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Abstract
Representation formulas of the solutions to the Cauchy lenab for first order
systems of the formgu/ot — Z‘jj:l Aj(t)au/ax; — Ao(t)u = f are established. The
coefficients Aj's are assumed to be matrix-valued functions of the forpét) =

aj(t)l +8;(t)M;, whereq;(t),8;(t), j = 1,...,d, are real-valued continuous functions,
the eigenvalues of the matriced;, j = 1,...,d, are real, and the commutators
[Mj,M] =0 forall j,I =0,1,...,d. No restrictions on the multiplicities of the

characteristic roots are imposed.

1. Introduction

In this note we establish a representation formula for thecBa problem for a
first order system of the form

d

(L.1) M A0 pu=f(t,x) in (0,T) x BY
ot — 0Xj

1.2) u(0, x) =n(x)

where Aj(t), j =0,1,...,d, is a matrix-valued function of the form

(1.3) Ait) = (D)1 + B ()M,

with scalar valued functiong;(t), g;(t) on the interval [0T], and ak by k complex
matrix M;. Thek by k identity matrix is denoted by. Both f(t, x) ="'[ fi(t,x),. ..,
fi(t, X)] and n(x) = ni(X), ..., n(X)] are given functions.

We introduce notation in order to state the main theorem. kK-by k matricesA
and B, [A, B] denotes the commutator:

[A B]= AB— BA
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The Fourier transform with respect the variallés denoted by
36 = @0 [ ey ax
Rd

ASSUMPTION (A). (i) [Mj,M]=0 forall j,I=0,1,...,d.
(i) For eachj=1,2,...,d, the eigenvalues oM; are real.
(iii) For eachj =1,2,...,d, the functionse;(t) and g;(t) are real-valued continuous
functions, anduxg(t) and Bo(t) are possibly complex-valued continuous functions.

Theorem 1.1. Let Assumption (A)be verified and let f be a function such that
f(t,&) is continuous with respect to t in the internvidll, T] for each& € RY. Suppose
that there exist a constant C and a functigne L*(RY) such that

(1.4) (&) M £t 8)] + 1)) < CY(E)
for all (t,&) € [0, T] x RY, where m=1if all Mj, j =1,...,d are semisimpleand
otherwise

(L.5) m := maxn | n equals the algebraic multiplicity of
' an eigenvalue of some M1 < j <dj}.

Then the solution of the Cauchy problgfn1)-(1.2) is given by
. t ~
18 ut =)@ [ e (i) s [ e ds) o
Rd 0

which is a G-function in[0, T] x RY. Here
n t t

(1.7) B(t,&) =i ) & /0 Aj(s)ds+/0 Ao(s) ds.
j=1

It might be worthwhile to note that we do not need any restnicon the multiplic-
ities of the characteristic roots for the equation (1.1, the roots of the characteristic
polynomial

d
det(M =) EA (t)).

j=1

If all the «j's and g;’s areC*, and f(t,x) andn satisfy some suitable conditions,
then the solutioru(t, x) becomesC*. However, we shall not go into the discussions
about this.
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2. Proof of the main theorem

We start with ordinary differential equations fdv(C)-valued functions, where
Mk(C) denotes the set of ak by k complex matrices.

Let an M(C)-valued continuous functioh.(t) on the interval [OT] be given, and
consider the ordinary differential equation

du
(2.1) T L(t)U
with the initial condition
(2.2) u@)=1I.

Here the unknown functiot (t) is an My(C)-valued function.

The solutionU (t) to the equation (2.1) subject to (2.2), which is called theda-
mental solution, can be expressed in the form
(2.3) u(t) = e,

where Q(t) is generally given as an infinite series (cf. [2, Theoren}).lll
As a preliminary to the proof of Theorem 1.1, we need the faithg

Lemma 2.1. Suppose thakL(t),L(t")] =0 for all t,t’ € [0, T]. Then the solution
to the initial value problem2.1) and (2.2) is written as

(2.4) U)=ebt®ds @<t <T).
Proof. It is easy to see that
t
(2.5) [/ L(s) ds, L(t’)] =0
0

for all t,t" € [0, T]. If we appeal to the definition

S L(s)ds — - i( ' )j
el ng /OL(s)ds ,

j=0
then (2.5) enables us to show that

(2.6) %efg L(s)ds — L(t)e[g L(s)ds — efo‘ L(s)dsL(t),

which implies (2.4). ]
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We should like to remark that the assertion of Lemma 2.1 isligitly mentioned
in [2]. See also [1].

