi-cylinders extend torgémed quasi-cylinders as fol-
lows. Given an oriented surfade in the interior of M, setH = j~1(i(V)) € Hi(F;R)
where j is the inclusion homomorphisril;(F; R) — Hi(M; R). For 1-cyclesa, b on
F representing homology classed,[[b] € H, set#([a], [b]) = Iky(a*, b). This yields
a well-defined bilinear form}: H x H — R. Applying this construction to the Seifert
surface for a linkL in M, we obtain the Seifert tripleH, #,d: H — V) of L. If
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H.(M) =0 and R is a field, then the stable equivalence class l6f ¢, d) does not
depend on the choice df and yields an isotopy invariant df.

8.3. High-dimensional generalizations. The constructions of this paper can be
easily generalized to codimension 1 submanifolds of oddedisional manifolds with
boundary and to codimension 2 links in such manifolds.

8.4. The case of non-connected boundary.The definitions of linking numbers
and generalized Seifert forms given in Sections 1 and 2 makéeq sense whether
Hy(M) is trivial or not (that is, whethefM is connected or not). However, the triv-
iality of Hy(M) is needed for Theorem 2.3 to hold. Indeed, this result idbamn
the fact that two Seifert surfaces for a link M can be related by surgeries. This is
clearly not true ifHy(M) # 0. Therefore, the general theory of Sections 3 to 7 does
not hold if the boundary oM is non-connected, and it is very unlikely that any Seifert
type invariant can be constructed in this general setting.

Nevertheless, parts of the theory can be developed in thewfiolg special case.
Let (M, V) be a quasi-cylinder oveR, and let us assume tha&#l has exactly two
boundary component® and X', with V = H;(2; R). This is a natural class of quasi-
cylinders, as it contains the prototypical example= T x [0, 1] with X closed. LetF
be a Seifert surface in such a quasi-cylindst, {/), and let: denote a parallel copy
of ¥ obtained by pushingZ in Int(M) \ F. Suppose that there is a solid cylinder
[0, 1] x D? in the interior of M such that ([0, 1x D?) N F = {0} x D? and ([0, 1]x
D2)N £ = {1} x D2. Then we shall say that the surface

F'=(F\ ({0} x D)) U ([0, 1] x aD*) U (2 \ ({1} x D?)

is obtained fromF by adding & along the arc[0, 1] x {0}. Here, the orientation of
3 is chosen so that the orientation Bf extends toF’.

Proposition 8.1. Let (M, V) be a compact quasi-cylinder over R wiitM = X LI
¥ and V= Hi(Z; R). Any two Seifert surfaces,F’ for isotopic links in a(M, V)
can be related by a finite number of ambient isotopies keepivg fixed surgeries
and additions of parallel copies oE along embedded arcs imt(M).

Proof. Consider a path: [0, 1] = M such thaty ([0, 1)) N X = y(0), ([0, 1) N
¥’ = y(1), and such thay intersects:, ¥/, F and F’ transversally. Let us assume
that F intersectsy in n points. LetE be a parallel copy of pushed intoM, disjoint
from F, and which intersecty transversally iny(tg). Let t; be the smallest number
such thaty(t;) € F. Consider the surfac€; obtained fromF by adding¥ along the
arc y([to, t1]). Clearly, F; intersectsy in n — 1 points. Iterating this construction,
we obtain a Seifert surfacé for L disjoint from y. Similarly, we obtain a Seifert
surface F’ from F’ disjoint from . Now, consider the compact manifoll given
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by the complement iM of an open tubular neighborhood ¢f Also, let & be the
surface with boundary given b¥ = ¥ N M. By excision, H,(M, M) = H,(D?, S%), so
the homological sequence oM M) reads

0 = Ho(M) = Hao(M) > Z.

SincedM has exactly two components, one of whiclls the inclusion homomorphism

Ha (%) Y H,(M) is an isomorphism, as well as the compositidp(X) 2% 7. There-
fore, 8 is an isomorphism, andH,(M) = 0. So, we have two Seifert surfacésand
F’in M for a fixed link L in (M, £), with Hy(M) = 0. By the standard argument,
F and F’ are related by surgeries in IiM() C Int(M) and by isotopies oM keeping
its boundary fixed. Such an isotopy obviously extends to atopg of M fixing dM.
This concludes the proof. ]

Note thatV = H,(X; R) is endowed with a naturdR-bilinear form: the intersection
form on X. This leads to the following definition.

