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1. Introduction

Let M be a compact Riemann surface, and
X:M=M\{q1,...,q.} —R®

a conformal minimal immersion that has the endsyat..., g, € M. The endg; is
called acatenoidal endif the image of a neighborhood af; b¥ behaves asymp-
totic to some catenoid. When all the ends are catenoidal, emel<all X , or its image
X(M), an n-end catenoid Choose a loopy; surroundingg; from the left, and let

be a conormal such thaty(, 7) is positively oriented. Then th#ux vectorat the end

g; is defined by the integral
Pj ::/ ﬁ'ds,
7.

whereds is the line element ok M ). By the divergence formula, ge¢ the flux
formula

Z(pj =0.
j=1

When a conformal minimal immersiok  has finite total curvafuhe Gauss map
G: M — S C R® of X is naturally extended to the mag M — S? C RS
In particular whenX is am -end catenoid, ¢;( ) is paralleldp and hence there
exists a real numbew g{ ) satisfying

p; = 4rw(q;)G(q;)-

We call w g; ) theweight of the endg; . The weightv ¢ ) is the size of the catenoidal
endg; relative to the standard catenoid. Note here that thghiveiay take a negative
value. Whenw ¢; ) =0, the end; is embedded planar end
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Now, we can rewrite the flux formula as follows:

n

(1.1) > w(g))Glg)) =0.

J=1

Conversely, we can consider &verse problem of the flux formylar a Plateau prob-
lem at infinity that is a problem of finding -end catenoids that realize tlhergdata
G(g;) andw ;) ( = 1...,n) satisfying (1.1). For this problem, Umehara, Yamada
and the first author [5, Theorem 3.3], [6, Theorem 3.1] prothed, for almost allflux
datavy,...,v, € & andas,...,a, € R\ {0} satisfying Z;’:lajvj = 0, there exists
an n-end catenoid of genus 0

X: M:é\{ql,...,qn} —R®
that satisfies

(1.2) Gg))=v;, wg;)=aj G=1....n).

In connection with this result, we mention here that Rosegpdeubiana [9, The-
orem 2.5] proved the general existence in the case whe@ deg (andLhenceX has
branch points), and that Cosin-Ros [1, Theorem 8.1] got ssesarry and sufficient
condition in the case when dim, ..., v,) =2 andX is Alexandrov embedded.

In our case, whem = 3 and dim, v, v3) = 2, we can replace “almost all”
by “all”. Furthermore, for any flux data, a 3-end catenoidlizéag the data is unique
(8], [4, Example 3.5]). On the other hand, wher> 4, such a uniguness result does
not hold, and we can construct examplesnof -end catenoidshtge the same flux
data and are not congruent to each other ([5, Example 3.7]EX@mples 3.1, 3.2],
see Example 7.1 for their Weierstrass data). In particutathe case whem = 4,
we know that, for any datay, v,, vs, v4 € S? and ay, az, as,as € R\ {0} satisfying
ijlajvj =0 and dimuvs, va, v3, v4) > 2, the number of 4-end catenoids of genus 0
satisfying (1.2) is at most four. In particular, this esttends sharp ([5, Theorems 3.3,
4.2]).

To explain our problem, let us observe an example of a fanfilj-end catenoids
whose limit normalsvy, vy, v, v4 are arranged in the positions of the vertices of a
tetrahedron

v = (COS@, 0, Sil’]@), Vo = (_ COS@, 0’ Sine)’ x
< -
V3 = (0, COS9, — S|n9), Vg = (0’ _ COSQ’ _ SII’]Q) (O ~ 6 < ),

and whose weights satisfw ¢g{ ) & =13 ( =1 2 3 4) ([5, Example 3.9-Fi
ure 3.2(a), (b)]). Wherd = Sin"'(1/v/3), X is unique and invariant under the
action of the tetrahedral group, and there are two types ébromation from 6 =
Sin"%(1/v/3) to 0.
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the former tetrahedrally the latter
type symmetric type

Fig. 1.1. Two types of deformation of 4-end catenoids

In one type, the simple closed geodesic 0fM ( ) which separtiesendsq;,
g2 and the endsys, g4 becomes shorter and shorter, and, as the limit, we get two
catenoids tangent to each other.

In the other type, the closed geodesic ¥fM ( ) as above does ewinie so
short, and, as the limit, we get a Jorge-Meeks’ 4-noid ([2arBples in§5]).

What is the essence of difference of these two types of deftoom? In this paper,
we consider this problem.

Quite similar phenomenon as in the former type is observed a Karcher’s
example ([3, Example 2.3.8, Figure 2.3.8]) whose limit nalsnare arranged in
the positions of the vertices of a rectangle. In this examplace eachX satisfies
dim(v1, vz, v3, vg = 2 and are Alexandrov embedded, we can apply the theory in [1]
to explain this phenomenon by using flux poligons. Howevanilar phenomenon is
observed also in more general case when(dim .., v,) = 3 (cf. [10, Theorem 1.1],
[7, Example 3.2], etc.).

When X is symmetric with respect to some plane and no ends eargad on the
plane, we can give a simple explanation. If an -end catedbidas duch symmetry
(Karcher's example has such symmetry), then a simple clgsedesic appears on the
plane of the symmetry, and its length is equal to the lengtlthef flux vector along
to the closed geodesic. Therefore if the sum of the flux vectorone side of the
plane tends to O, then the length of the closed geodesic atmtstto 0. This holds
also for the higher genus. However, if we do not assume suotm&fry (indeed, our
first example does not have such symmetry), then this exipdene not available.

