Kasahara, Y. and Yano, Y.
Osaka J. Math.
42 (2005), 1-10

ON A GENERALIZED ARC-SINE LAW
FOR ONE-DIMENSIONAL DIFFUSION PROCESSES

Yua KASAHARA and Yuko YANO

(Received June 23, 2003)

Abstract
Laws of the occupation times on a half line are studied for-dingensional dif-
fusion processes. The asymptotic behavior of the distdhufunction is determined
in terms of the speed measure.

1. Introduction

Let {B;, P*} be a one-dimensional standard Brownian motion andIlgt) =
f(; Li.-0 ds. ThusT'.(z) (r > 0) denotes the sojourn time on the half line 46 ) and
the following fact is well-known as P. Lévy’s arc-sine law:

1
PO <?F+(l) < .X') = PO(F+(1) < .X')
2 .
= —arcsinv/x, O0<x<L1
T

Many authors have tried to extend this result for more gdrstoghastic processes and
in the present paper we are interested in linear diffusions.

A typical, interesting example is the case of the skew Bed#&ision processes
and in this case Barlow-Pitman-Yor ([1]) obtained the lawIofr)/¢ = r+(1) = Yo,
explicitly (see Section 2). In connection with their resi8t Watanabe [11] determined
all possible limiting distributions as — oo  of«(¢)/t for general linear diffusion
processes. Since they have calculated the double Laplagsfarm of the distribution
function of I'+(r), we may say that the law df.(¢) is already known in a sense. How-
ever, it would still be of interest to derive further propest of the law, and our aim
of the present paper is to study the asymptotic behavior of

(1.1) PO(I'+(t) <x) as x — O+

for every fixedr > 0.
To state our results, we first recall that the generator of asexwative lin-
ear diffusion has the following canonical representatién:= (d/dm(x))(d*/ds(x))
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wheres ) anddm £ ) are called the scale and the speed measupectigsly. Chang-
ing the scale, if necessary, we may and do assume that the s(dl is identi-
cally equal tox and thus we shall consider stochastic presesdth generator of
the form L = ¢/dm ( )){d*/dx). Our main result (Theorem 1) is as follows: the or-
der of infinitesimal of PO(I'+(r) < x) as x — 0+ depends on the asymptotic behav-
ior of m4(x) := f[O,x] dm as x — 0+ and the multiplicative constant is determined
by m_(x) := fH_O) dm. The proof will be carried out analytically as an easy appli-
cation of Krein's string theory. In fact we also have a prdlistic proof based on
the excursion theory, but we shall not go into details here.

Another result of the present paper is related to a result .ofM8tanabe [11]
which treats the limiting distributions of'.(¢)/t ast — oo, and we shall study the
asymptotic behaviour oP%((1/¢)I'+(t) < x) when not onlyt — oo butx — 0. This
may be regarded as a sort of large deviation problem in theeseh W. Feller ([2,
p.548])).

The contents of this paper are as follows. In Section 2, wél $inst introduce
some notations and review well-known facts not only on lindiffusions but also on
Krein’s string theory, and then we shall state our main tesowith the proof. In Sec-
tion 3, we shall study the case that x= () varies with in S. Walb&'s result.

2. Main result and the proof

Let m: [0,1) — [0, o0) be a right-continuous, nondecreasing functighere 0<
[ <oo. We putm (B-) =0 andn { ) =0 forx > whelh < co so that the Borel
measuredm is defined on [0 ). Suemn is referred to as an inextensibasure.
Let M be the class of all such functioms . Fbor> O, ¢etr, X ¥).x,X ) be the so-
lutions of the following integral equations:

X E+
@2.1) $(x.2) = 1+A/O di /0_ (. ) dm(u),
X &+
(2.2) W(x,k):x+)L/ dé/ Y(u, A)dm(u)
0 0-
on the intervalx € [0l ). Sop (,r ) andsr {(,1 ) are solutions of the differen

tial equation {/dm & )){*/dx)u = iu with initial conditionsu (0) = 1,u™(0-) = 0
andu (0) = 0,u*(0—) =1, respectively. Set

