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1. Introduction

In the mathematical literature there are several functionals which let us measure
how the vector fields defined over any Riemannian manifold areordered. We can
ask ourselves which are theoptimal vector fields. In fact, we try to measure how far
from being parallel our vector field is. We can also extend this question to distribu-
tions.

Gluck, Ziller [5] and Johnson [6], among others, studied thevolumeof unit vec-
tor fields. They define the volume of a unit vector field to be thevolume of the
submanifold in the unit tangent bundle defined by ( ). For this, we regard the vec-
tor field as a map : → 1 and in 1 we consider the Sasaki metric. We
know [5] that in the ambient manifoldS3 the Hopf vector fields, and no others, mini-
mize this functional. For higher dimensional spheres, we know [6] that the Hopf vector
fields are unstable critical points; that is, they are not even local minima.

Wiegmink [8] defined thetotal bendingof a unit vector field . This functional is
related to theenergyof the map : → 1 , as we shall see in Section 3. Brito [1]
proved that the Hopf vector fields inS3 are the only minima of the total bending. Fur-
thermore, he proved a more general result giving an absoluteminimum in any dimen-
sion of the total bending corrected by the second fundamental form of the orthogonal
distribution to the field . The coefficient of this correctionvanishes in dimension 3
and then the corrected total bending agrees with the total bending.

Similarly to the situation for vector fields, the energy of a -distribution V in
a compact oriented Riemannian manifold is the energy of the section of the
Grassmann manifold of -planes in induced byV .

In this paper, we add to the energy the norms of the mean curvatures ofV and its
orthogonal distribution (with different weights) introducing in this way thecorrected
energy.

In Theorem 1, we find a lower bound for the corrected energy of afoliation, and
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98 P.M. CHACÓN AND A.M. NAVEIRA

in Theorem 3 we prove the Hopf fibrations are minima of this corrected energy.

2. Notations

Let ( ) be a compact oriented Riemannian manifold of dimension = + ,
over which an almost product structure (H V ) is defined. We shall callH the hor-
izontal distribution andV the vertical distribution. We only consider bases of the tan-
gent space adapted to the almost product structure, that is,if ∈ , for an orthonor-
mal local frame{ 1 . . . } ⊂ , we demand

{ 1 . . . } ⊂ H and { +1 . . . + } ⊂ V

We shall use the index convention 1≤ ≤ , 1 ≤ ≤ and + 1≤
α β γ ≤ = + .

We denote the dual basis and the connection forms respectively by

(1) {θ1 . . . θ } ; ω ( ) = (∇ )

where∇ is the Levi-Civita connection. The curvature 2-forms will be denoted by

(2) ( ) =
(

( )
)

where is the curvature tensor. The sectional curvature of the plane spanned by the
vectors{ } will be expressed by =− ( ).

The second fundamental form of the distributionH in the direction α is deter-
mined by the matrix (α) where α = − (∇ α ). Analogously the second fun-
damental form ofV in the direction is αβ = − (∇ α β).

The mean curvature vector of the horizontal and vertical distributions are respec-
tively

(3) ~
H =

∑

α= +1

( 1 ∑

=1

α
)

α
~
V =

∑

=1

(1 ∑

α= +1
αα

)

For the sake of simplicity in notation, we shall write
∑

,
∑

α,
∑

instead of∑
=1,
∑

α= +1,
∑

=1, respectively, through the following.

3. Corrected energy for higher dimensions

For maps between Riemannian manifolds : ( )→ ( ), the energy is de-
fined to be (see for example [3])

(4) E( ) =
1
2

∫ ∑ (
( ) ( )

)
ν
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whereν is the canonical volume form in . Now, we get an expression forthe energy
of a -distribution.

We can regard a distribution like a section ofπ : ( )→ where

( ) =
⋃

∈

( )

and ( ) is the Grassmann manifold of oriented -planes in the -dimensional
space . We can define a metric in ( ) called, as in the one dimensional
case, the Sasaki metric. In fact, the splitting of the space () by the connection
∇ and the so-called connection mapK : ( ) → ( ) are the natural gen-
eralizations of the same objects in1 . For a clear definition in 1 and a brief
comment for the higher dimensional case see [7].

We write the vertical distributionV as the mapξ : → ( ) where ξ( ) is
the -vector in determined byV ; that is,

ξ( ) = +1( ) ∧ · · · ∧ ( )

Now, we calculate‖ ξ‖ from the definition of ,

(
ξ( ) ξ( )

)
=
(
π∗( ξ( )) π∗( ξ( ))

)
+
(
K( ξ( )) K( ξ( ))

)

Note that we denote by the same letter the metric in1 and in ( ). Since
ξ is a section we haveπ∗ ◦ ξ = (π ◦ ξ) = (id ) = id 1 . We also know [7] that
K( ξ( )) = ∇ ξ, then

∑ (
ξ( ) ξ( )

)
=
∑

( ) + (∇ ξ ∇ ξ)

and the energy (4) of the distributionV is

E(V) =
1
2

∫ ∑
‖∇ ξ‖2ν +

2
vol( )

Wiegmink in [8] defined thetotal bendingfor a unit vector field as

B( ) =
1

( − 1) vol(S )

∫ ∑
‖∇ ‖2ν for ≥ 2

The relation between total bending and energy of vector fields is

E( ) =
( − 1) vol(S )

2
B( ) +

2
vol( )

With this, the study of the possible minima of the total bending B is the same as the
study of the possible minima of the energyE .
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DEFINITION 1. For a -distributionV we define the corrected energy to be

D(V) = 2E(V)− vol( ) +
∫ (

( − 2)‖~H‖2 + 2‖~ V‖2
)
ν

or more explicitly,

(5) D(V) =
∫ (

∑
‖∇ ξ‖2 + ( − 2)‖~H‖2 + 2‖~ V‖2

)
ν

whereξ is the -vector defined byV as before.