To explain the above phenomenon in more general case, weedéfif2, therel-
ative weightsw ; of end-pairs §;,qx ) {,k =1...,n; j #k), which are conformal
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invariants satisfying

n n
Z Wik = Z wi; = wlgj).

k=1k#j k=1k#j

and, in§3-5, prove the following result:

Theorem 1.1. Let X: M = C\ {q1.....¢q.} — R3 be ann -end catenoid of
genusO satisfying(1.2) (z > 4), and w;; the relative weight of the end-pafy;, qi)
(j,k=1,...,n; j #k). Assume that there exist positive numb€is C,, C3, and ¢,
e2 small enough satisfying

(1.3) {Clg|w,-k|gcg (.k=1,....,mor jk=m+1,....n; j#k)

61§|wjk|§€2 (G=1...,m; k=m+1,...,n)
2<m<n-2)and
(1.4) Z(vj, v) > Cs (j,k=1,...,n; j #k).

Then there exists a positive numb€r= C(C1, Ca, C3, €2/€1,n) such that the length
| of the minimal closed geodesic that separates the surfa@d) to the side of the
endsgqs, ..., q» and the side of the endg,+1, ..., g, satisfies

| < Ce.

As for the lower estimate by flux, it is clear that the lendth afy (simple)
closed geodesic satisfies

S| )
j=1

where g1, ...,gm are the ends in one side of the geodesic. Unfortunately, akis
mate does not make sense if the right-hand side is equal tawOwB can show that

if all the ratiosw;;/wy, take values close to a common nonzero complex nunakjer
independent of f, &k =1..,n), then any closed geodesic is not short. In the most
typical case when the common complex numbers are equal tarlassertion is stated
as follows:

n

Z‘Pk

k=m+1

L >

Theorem 1.2. Let X: M = C \ {91, - s qu} — R3 be ann -end catenoid of
genus0 satisfying(1.2) (z > 4), and wj; the relative weight. Assume that there exist a
nonzero complex numbes, a positive numbee small enoughand a positive number
C3 satisfying

(1.5) ‘%—1]9 Gok=1....n; j#K)
w
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and (1.4). Then there exists a positive numh@r= C’(Cs, n) such that the lengtlh of
the minimal closed geodesic of the surfakéM) satisfies

[ > min{n?C3|w|(1 — C’¢), 4r min|a;|}.

In §6, we give a proof for this assertion under a more generalngsson.
Theorem 1.1 (resp. 1.2) describes the phenomenon obseanvétk iformer (resp.
latter) type of deformation in our first example. We see thig7.

2. Relative weights of end-pairs

In this paper, we use th@/eierstrass representation formutd the following type:
X(z) = Re/ (1- % V=1(1+g%),2¢)n,

where g is a meromorphic function oW defined by the composition of: & —
C = CU {o0}, the stereograhic projection from the north pole, and thesSanapG
extended toM, i.e. g :==c0G: M — C, andn is a melomorphic 1-form o@/ which
is holomorphic onM . We callg, n) the Weierstrass dataf X.

For n-end catenoids of genus 0, Umehara, Yamada and the fitsdraproved the
following result:

Theorem 2.1 ([5, Theorem 2.4]). Let X: M = C\ {q1.....¢.} — R® be an

n-end catenoid of genuB satisfying(1.2). Assumev; # (0, 0, 1), and setp; := o(v;)
(j =1,...,n). Then its Weierstrass data is given by

n n b 2
(2.1) )= Ll / n= —( ! ) dz,

j=t
wherebs, ..., b, are nonzero complex numbers satisfying the following eguat
Pk — PJ —
bi Z bi @
T .
(2.2) (j=1,...,n).
b; Z pJPk + 1
k=Thd j Qk —dqj

Conversely for any given dataps,...,p, € C, andas,...,a, € R\ {0} satisfying
Y ajo7 (p;) = O, if there existgy,....q, € C = C\ {oo} and by, ....b, € C\
{0} satisfying(2.2), and if the degree of given b§2.1) is equal ton — 1, then the
conformal minimal immersion given by the Weierstrass datd) is an n -end catenoid
satisfying(1.2) with v; =0~ (p;) (j =1,...,n).
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Now, let us define the relative weights.

DeFinimion 2.2, LetX :M =C\ {q1,....9.} — R® be ann -end catenoid of
genus O given by the Weierstrass data (2.1) with (2.2). We cal

— Pk —
Wik = bjbkﬂ
J

the relative weightof the end-pairq;, g« ) [,k =1...,n; j #k).

While the weightw §; ) always takes a real value, the relativeghtew ;; may
take an imaginary value. The value afj; is independent of thexmatrization of
the surfaceX # ) up to multiplyingcl. Indeed, forw;, , we have the following:

Proposition 2.3. wj is invariant under the conformal transformations 6fand
the orientation preserving congruent transformationsRdt

To show this proposition, we prepare the transformatioesubr the Weierstrass
data ofn -end catenoids.