- Y(x,A)
2.3 AQ) =Ilim .
23) @) i @(x, A)
In particular, ifm (¢ )= 0, themr X = oo . The correspondence between) aphd i (. )
is called Krein's correspondence ardi ( ) is called the charatic function of
the stringm . For the details of Krein’s correspondence werrtd Kotani-Watanabe [9].
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The functionk is known to have the following representation:

(2.4) RO =c +/: ‘i"f?, %>0

for some 0< ¢ < oo and nonnegative Radon measte ord0 ) such that

/ * do(§)
<
oo 1+§
In fact it holds thatc = infx > Om £ )> @ . LetH be the class of all functions
h of the form (2.4) with 0< ¢ < oo . The important result is that Kreircerre-

spondence is one-to-one and onto so that we may write> h mBte M be
the right-continuous inverse ok € M. If m < h is Krein's correspondence, then

m(x) «— m

is also Krein's correspondence.™! is called the dual string of:r . Let  be the class
of functionsy ¢ ) ofA > 0 which have the form

(2.5) vQR) :co+cl)»+‘/ooc(1—e’\”)n(du)

wherecg, c1 > 0 andn @u ) is a nonnegative Radon measure aro¢0 ) with

‘/0 1iun(du) < o0.

If h e H, then Yh e V.
Now let m+, m_ € M such that

my: [0, 1) — [0, 00)

andm_ (0) = 0. We define the Radon measdre x ( ) e (I:) by

dm+(x) on [0, l+)
dm(x) =4
dm_(x) on (=I_,0)
wheredni_ ) is the image measure @ under the mapping —x . A stechas

tic process associated with, &/dm x ( Jf(/dx) can be constructed as follows.
Let {B,;},>0 be a standard Brownian motion dd with Bo =0 and let{/ {,x )t > 0
x € R} be its local time, i.e., the mapping,¢ — [ 7, ) is jointly contiruma.s. and

/Ot 14(By)ds = Z/Al(t,x)dx
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for every A € B(R). Let
s0= [ tex)dm)
(—_.14)

and put
X, = B@~H()).

Then {X,};>0 is a strong Markov process on the supportdat x ( ) whose lifetime
is identified with the first hitting time fod, or —/_. This process is called the gen-
eralized diffusion process corresponding to the gair, m_}. Notice that this is one
of the standard methods of constructing one-dimensiorflsitin processes (and birth
and death processes) which allow the killing only on the loleupn

Let {X,, P*} be a (generalized) diffusion process onl(,l.) corresponding to
the pair{m+, m_} so thatm, € M with m_(0) =0 and leth. be characteristic func-
tions of my, respectively. Sefy. =/k. . Since the process is alsoackerized by
the pair{h+, h_}, we may say thafX,, P*} is the generalized diffusion process corre-
sponding to the pair of characteristic functiofis., 2} or to the pair of characteristic
exponents{y., ¥_}.

A positive functionL § ) is said to vary slowly at O [or ab ] if, feevery A > 0O,
lim,_ o) L(Ax)/L(x) =1 and a functionf X ) is said to vary regularly at €[ ] with
exponentp {oo < p < oo ) if liM_opg f(Ax)/f(x) = A*, A > 0. Thus f varies
regularly with exponenfp if and only iff x( ) =L x( ) for some slowlyarying L .

If p # 0, then the (asymptotic) invers¢—1(y) is defined and varies regularly with
exponent 1p .
Now the main result of the present paper is the following.

Theorem 1. Let {X,;, P*} be a diffusion process oft-co, co) corresponding to
the pair {m+,m_} and I'«(¢) = fé Lix,~0 ds. Let ¢(x) be a regularly varying function
at 0 with exponent = 1/a (0< o < 1).If

(2.6) mi) ~ 29 o,
X
then
(2.7) PO(T4(r) < x) ~ 1 (e~ (x), x — O+

{fe(l—a)}*T(1l—a)

wherec(z), t > 0 is a continuous, decreasing function satisfying

A > 0.