Let W be a freeR-module of finite rank equipped with bilinear formp: W x
W — R. Let (H, ¢#,d) and H’, ¢/, d") be two Seifert triples oveW. We shall say
that (H', ¢, d) is obtained from €, ¢, d) by a g-enlargement(and H, ©, d) from
(H’, »’,d") by ag-reduction if the following conditions hold:H'=H & W, d'|4 =d,
d'lw =idw, ' lHxn =0, ¥ [nxw =0, #'lwxn = ¢ o (idw x d) and ¥'|w.w =0 or ¢.
If his a basis ofH andw a basis ofW, thenhU w is a basis ofH’ and the matrix
©®' for ¥’ with respect toh U w is computed from the matri¥ for ¢ with respect to

h by
,_(©® 0 ® 0
®‘<c p) * \c o)
where C is the matrix ofgp o (idw x d), and D the matrix of . We shall say that
two Seifert triples oveMW are ¢-equivalentif they can be related by a finite humber

of isomorphisms, elementary enlargements, elementanyctieahs, ¢-enlargements and
@-reductions.

Theorem 8.2. Let (M, V) be a quasi-cylinder over R and let us assume that M
has exactly two boundary componerEsand X', with V = Hy(Z; R). Finally, let ¢
denote the intersection form on.VFor any homologically trivial link Lc M, the
p-equivalence class of the Seifert triple of a Seifert sweféor L does not depend
on the choice of the surface and provides an isotopy invarnL.

Proof. By Proposition 8.1, we just need to check that the tamdiof a parallel
copy of £ induces ag-enlargement of the corresponding Seifert triple. €t de-
note the Seifert surface obtained frof by the addition ofX along an arc, and let
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v’ denote the corresponding form. Clearl;(F’) = Hi(F) & Hi(X), d'|nyr = d,
Ay = |dH1(z) and ¢’ restricted toH;(F) x Hy(F) is equal to®. Furthermore,
¥'(a,b) =a* -3» B =0 for (a, b) in H(F) x Hy(X), since B can be chosen to be
a thin annulusb x [0, 5] disjoint from a*. For a, b in Hy(X),

19/(av b) = a+ oM (b X [Ol 77]) = a'UM b
if the orientation of is induced by the one of and
¥(@b)y=a"ym(bx[0,n)=0

if the orientation of % is opposite to the one induced from. Finally, for (@, b) in
Hi1(Z) x Hy(F), Lemma 2.1 and the above computation give

FZO =0
?'(a, b) = ¥'(b, @) +d'(@) -pm d'(b) +a ¢ b =a-ym d(b).

This concludes the proof. ]

Using this theorem, let us now see to which extent the reiltSections 3 to 7
hold true in the case under study.

The R[t, t!]-module A4, (L) is no longer an invariant of. in general. However,
it is an invariant in the special cad® = R and ¢ = —¢, whereg is the intersection
form on V. Indeed, if H’,¥’,d’) is obtained from (, ¢, d) by a g-enlargement, then
the corresponding matrice® =t® — (®)" +W¥ andI' =t® — @' + ¥ are related by

,_( T 0 (T 0
F"((t—l)c: tD) or F"((t—l)c —D)'

. . _ &g _ . . .
Since D is congruent to the matn( _01 é) , A_,(L) is an invariant of the linkL.

Now, consider the element d®[t¥2, t~%/2] given by
AL(I) = AL,—(p(t) = det¢1/2® _ t_l/2®T +t_1/2‘~11)_

It is well-defined up to multiplication by?, whereg denotes the genus &. Indeed,
if (H’, ¥/, d) is obtained from M, ¢, d) by a ¢-enlargement, then

dett¥20’ —t Y2(@)" +t V20') = dett/?0 —t V20T +t Y2w) . det@tV/2D).

Since D is a matrix of the intersection form o&, detdt—Y2D) =t~9, giving the
result. One easily checks the following propertlesmﬁs odd, thenA,(t) e R[t t=1].

If mis even, thert?2A(t) € R[t,t~%]. Finally, A (1)=1if L is a knot, andA, (1) =
0 else.
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Proposition 4.1 translates into the inequality

o(L) = (spank, (1) + 1 m)

Furthermore, the Seifert algorithm and Proposition 4.2edtverbatim to our case.

Generally speaking, the signatures introduced in Secti@ne6not invariant under

@p-enlargements.
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