Lemma 2.4. Let X be ann -end catenoid of gen@sgiven by(2.1) with (2.2)
For any conformal transformation

az+b

V(@)= cz+d

(ad — bc #0)
on C, the Weierstrass data of = X o)~ is given by

G=va) b= (= S el

Proof. SinceX = Xow 1, we haveg; =y(q;) (j =1 ...,n). On the other hand,

(Zw o ) WY@

W

b; 2 ad —bc .
Z(dz—b)/( cz+a)— ) (—cZ+a)? @

i
(S )
5

‘= (cqj +d)z — (ag; +b)

S~ {ad = be/teq, + d)}b,~>2 -
Z—(gy)
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(Z \/Wb ) dz,

‘o T vla))
from which it follows thatEj =+ /Y (g;)b; (j=1,...,n). [l

Lemma 2.5. Let X be ann -end catenoid of gen@sgiven by(2.1) with (2.2).
For any orthogonal transformatiol® dR® such that

ag+f

FQ=00Plgoo Q=05

(ad — By #0),

the Weierstrass data of = P o X is given by

Bi=F(p). b=t bj<: it b,-) (G=1....n).
VF'(p)) £Vad — By

Proof. Sinceg™ =F o g, we havep; =F fp; ) { =1...,n). On the other hand,
since the Hopf differential) - dg is invariant under the action §O (3),

~_mn-dg _ n-dg _ m-dg _ 1
g dg d(Fog) Fl'ogdg F’ogn
n 2
(vg+5)2( b ) ( (wj+5)b>
= — dz =
ad — By ;z—qj Cad — ﬁy Z Z—qj
_ —(2”3 (1/Wp,))b,>2d
‘o 7—q;
from which it follows thatfaj ==4b;/\/F'(p;) j=1...,n). [l

Proof of Proposition 2.3. In Lemma 2.4 (resp. 2.5), we musioske one of the
square roots ofid — bc (resp.ad — 3v) to represenfaj’s. But this choice has no influ-
ence on not only the Weierstrass data’obut also the value of eadhb;. Therefore,
in the case of conformal transformations ©f we have

Wik = Eﬂ; D {]J = V(g bV () bk———~—7—

G 1#(61 ) 1#(61/)

B — Pk — Dj

= bibevanviad o b)/(cqr +d) — (ajqj‘ +0)/(cq; +d)
B ad — be Pk — Pj

= b,y

(cq; +d)(cqr +d) {(ad — bo) (g — )} /{(cq; +Dear +)} "%
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In the case of orthogonal transformationsR{, we have

=D Pk —Dj _ 1 1 bkF(Pk)—F(Pj)
Ta—-a  JF)  VF O G — 4,
) 1 (api+B)/(ypi +6) — (ap; + B)/(yp) +9)
F'(p;)F'(pi) qk — 4
= pp, P+ 0P +8) {(ad = BN — pIVAOP + D)+ )} _ o
- YjYk = Wijg.
ad — By gk — g

:bjb

By using wj; , we can rewrite the condition (2.2) as follows:

n
E Wik = a;

k=1k#j .
(2.3) (=1,...,n).
Pipktl _
> L
k=Thot Pk — Pj

We note here that the absolute value of each term in the &efttrside of the second
equality of (2.3) is also invariant under the conformal sfanmations ofC and the
congruent transformations &t>.

We also note here that the Hopf differential 8f is represgrae follows:

2
1
d -§ dz?
n-ag w1k<z_ z—qk) z

j<k qj

_Z{(z—q,)z ( Z qkwijJ)z—le}dzz'

k=1k#j

Hence we can regard;;, ’s as coefficientsiofdg in a sense. But we cannot deter-
mine wj,’s only byn -dg whenn > 5.

3. Lengths of the images of the circles

In general, it is difficult to calculate the length of the nmval closed geodesic in
each homology class. However, if its length is short enoubén it is expected that
the minimal closed geodesic is approximated by the imageonfescircle in the do-
main M . Therefore, we calculate the lengths of the images oifi symptotic circles,
to estimate the lengths of the minimal closed geodesics fabove.

Lemma 3.1. LetX: M =C\{q1,....¢q.} — R® be ann -end catenoid of genus
0 given by(2.1) with (2.2). Let~ be the circlez = zo+ ReV 1% (0< 6 < 27) in C. If
q1, - - -» ¢m IS included in the inside of, and if ¢,+1, - - -, ¢, IS included in the outside
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of «, then the lengthl’ of the image of the circley by X is given by the following
formula

P £ o e €50 TS o —(1+p;Pb;b }
-2 R{ — ;(QJ—ZO)@(—ZO)— 2DIPD (9 — 20)(@x — Z0) — '

jEm+1lk=m+1

then the length” of the image of the imaginary axis & by X is given by the fol-
lowing formula

(1+p;p)bibe i Z (L+p;jP)b; bk}

j=1 k=1 q; * 4y q;j *tqy

j=m+1k=m+1

Proof. Recall here that the line elemefit  of the minimal sugfd (M ) is given
by

ds = (1+[g)|n]-
By this and (2.2), we have

2 2

n

:be

=il

n

s pib;

=il

ds

(3.2) e

for any n-end catenoid of genus 0.
For any circley : z = zo+ Re¥V~1? (0 < # < 2n), it holds that
b; ?
Z J ‘ ’v—lRe\/jledO’

n b 2
/Z |dz| :/ /=10
—4q; o 154 Z0t+ Re —q;

2w n n A
, by
Rd0
/ ZZo*‘Re\/_w—CI ZEO+R67\/7_19_qk

2

n

/271' n n ( 1 ) L )
j=1 k=1 eV=10 —(q; —z0)/R eV1% — R/(q, — Z0)

X _lijzkli V=19 40
(g; — z0)(@x — Z0) —

_ / n n ( 1 B 1 )
<155 45 \C— (9j —20)/R ¢ = R/(q; —Z0)
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y —b;DR L«
(qj — 20)(qx —Z0) — R? /-1

If we set(; :=(¢; — zo0)/R, then we have
n b 2 n n 1 1 b E R-1
. —bib;
/Z e = L (e ) e«
v —4; 1¢1=1 51 =1 =G ¢—¢, GG —1