(2.8) /o e Me(t)dt = )’

We postpone the proof and consider, as an example, the cagsbeokkew
Bessel diffusion process of dimension2 « 2 < < 1 with the skevarmpaterp |,
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0< p <1, SKEWBES(2- 2, p ) in notation. This is the case of the diffasprocess
on (—oo, o) corresponding to the pafm., m_} is given by

m+(x) - pl/o(xl/or—l7 l+ = 00,

m_(x)= (1 —p)x¥el | =c.
SKEWBES(2— 2%, p ) corresponds to the pdir., h_} given by
he(l) = Dep A7, h_(1) = D,(1— p)~Ia™

where D, ={a (1- « )T (14« )T (- « ). In the case of SKEWBES{2 «, ), we
put

1.4
T Ir,(1)=17,,
particularly. Note that, because of the self-similaritytbé skew Bessel diffusion pro-

cess, the law ofl".(r)/t is independent of , i.eJ.(¢)/t 2 I'+(1), so thatT'+(¢)/t 4
Y. ,. Therefore Theorem 1 implies

—-p 1 o
X
Frl—a)l(l+a)

1
PO(Ya.[lfx)'\’ x— 0+.

This fact can be also obtained directly from J. Lamperti'asity formula (see [10]):

sinam p(1— px*1(1 —x)* L

Tre) = P+ (L= pPr + 20— p)e (1= x) comn

for 0 < x < 1. If p =« = 1/2, then the skew Bessel diffusion process isdnt f
the usual Brownian motion up to a multiplicative constant éme above result implies
that

1 2
PO (;Il(t) < x) = PO(M4(1) < x) ~ ;xl/z, x— 0+,

This is of course compatible with P. Lévy’s arc-sine law.
For the proof of Theorem 1, we introduce the following reswhich is due to
Barlow-Pitman-Yor ([1]) and Watanabe ([11]).

Lemma 1 (Barlow-Pitman-Yor, Watanabe).Let {X,, P*} be a diffusion process
on (—I_, l;) corresponding to the paifm.,m_} and leth, be the characteristic func-
tion of my andvy = 1/hy, respectivelyThen for A > 0, u > 0,

(2.9) /0 ¥ ot O] gy = VRO Ot ) )

V(A + ) + ¢ ()
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In particular, if {X,;},>0 is SKEWBES(2— &, p ), then

00 B B A+ //L)a71 + (1 _ p)'ua,]_
2.10 o1 FO7 T (0] gp = p(
10 /0 [ : pA+u)* +(1— pu

and if {X,},>0 is the Brownian motion, then

Ot V2ep e 1

A+ 24 b2 AF

We refer to Watanabe ([11]) for the proof but we remark thas flormula can
also be shown by using the Feynman-Kac formula (cf. 1td [&ratzas-Shreve ([7]))
as follows. Letu > 0,A > 0 and define

7(x) = E* [‘/Ooo exp{—m — A‘/OI 1(0‘00)(Xs)ds} dt] .

Thenz () is a bounded positive solution of

d d*
<M+)»'1{x>0}—dm—(x)a)zzl.

So if we solve this equation, then (0) is the right-hand sitl¢2®).

(2.11) / e ME e 0] gt =
0

Lemma 2. Let u,(x),x > 0 (n = 1 2...)and u(x), x > 0 be nonnegative
monotone functions and les,, @ be their Laplace transforms.e.,

wn(A) = / e up(x)dx, r>0,
0
o0
() :/ e u(x)dx, i >0.
0
We assume thab,(A) and w(1) are finite for allA > 0 and thatw,(X) — w())+c for
everyx > 0 and for some constant. Thenu,(x) — u(x) for all continuity pointsx

of u.

Proof. By the well-known continuity theorem for Laplace nséorms (see
Feller ([2])), we have

[ w@de— [ u@aere. x=0
0 0
and hence

y Yy
fun(s)ds»/ u(€)de, 0<x<y.
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By monotonicity ofu, , it is easy to complete the proof. O

We are now ready to prove Theorem 1. We start with proving thistence of the
unique continuous functiom ¢ () which satisfies (2.8). Sin¢géuk_(u)) is the charac-
teristic function of the dual stringr* ofi.  (i.em* x( )m_1(x)), there exists a non-
negative Radon measutey* on & ) such tﬁ%tdo*(g)/(l +&) < oo and

am (C50) L e

Here, we used the assumption that (0) = 0 and hende inf m™0x >() Q =0
although this will not play any essential role. Put

c(r) = /000 e Sdo* (), t>0.