Proof of Theorem 1.1. We shall give the proof only in the case> 2. The
proof in the casam =1 is easier.

Taking the Fourier transform of (1.1) and (1.2), we obtaie grdinary differential
equation

d d .
(2.7) giit.8) = <i D EA+ Ao(t))ﬂ(t, §)+ f(t,§)
j=1
subject to the initial condition
(2.8) a(o0,§) = n(é),

where & should be regarded as a parameter. In view of (1.3), it fdldwwm the as-
sumptions of Theorem 1.1 that

d
(2.9) i YA+ Aot)

j=1

satisfies the assumption of Lemma 2.1. From Lemma 2.1, we tsdethe solution
to (2.7), (2.8) is given by

t
(2.10) eB("5)<f7(§)+ / e B6EH f (s, s)ds).
0
We now computeeB®&). For this purpose, we put

t t
(2.11) 5i(t) = /O (9 ds Fi(t) = /O £i(5) ds

for j =0,1,...,d. Then

d

(2.12) B(t, &) =i Y _ & (&) +B;(t)M;) +o(t)! + Bo(t)Mo.
j=1

By Assumption (A) (i), we have

d
(2.13) eBts) = <1_[ gl&id (0 &P (1)Mj>e'50(t)ef~30(t)Mo‘

i=1
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For eachj, the matrixM; can be expressed as the sum of a semisimple m&jriand
a nilpotent matrixN; that commutes witrs;:

(2-14) Mj :Sj+Nj,

which implies that

m—
. . 1 ~

(2.15) &M = digiBi0s —(i& 85 (ON; 4

;O RTRAE i)
for j =1,...,d, and that

- - m— 1

(2.16) ePoOMo = gfoV)S Z al (Bo(t)No)*,

q=0

wherem is the integer defined in (1.5). It is now straightforward tmw that the func-
tion defined by (1.6) isC* and gives the solution to the Cauchy problem (1.1)—(1.2).
(Il

3. Examples

The following proposition is useful in constructing exaeplto which Theorem 1.1
are applicable.

Proposition 3.1. Let M be a k by k matrix of which eigenvalues are resthd
let M; := pj(M), j =0,1,...,d, be real polynomials of M ThenAssumption (A) (i)
is verified

EXAMPLE 3.1. We deal with the Cauchy problem for the partial difféi@requa-
tion of the form

ou [a(t) b(t)] +[Ot(t) ﬂ(t)}u
(3.1) ot 0 aft) y(t) 81"

u(0,x) = n(x) = "[n1(x), 12(X)]

where the coefficients ar&l,(C)-valued continuous functions, aralt) and b(t) are
real-valued. (Note that (3.1) is the case whkre2 andd =1 in (1.1).) The aim here
is to obtain the representation of the solution.

We would like to mention that the equation (3.1) is a specéecof the equation
that Matsumoto [3] investigated in order to study the hypkchp of systems with
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double characteristic roots. Indeed, the equation he dgtitis reduced to the equa-
tion of the form

au _Ta(t,x) b(t,x)]ou  [a(t,x) At X)
(3-2) ﬁ‘[ 0 a(t,x)]a_x+[y(t,x) S(t,x)}“’

where all the coefficients aré*-functions of ¢, x) and b(t, x)y (t, x) = 0.
Taking into account this, we shall establish a represemtdtirmula for the equa-
tion (3.1) in the case where

bt) =0, a(t)=5(t), A)= y().