Z
bka‘l - ~bjby R~ )
N 1(24 CY Iy 2y .

j=1
k=1 le Ck j=1 CJCk

Now, sinceqsi, ..., g, is included in the inside ofy and g,;+1, ..., g, IS included in
the outside ofy, it holds that|(;| <1 (j =1 ...,m) and|(| > 1 (k =m +1 ..., n).
Hence, by the residue theorem, we get

2 27T\/_1< m n b bk n n b bk )
dz| =
L “ ) Dyl D Dy s
o m m bjbk - n n _bJ‘Bk )
(chﬁk—l 2 ;1@@—1 ‘

j=1 k=1 k=m+1 j=

n

ZL

=il

Note here that the imaginary axis —=v—1r (—oo <t < +00) is the limit of
the family of circlesz =R +ReV~1¢ (0 < 0 < 2r). For this family, we have

R(CC, —1) = 9i9: — (4; *q1)R

— —(g;+q) as R — +oc.

R
Therefore, if Rgg; >0 (j =1 ...,m) and if Regy <0 (k =m +1,...,n), then we
get
n 2 m m R n n -
/ Z bj |dz|:27'r( bjbk_ - Z Z bjbk_ )
Rez=0l";=7 £ 4 e A et et L U

We can show the similar equalities for the line integralshe second term of the
right-hand side of (3.1), and we get our assertion. O

Whenn =4, we may choose

1
Ql:q’ QZ:_qv Q3:_’ Q4:__

q q
for someq € C\ {0, =1, +1/—1} without loss of generality. For the lengthand!”,
we can show the following formula by Lemma 3.1 and direct cotafion.
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Corollary 3.2. Under the assumption abové |¢| < 1, then the length of the
image of the unit circle centered at the origihis given by

27
r= 1—7|q|4{|b1 + ba|? + | p1ba + pabal® + |q|*(|br — b2|* + | pab1 — pabal?)

+|q|?(|bs — ba|? + | psbs — pabal®) + |q|*(|bs + bal® + | psbs + paba|?)}.

If Req > 0, then the length of the image of the imaginary axis is given by

"y 2

= mﬂbl +q°b3|* + | p1b1+ q° pabs|® + bz + ¢°ba|* + | paba + g pabal®

+|q|2(|by + b3|? + | prby + paba|? + |by + bal? + | poby + pabal?)}.

Now, if the endsqs, ..., g, (resp. the endg,,+1, ..., q,) approach to a point 1
(resp.—1) in M, then we can take the image of the imaginary axis as a tbap
separates these two groups of the ends, and if the ends acentmied to the two
points &1, then the lengtl” is estimated as follows:

Lemma 3.3. Under the assumption dfemma 3.1,assume

lgj =1 <e (j=1...,m)
lgx +1 <e (k=m+1...,n)

for some0 < ¢ < 1. Then it holds that
m 2 n 2 n 2
l//_ﬂ'( b Z bk Z pkbk )’
j=1 k=m+1 Jj=1 k=m+1
TE mn 2 n 2 m 2 n 2
< () + () = (Stol) + (3 1mnn) )
j=1 k=m+1 j=1

k=m+1

Proof. Under the assumption, we have

2

m

PB) DECUIE

m

512 b

1 1 ML j=1 J=1 k=1 9; * dx j=1 el
1 N, - 2—q — G,
=[S on (- 3)| = [T en S
Pt 9 +q 2 Pl 2(q; +q%)
11—gq;|+|1 -7
< b;Dy|
*ZZ' R T T

j=1 k=1

m m

m 2
> D byl 2(2 2) = 2(1_6)(;“’10 :

j=1 k=1

IN
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We can show the similar estimates for the other terms, and eteogr assertion.
O

4. Other lemmas
We also use the following two lemmas:

Lemma 4.1. For anyv andv’ € S, if Z(v, v') > Cs, then|o(v) — o(v')| > 2C4,
where C, := tan(Cs/4).

Proof. Choose an orthogonal transformatifn such th@(v)) = —o(P(v"))
and [o(P(v))| = |o(P(V"))| < 1. Setp :=c(P(v)). Now, it holds that

al+1
(—«a

for somea € C and|j| = 1. In the former case, we have

coP oo l(()=13 oo B¢ (CeC)

oo = | gt a(=p)t+1 aptl a(-p)+1
o(v) o(v)I—’ﬁij_a e e
- —2(|O[|2+1)ﬁ 2(|a|2+1)|ﬁ| > 2|Z’|
0?2 o+ pE = A

and in the latter case, we have

|o(v) = o(v)] = 18P — B(=P)| = 2p|.

Setf := Z(v,v'). Then|p| =tan@/4) and we get our assertion. U

Lemma 4.2. For any vy, ...,v, € S there exists an orthogonal transformation
P such thatjo(P(v))| < vn—1( =1...,n).

Proof. For anyv; € S and 0< 6p < 7, the area of the closed domafw € S? |
Z(v,v;) < 6o} is 2r(1—coshp). Hence ifdy = Cos (1—2/n), then 2r(1—cosbo) xn =
47 and

J{v € S| £(v.v)) < o} # S
j=1
Therefore there existsy such thatZ(v;, vo) > 6o for any j = 1...,n. Hence, we
have that if we choose an orthogonal transformation  such Mfay) is the north
pole, then
—0o _ sinfyp _ (2/n)y/n-1 Y

T .
lo(P(v;))| < tan 2 "1 cosly 2/n n—1 G=1....,n). 0
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5. Upper estimate

Now, let us prove our first main theorem.