Then, it is easy to see thats () is continuous, nonincreasim satisfies (2.8). Now
by Lemma 1, we have

/ ¥ ot pOpe 0] gy = YA IOt 1) + Y ()
0 Ye(d +p) 1 (u)

for . > 0, u > 0. On the other hand, our assumption mn combined with a result
of Y. Kasahara ([8]) yields that

N R W N
(2.13) h+(A)(— m(x)) Dug (k) A — oo,

Consequentlyyr. (1) varies regularly abo  with exponent O« < 1 and henggl +
w)/(A+u) — 0 asi — oo . Therefore, the right-hand side of (2.12) is asytiglly

equal to (¥v+(A))(v—_(un)/n) asr — oo. Thus,

(2.12)

/ e MYy (W E[e 0y dr — / e Me(t)dt
0 0
asi — oo. By Lemma 2, this implies

Ue(W)Ee T 0] = (), A — oo.

Combining this with (2.13), we obtain

1
E%[e™"T* 0] ~ Dyc(r)p™t (X) ., A — oo.

Therefore, by Karamata’s Tauberian theorem (cf. Felle), [@f have

D,
'l+a)

PO(T+(t) < x) ~ c@®)e(x), x— 0+
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which completes the proof of Theorem 1.

Remark. We shall not go into details but we remark the following fatet
X*(r) be a diffusion process corresponding{ton@ x }( ) andpet, x(y ) leettln-
sition density. Then,

c(t) = p*(¢, 0, 0).

3. Large deviations

The following result was obtained by S. Watanabe ([11]).

Theorem A. ForO< p <1, O0<a < land every fixed < x < 1,

PA/NT4() =x)

1 1
Gy P, <0 o T
if and only if
(3.2) Ye@Q)~A*LiQ), A— 0

where L. (A) are slowly varying functions at = 0 with

L_(A) _ 1-p

m
1—0+ L+ (1) p

(3.3)

We remark that the latter condition is equivalent to
(3.4) my ()~ xV KL (x), x— o0
where K. ) are slowly varying functions at s  with

K () _ (1 p)e
(3.5) Jim S =

by Y. Kasahara ([8]).

Now it is a natural question to ask how xt () can vary with in sachvay
thatx — 0 ast — oo in order that the relation (3.1) remains true. Thswvan to this
guestion is as follows.

Theorem 2. LetO< p <1and0 < «a < 1. Assume tha{3.2) and (3.3) hold, or
equivalently (3.4) and (3.5) hold. Then(3.1) remains true ifx varies witltr in such a
way thatx — 0, tx - oo and L+(1/t)/L+(1/tx) —> 1 ast — ooc.
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Proof. Letc @) be a function ok suchthatA (> OA(—3 Oakder &) O
asA — 0. Using Lemma 1 of the previous section, we have

BGD [ ey [ o, (2) <00
0

V(1) 0
= W ; )\.E_MM‘ du‘/o e—(sk/c(k))v dPO(F+([) < U)
/) | BT v ()

v_(n) "W (SAJe(h) + uh) + p—(uh)
_ O/ (s + pe() - BEFERE + g )y ()
- Ya(sh/cO)rud) o - (uh)

Y+ (1 /c(0)) V+(A/c(2))
0+ (1 T a—1 1 00 —a
R €T Sy :_/ LY P S )
s¥+0 s s* Jo rl—o)

By Lemma 2 of Section 2, this implies

Ye(A/c(h) Doe—sv dP° (MH (%) <uv. c(k)) Lowvr 1 r— 0.

v Jo F(l—a) s
Applying again the continuity theorem for Laplace trangeisr we have
Ye(A/c(V)) u u—*v*
71#7()») - P (AF+ (X> <v- C(A)) — —F(l— OFd*a) A — 0.
Hence we obtain
0 u N 1 vy Y-(A)
P (AF* (X) =v C(k)) Il—a)(1+a) (Z) Ue(r/c(0) + =0

Assume further that..(1)/L+(A/c(A)) — 1 asA — 0. Then, setting =& =1 in this
formula, we have

0 1 - - 1 1-p o N
P (,\F+<X>_c(,\)) Fl_ord+a) » (c())*, r—0.

This completes the proof if we set #A1 amd c3 (). O
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