In this case, the equation (3.1) becomes

ou _Ta(t) 0 Jou [aft) A(t)
(3.3) ﬁ‘[ 0 a(t)}&Jr[ﬁ(t) a(t)}u'

It is straightforward to check that the coefficients of (3s&Yisfy Assumption (A). In-

deed, with
o o [0 1
Ml"[o o}’ MO_[l o]’

we have A;(t) = a(t)l + Mg, Ao(t) = a(t)l + B(t)Mg. Furthermore, we have

Bt) 4+ o B(t) Bty a—B®)
EB(LE) — A i eV+e | et e 0},

+
2 2
where we have used the fact thit2 = |. Since M is semisimple, the assump-

tion (1.4) onn becomes that¢)/ € LY(R). Then (1.6) defines &*-function and leads
to the representation of the solution of the Cauchy probl8rh){

1, =043 a(t)- Bl al
u(t, x) = E(eol(t) B 4 g2(1) ﬂ(t)) [Zig i;gt;”

1 e _ w050 [Wz(x + 5(0)}
+ 2(e“ e” ) (< + ()

Following the proof of Theorem 1.1, we can deduce a direcegdization of the
theorem in the manner described in the next theorem.

Theorem 3.1. Let

(3.4) Aty =aj®)1 + > Bipt)Mjp

p: finite
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for j =0,1,...,d, with [Mjp, Miq] = 0 for all pairs (j, p) and (I,q). Suppose that for
each j=1,2,...,d, the eigenvalues of \'s are real Supposein addition that for
each j=1,2,. ..,d, «;(t) and gjp(t)’'s are real-valued continuous functignand ao(t)
and Bop(t)'s are possibly complex-valued continuous functiofsirthermore suppose
that f(t, x) and n(x) satisfy the same assumptions asTineorem 1.1where m= 1 if
all the Mjp’s are semisimpleand otherwise with m ir{1.5) replaced by

(3.5) m:=maxn | n equals the algebraic multiplicity of
' an eigenvalue of some jM 1< j <d, p,}.

Then the solution of the Cauchy problgh1)<(1.2) is given by(1.6), which is a C-
function in[0, T] x RY.

ExAmMPLE 3.2 (d=1). We consider the Cauchy problem

ou ou
(3.6) i A(t)&
3.7) u(0, x) = n(x)
where
(3.8) At) = a(t)l + B1(t)My + Bo(t) M2
(39) My = |:‘3L g] , Ma= |:8 ‘]02i|
M1 O
(3.10) 3= e C (=12
Al
0 Al

I being thek by k identity matrix, J; and J, being k; by k; and k, by k, matrices
respectively, andk; + k, = k. We suppose thai(t), B1(t) and B»(t) are real-valued
continuous functions. It is easy to see that all the assumgtof Theorem 3.1 are
verified. Thus, if the initial data is assumed to satisfy tkg@t™s e L(R), where
m = max{ky, ko}, then Theorem 3.1 gives th@!-solution u(t, X) to the Cauchy prob-
lem (3.6), (3.7).

We shall computeau(t, x). To this end, we write

J=rli+ Ny, B=2kl2+tN;
where |, is the k by k identity matrix { = 1, 2). Noting thatN,"‘ =0, we have
k-1

= = 1. ~
(3.11) gAY = AN z; a(|g,9|(t)N.)q, | =1,2.
q:
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Here B (t) is defined similarly to (2.11). Since

eB(tE) = Ea() dépit) 0
0 dépaX |

the formula (1.6), together with (3.11), leads to the repnéstion

k=1

> q—l!,gl(t)q N7 (89n*) (x +&(t) + 1181(t))
e a
Y g PO (< + 80 + 22P2(0)

a=0

u(t, x) =

wheren*(x) = '[n1(X), ..., ma ()], 77 (X) = [mg+2(X), - .., m(X)] and

0= [ 8.

n**(X)

REMARK. Neither of Theorems 1.1 and 3.1 is applicable to the systédm o
the form

ou |:a(t) b(t) ] au
ot | ct) —a(t) | ax

which is a special case of the system that was studied in tidighj4].
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