Proof of Theorem 1.1. Set; :&(v;) (j =1,...,n). By the assumption (1.4)
and Lemma 4.1, we havig; —px| > 2Ca (j,k=1,...,n; j #Zk). SetCs := max|p;|.
By Lemma 4.2, we may assun@ < /n — 1 without loss of generality. Assume <
C1C4/4\/§C5.

Arrangement of g;’s. Now, we may assumg; = 1 andg,+1 = —1. We may
also assume
5.1) (07 Hg1). 07Hgy)) < Z£(07Hg1), o7 Hg2)) (j=3....m)
é(oil(qm+l)7 Uﬁl(qk)) S 4(071(q1n+1)7 Jil(qm+2)> (k =m+t 37 cee n)

and

|91 — g2| = |gm+1 — gm+2| =i 1.
By the assumption (1.3), we have

2

o’ ‘ wimstWom+2| _ |P1 = purillp2 — pv2llgr — Gollgmes — gmea| _ €2”
C22 T | W2Whn+1m +2 |Pl - P2||Pm+1 - Pm+2||Q1 - Qm+1||q2 - qm+2| o Clz’
and hence

i 2Cs-2Cs5 -t -t _C52 t2
C? ~ 2C4-2C4-2-(2—2t) 4C21—t

and

C42 12 _ 2C4-2C4-t -t i
ACs21+t 2C5-2C5-2-(2+2) ~ 12

Setez := (2C4/C2Cs)er and ¢4 := (2Cs5/C1Ca)e2. Then we havers?(1 — 1) < 1?2 <
€4?(1 +1¢), from which it follows that

€3 < 2 €4+\/€42+4

e3 <t <

1+€3_63+\/632+4 2

Since we assume; < C1C4/4V/3Cs, we havee, < 1/2¢/3 andr < (2v/3/3)es <
1/3. Now, by the assumption (5.1p, ..., ¢m (resp.gm+2,---,qs) are included in the
closed ball centered on the real axis whose boundary ciedses ¢ and /(1 — 1)
(resp.—(1—1¢) and —1/(1 — 1)). Hence it holds that

€4 < (1 +eg)eq.

>0 (=1...,m)
Rqu{<o G=m+1...,n)
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and

t .
lq1 — g1, |Qm+1_Qk|§—1_t G=1....m; k=m+1 ..., n).

Therefore we get

2

1—t (,k=1....mor jk=m+1... n)
lg; — ail < ;t
1= (G=1....m; k=m+1 ... n).

Estimates for bj’s. By the estimate above, we have

_ qk —q; 2t/(1-1)
biby| = |w; <C
10| ’ ;| = 20
=G U k=1 morjk=m+Ll. . on: j#K)
C41—[‘ Js y ey Js ey y J .

Let jo and ko be indices that satisfy
|bjol =max{|b;| | j=1,...,m}, |bre| = max{|bi| | k=m+1, ..., n}.

Then it holds that

C, t , .
1b;], |bk|§\/c_jl—_t::t1 (J=21,....m; j#jo;, k=m+1....n; k #ko).

On the other hand, we also have

dko — 4jo
Pko — Pjo

_21-n_1 o
=€ 2C, _C41—l‘

|bjobk0| = ‘wjoko
In the case wheibj,| > |by,|, Since

C1 < |wik| =

1 1 e Cy, t 2Cs
T |bjl Cal—1tV Cal—1t |qi — il

(k=m+1,...,n; k #ko),

we have

_ 1 2Cs Cs t
1=\ gme1 — Gme2] < |gme1 — Qio| + |Gk — Gmr2| < zmc—l C_fm €2.

Therefore we get

bl < X5 [C2 @

2 2 =ip
Ci\ c® Ja=0%
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Also in the case wheib;,| < |by,|, we get the same estimate fidr,|.

Estimate for the length I”. Now, by using Lemma 3.3, we get

l” < m+ M
=\
m 2 n 2 m 2 n 2
X {(Z |b|> (Z |bk|) + (Z|p1b1|) +(Z |Pkbk|> }
k=m+1 j=1 k=m+1
< (1ot ) A+ - D+l + @ CA —m— i+ )]
1—1¢
= o W+ C{(m — 1P+ (0 = m = 1}0® + 201 — 2z + 2%,
where
Cy t C 3 C 3
2 2 2 5
B < 1+ < —=4q1+-(1+ 1+
& Csl—1t — C4< zt)t C4{ 2( 64)64}( €q)es,
4CCs e 2C; e
Ity = — e - A 5
C1Cs” (1 —1) Cs (L—1)
26 (1,15 2C; (15
< + ¢ < == +2201+
= G (1 4 ) 4 Cy {1 1 64)64}
1,2 = 16C,Cs* €2 4C, €2 l+eg

<« x2_ 4 - 793
C2C3 =13 = Ca (1—-1)° e3

4C 57 1+ 2 4C 57
< 22 (1,30 Qrada’ A0 [ 5T b b (L e Pea
C4 8 €3 C4 8 €3

Combining these estimates, we get

1 <1" < Ce
for a positive constanC € (4, Ca, C3, €2/€1, n). O
In the statement of Theorem 1.1, we assume (1.4) singe \emiabtomati-

cally whenv; =v, (i.e.p; =pi ). But this assumption excludes Karchexample and
some others. To treat these case at the same time, we haveoordplace|w | by

Theorem 5.1. Let X: M = C\ {q1.....q.} — R® be ann -end catenoid of
genusO satisfying(1.2) (z > 4), and m;; as above. Assume that there exist positive

ﬁjl’k"’l

s Wk
Pk — Pj

mjj = max{
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numbersCi, C,, and €1, 2 small enough satisfying

{Clgm,kgcz (,k=1,....mor jjk=m+1,....n; j#k)

e <mj < e (G=1....m; k=m+1...,n)

(2 < m < n—2). Then there exists a positive numb€r= C(C1, Co, €2/¢1, 1) such
that the length/ of the minimal closed geodesic that separéte surfaceX(M) to
the side of the ends, ..., ¢, and the side of the endg,.1, ..., ¢, Satisfies

| < Ce.
Outline of proof. Setp; :=ma¥pr — p;l.|P;px+1|}. Then

Pk
dk — 4

mjg = bjbk

By the definition, we have
2V2-1) = 2tang < pix <C2+1 (K n).

Replacing the estimateC3 < |p; — p«| < 2Cs in the proof of Theorem 1.1 by the
estimate above, we can show the asseretion of Theorem 5.1. Ol

6. Lower estimate

In this section, we give a proof for a more general version lbédrem 1.2 stated
as follows:

Theorem 6.1. Let X: M = C \ {91, s qu} — R3 be ann -end catenoid of
genusO satisfying(1.2) (2 > 4), and wj; the relative weight. Assume that there ex-
ist complex numbersu,{ (j,k =1,...,n), a positive number small enoughand a
positive numbelC3 satisfying

wjwf = w] Gk, 1=1,...,n)

(6.1) wi
wklw,{

<e (G, kI=1....n;1%jk)

and (1.4). Moreover assume that3; := (1/n) ZZ:1w§ # 0 and |w{| >1(@G =
1,...,n). Setw = max|w,{| and w = wiw3. Then there exists a positive number
C' = C'(Cs,n, W, W/|31|) such that the lengtdh of the minimal closed geodesic of
the surfaceX(M) satisfies

[ > min{n2C3|ﬁl|2|w|(1 — Clé), 47 min |aj|}.
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Proof. Setp; =o(v;) (j =1,...,n). By the assumption (1.4) and Lemma 4.1,
we have|p; — pi| > 2C4 (j,k=1,...,n; j # k) as before. Se€Cs := max|p;|, and
assumeCs < v/n — 1 as before. In particular in the case when @im. .., v,) < 2,
we may assum&s = 1. SetCs := 2C5/C4. SinceCs > C4 holds in general, we have
Ce > 2. Assumee < 1/(1 +Cg + 3C¢?).

Note here thatw! =mw/ (j,k=1,...,n) andw’ =1 ¢ =1...,n) hold auto-
matically by the definition.

Arrangement of g;’s. Set

ikt = -1 (#]jk).
Wi W),
Then |ejr ] < e < 1. Set
= WikWim ltew, €kl.j — €klm : _
ki = -1= -1= kL3 m 2k 0).
o Wi Wim 1+ €kl m 1+ €kl.m (j # m # )
Then it holds that
|€kl.j| + |€kl.m| 2¢ .
jklm S >~ k,l ; k,l .
|€ jkim| — . (j # m#k, 1)

By the assumption (1.4)p; 's are different from each othernd¢éewe may as-
sumeg; =p; ( =1 2 3). Now, for any =4..,n,

1+e3 = D1y
w13W2;
_ (pr—p2)(p3—pj)a1—g3)lg2—q;) _ (p3—pj)(p2—4q))
(p1— p3)(p2—pi)ar — a2)(g3 —q;)  (p2—p;)(p3—q;)’
and hence

D —q; = (P2 — pj)p3— p))
P (ps— p2) — (p2 — pj)erzs

€123;.
Therefore we get

(Ip2l + 1P ) ps| + |ps]) |

|ps — p2| — (|p2| + [p;])le123)]
(2Cs)? 2¢ C4C’¢

T 2C4—2C5{2¢/(1—€)}1—€¢ — 1—(1+Ce)e

lpj — 4/l €123

and

lgj —ar| > —lq; —Pj|+|PJ‘2— Pkl — | Pk — ak|
2C4C¢ . .
>2Ch — ——MM— Jk=1,...,n; k).
= 20y 1—(1+C6)e€ G n; j#k)
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Estimates for bj’'s. Set

b;bx 9k — 4 (pj —a;) — (P — i) .
Gp= s -1= k # J).
! W jk Pk — Dj Dk — Pj
Then it holds that
pi—ail+|pe—al _ 2 CaCé’e Ce’e _
= < se = = k # ).
el = e—p S 20 1-(+Cee 1-@rcge o ®F))

Since we assume < 1/(1 + Cs + 3C¢?), we haveé < ¢/3 < 1. The above estimates
for the arrangement of; ’s are rewritten as follows:

(6.2) lpj—aqil <Cs&  (G=1....n),
(6.3) |g9j — ax| = 2(Ca — C4f) (. k=1....,n,; j#k).
Since
by _ bib _ wp(l+&) (&) +ejn) .. .
bkw,{ bkblw,{ wi (1 +§k1)w,{ 1+&u k75177 h).

we have

(1-81—¢) b; (1+&)(1+e) :
(6.4) 1+e < bkljl),{ < 1 ¢ (k #7)
and

b L&A He ,

(65) o ) <200z

On the other hand, since

bi?  _ bibkbib  _ wi(L+E)wi(L+E) _ QA+E)A+E) wa

wjkw,{ bkb,wjkw,{ wk,(l +£k,)wjkw,{ 1+&u wklw,{
_ @ H+E)A+ENA +ejia) . )
T+ey k#j5 1#]jk),
it holds that
(1-¢*1-¢ ‘ b2 | _ (L+9XL+e) .
R e e v k # j)
and
2 2
’ b, ,_1’<(3+5)5+(1+5)e w5

< 1-¢

and
wjkwk
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Moreover, since

bwt)? 2 ) 2 . 2
(ij) = bj 5 wji‘ j: bJ i wjlj: b (1+6J21) (j:2,...,l’l),
w Wjiw; W2W5Wy W 1wy W2iWws wjlwl
we have
(L-%A—e? _|Gjw)?| _ (1+9X1+e)?

. < < =1,.
(6.6) Y <% G=1....n)
and

b wt)? 2
6.7) ‘—( i) ’ Broert +§) CrIe G=1...n.
w

By (6.5) and (6.7), we see that and all thebjwjl-’s are close to a common square
root \/w of w = wyw} if we choose are small enough. Set

5 _ bjU)j? 1 .

Jj \/w - (.] _:L vn)
Then we have
6.8) |5j|g%g@€ G=1....n)

Estimate for the lengthI. Now, recall (3.1). Note here that

_ ( )b;
Zfi - Zb ;qg_”’

Fl

Since it holds that

[b]?
lal?+1

2 + |at — b* > (a,b,t €C),

we have

|dz| |Z|2+l

(qj pj)b

Denote the line element of the standard spherelfyy. Then we get

ds __ds
dsg  {2/(1+|z[3)}dz]



526 S. Kato AND K. NOMURA

S LI PN
T2 |d7l T2

n 2

>

=R

}
Since¢ < 1/3, we haveCsq — Ca€ > 2C4/3 > 0. Hence, by (6.3), the closed

domainsB; ={z € C | [z—¢q;| < R} (j = 1,...,n) are disjoint for any positive
numberR < C4 — C4€. Now, for anyz € B;, since

’

Z—4dgj

- ~ (q; — p))b;
b: + 22 FJA )

lz—ai| > —lz—q;| —la; — pj| +|pj — Pkl — |Px — k]

> 2(Cs—Cs§) — R = 2C4(1 - &) — R k 7)),
it holds that
Z—qj R _ R 1 .
2—qr| = 2C4(1—-&§) — R 2C4— R1—{2C4/(2C4 — R)}¢ (k7).
Hence we have, by (6.4) and (6.6),
b bl < " bz —q; )
> 1- A=A
;z—qk ~ 24l k:%:?j bjllz—a
 VIwlw -9 -9
= VI+ER
o L+O(L+g R 1
" {1_/(—; -|wj| 1-&  2C4—R1—{2C4/(2C4 — R)}ﬁ}
=Lk#j
o Vwl@-9a-9
= VI+ER
1+ +¢) R 1
. {1‘(”‘1)W 1—¢ 2C4—R1—{2C4/(ZC4—R)}£}'
Set R Z:C4/3nW. ThenR < 2C4/3 < Cq — Cy€,
R _ 1 2C4 _ enWw
2C,— R 61w —1 2C,— R W —1

and
n

>

= ¢k

o VIl @ -9a -9 3w
- V1+E Cy

(L+OA+e) (n = YW 1
g {1_ 1-¢ 6aiW-—11- {6nW/(6"W—1)}5}'

Now, since

6nw -1 6(n—1)W +6W —1
6(n — 1)W 6(n — )W

> 1,
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enw 1 1 12
enWw—1 1—1/6nW — 1-1/12 11

C62€ 2
= — > > 4
ST @rcge = Coe= e
it holds that

enw — 1 6nw

—  —(1-——— )1 -9 -1+ +

6(n—1)W< 6nW—1£)( §) =@+l

12 1
>4-1 (1—1—15) (1-9-@+9 (1+Z£)

— 1 2
= 73(1817 — 423 +132)> 0 (0<£<§),

=

which implies that

=

1 @A+ +e)(n—1)W 1 4
- 6 3

1-¢ W 11— {enW/(&nW -1 ~
Hence we get

n

o f

P

o Jwl(— O2(1—¢)? (3IW\*1 _ |w/(l-&2L—e)? [nW)\?
1+¢ < Cs ) 9 1+¢ <c_4) ‘

On the other hand, by (6.8), we have

- 2| = ([l - [t
j=1 j=1
> m<n|ﬂl|—wz|5,|) > Vi {1 W E200)
=1

For anyz € C\ -, B;, by (6.2) and (6.6), it holds that

(‘IJ Pj)b

B Zm, plltl 5~ Ceelvwuilii+s|

lz — gl R

j=4
- (n —3)04\/|7 W(1+£)(1+e)
Ry/1

Hence we have

(QJ pj)b
b+
33 00

n

> 1%

(qj pj)b
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|w| n|B] [1_ v {25+(1+€)6 (n_B)C4(1+€)(1+6)§H
|64 1-¢ nRy1—¢§
2f+(l+§)e (n—23)-3W([A+&(1+e)
lwn|B| {1—m{ — e H

SetC7 := (1+Cg +3Cs%)/3. Thene < 1/3C7, £ < Cre < 1/3, and

26+ (1L +8)e N (n—3)-3W (A +&)(1+¢)
1-— 5 1-¢ ¢

—5 {26 +e+&e+3(n — W (A +&)(L +e)é}

1 1 1 1
——— (2C7etet =€+ - 1+=- )1+
< 1 1/3{ Cre+e 36 3n 3)W< 3) ( 3C7> C7e}

:{3C7+2+6@—3)W<C7+%>}6-

Set

Cg = |2ﬂ|{3C7+2+6(n 3)W(C7+%)}

IB | {3 +Cs+3Ce” +2(n — 3)W (2 +Cs + 3Ce?) } ,

and assume < 1/Cg additionally. Then we get

& (qj —pj)bj 2 1 2 -
2 | VIl (1= 5Cee ) ¢ = B~ Coe)
TR

for any z € C\ Uj=1 B
Now, since

(1-°A -~ (1 - €Y+ 2%+ (1+&e}(1+€)
=E(1- &)+ 82 +2:{26(L - O+ HK + P} +E(1-6)° >0,

it holds that
Q-9 | ,2%+A+c , 2W2A+(A+e
1+¢ 1-¢ 18] 1-¢
from which it follows that
i bk 2W2| |(1—5)2(1—6)2
=T 1+¢
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2W (26+(1+8e (n—3)-3W(L+E)(L +e)
Z"ZWZ'“"[l_W{ i-¢ 1-¢ 5”

> n2W2|w|(1 — Cge)

for any z € B;, where we use the assumpti@h = tan(Cs/4) < 1.
Now, we get

ds n?
— > = 1-¢C
doo 2 Al Coo

in M=C\{q1.....q.}.
By (6.2) and Lemma 4.1, we have

Lo M pj). 07 Hg))) < 4Tan* %“5 <4. %“5 =2C,¢  (j=1,...,n).

Hence

(07 May), 0 Haw) = Lo Hp)) o M) — Lo H(py). o Ha)))
—Z(0 M p). o Haw)
> C3—2C46 —2C4€ = C3—4AC46 > C3—4AC4Cre (k # j).

Therefore the length of any loop i M ) surrounding at leasi emds satisfies

2
n
[ > 7|ﬁ1|2|w|(1 — Cge) x 2(C3 — 4C4C7¢) > n?C3|B1?|w|(L1 — Cee),

where we setCq := Cg +4C4C7/Cs.
On the other hand, the length of any loopXnM ( ) surrounding ame end sat-
isfies
| > 4n min|aj|.

Combining these estimates, we get our assertion. ]

Proof of Theorem 1.2. Theorem 1.2 is the special case of Eneds.1 when
all the w{’'s are equal to 1. In particula®# = 1 amd = 1, and hence we get our
assertion. U

7. Examples

As we mentioned g1, examples ofr -end catenoids with short minimal closed
geodesics, which satisfy the assumption (1.3) in Theorel dre found in [3], [5],
[7], [10] etc. On the other hand, examples which satisfy teguaption (6.1) in Theo-
rem 6.1 (or (1.5) in Theorem 1.2) are found in [4], [11]. Here mresent an example
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of a family of 4-end catenoids which includes [3, Example.&,3[5, Example 3.7]
and more surfaces satisfying (1.3).
By Corollary 3.2 and direct computation, we get the follogvin

ExampLE 7.1. For the data

p1=p, p2=—p, p3=p *, pa=—p
ay=ar=az=as =1,
wherep e R, 0< p < +oo, (] =1,

the equation (2.2) possesses a solution

G1=q, 2=—-q, g3=q *, qa=—q %,

b1 =by =qt, b3 =bs=("Y?pt,

q(@®>+¢Q) _p?-1

_ g*—1
et gy T 4y T \/q{p(q“ — 1)+ 2 Y2(p?q? — ()}

Example 2.3.8 (Figure 2.3.8) in [3] is in the case when 1, and Example 3.7 (Fig-
ure 3.2(a), (b)) in [5] is in the case when=+/—1.
In our general case, the relative weight of each end-paiivisngby

_ o _rg*-1
W12 = W34 = ————,
wo
won = oy = (0~ Qg+ 1)
13 24 wo 5
won = e = S22+ Q@7 — 1)
14 23 w0 ,

wherewo = p(q* — 1) + 20~2q(p%q* - ¢).
When p — 1 andg — 0, the relative weights behave as follows:

w12 = wzs — 1 # 0,
wiz=was ~ (Y3 —1)g — 0,
wia = wag ~ (Y3 +1)g — O,

In this case, the lengtl’ of the image of the unit circle centered at the origin O,
which separates the ends, g» and the endgs, ¢4, is given by

_ 167|q|*(1 + p?|q )

l/
1—|ql*

|t|2 ~ 167|q| — 0.
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When p — 1 andg — +/—(, the relative weights behave as follows:

wia= we — e (0 (74
— 12 /=
wlgzwzwcz(fll_—)‘éz_l (0 ¢ #1),
2. /—
wia= e — - ooz

When p — 0 andg — 1, the relative weights behave as follows:

w1z = wag ~ —2("Y2p(g —1) — 0,
wiz = w2 — 1 # 0,
wia = w3 ~ —(g —1) — 0.

In this case, the length’ of the image of the imaginary axis, which separates the ends
q1, g3 and the endsgy,, qa, is given by

_ 8lg*(lpg + ¢+ |p + (37

l @+ +]aP)

|t]?> ~ 8r|qg — 1| — 0.

To our regret, our estimates are not sharp in general. Onttiexr band, when we
observe other examples of deformationsnof -end catenoigspften find that some
of the relative weights tend to 0 axo when a surfaceX goes near to the boundary
of the moduli space of: -end catenoids. Therefore it is exggkbthat there are better
estimates under weaker assumptions. If we get such an ésfith@n we can under-
stand the relationship between the relative weights anccttiapse ofn -end catenoids
more deeply.

It is also an open problem to introduce the relative weightshe case of higher
genus.
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