REMARK. This corrected energy is not an extension of the corrected total bending
of [1]. However, for vector fields the two functionals have the same lower bound and
the same minimality conditions.

We can calculate∇ξ and obtain its norm in terms of the second fundamental form
of H andV . Recall that the connection acts as a derivation in the multivector algebra.
We have,

(6)
∑
‖∇ ξ‖2 =

∑

α

(
α
)2

+
∑

α β

(
αβ

)2

It is clear that this expression is independent of the adapted local basis. Note that the
trivial minima of the energy are the totally geodesic distributions with horizontal also
totally geodesic.

Theorem 1. If V is integrable, then

D(V) ≥
∫ ∑

α

α ν

where α is the sectional curvature of the plane spanned by∈ H and α ∈ V .

Proof. From the definition of mean curvature vector (3) and from (6), we have

∑
‖∇ ξ‖2 + ( − 2)‖~H‖2

=
∑

α



∑(

α
)2

+
∑

β

(
αβ

)2
+
− 2

(∑
α

)2



=
∑

α

[∑ 2 − 2 ( α
)2

+
∑

6=

(
α
)2

+
2( − 2)∑

<

α α +
∑

β

(
αβ

)2
]

(7)
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But the sums
∑(

α
)2

and
∑(

α
)2

may be written, for eachα, in the following
way

( − 1)
∑(

α
)2

=
∑

<

(
α − α

)2
+ 2 α α

∑

6=

(
α
)2

=
∑

<

(
α + α

)2 − 2 α α
(8)

Then from (7) and (8)

∑
‖∇ ξ‖2 + ( − 2)‖~H‖2 =

2 ∑

< α

( α − α )2

+
∑

< α

( α + α )2 + 2
∑

< α

(
α α − α α

)
+
∑

α β

( αβ)2

≥2
∑

< α

(
α α − α α

)
+
∑

α β

( αβ)2 = 2
∑

α

σα
2 +

∑

α β

( αβ)2

(9)

with σα
2 the second elementary symmetric function of the second fundamental form of

H in the direction α.
Under the integrability assumption ofV , i.e. αβ = βα, we can relate the mean

curvature ofV with the second symmetric functionσ2 in the following way:

(∑

α

αα

)2
=
∑

α β

αα ββ

=
∑

α

( αα)2 +
∑

α6= β

(
αα ββ − αβ βα + αβ βα

)

=
∑

α

( αα)2 + 2
∑

α<β

(
αα ββ − αβ βα

)
+
∑

α6= β

( αβ)2

= 2σ2 +
∑

α β

( αβ)2

(10)

Now, considering that the mean curvature (3) is normalized ,we can write, using
equation (10),

(11) 2‖~ V‖2 =
∑(∑

α

αα

)2

=
∑

2σ2 +
∑

α β

( αβ)2

With (9) and (11) we get
∑
‖∇ ξ‖2 + ( − 2)‖~H‖2 + 2‖~ V‖2

≥2
∑

α

σα
2 + 2

∑
σ2 + 2

∑

α β

( αβ)2
(12)
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To evaluate the integral ofσα
2 and σ2, we need a lemma proved in [4]. There,

with the definitions (1) and (2), we can find the definition of the following differential
forms:

ϕ =
∑

σ∈S

∑

τ∈S

ǫ(σ)ǫ(τ )ωσ(1)τ ( +1) ∧ θσ(2) ∧ · · · ∧ θσ( ) ∧ θτ ( +2) ∧ · · · ∧ θτ ( )

φ1 =
∑

σ∈S

∑

τ∈S

ǫ(σ)ǫ(τ )

(∑

α

ωσ(1)α ∧ ωασ(2)

)
∧ θσ(3) ∧ · · ·

∧ θσ( ) ∧ θτ ( +1) ∧ · · · ∧ θτ ( )

φ2 =
∑

σ∈S

∑

τ∈S

ǫ(σ)ǫ(τ )θσ(1) ∧ · · · ∧ θσ( ) ∧
(∑

ωτ ( +1) ∧ ω τ ( +2)

)
∧ · · ·

∧ θτ ( +3) ∧ · · · ∧ θτ ( )

=
∑

σ∈S

∑

τ∈S

ǫ(σ)ǫ(τ ) σ(1)τ ( +1) ∧ θσ(2) ∧ · · · ∧ θσ( ) ∧ θτ ( +2) ∧ · · · ∧ θτ ( )

where S denotes the group of permutations of{1 . . . }, S the permutations of
{ + 1 . . . + } and ǫ(τ ) denotes the signature of the permutationτ . The forms
ϕ, φ1, φ2 and are invariant under adapted orthonormal frame changes.These forms
satisfy the following lemma.

Lemma 2 ([4]). For ϕ, φ1, φ2 and defined as above,

ϕ = (−1)

[ − 1
φ1 +

− 1
φ2

]
+

For the proof of the lemma, we only use the structure equations of and the
properties of the group of permutations (in [4], the authorswork under the assump-
tion of integrability of both distributions, but it is not necessary for the proof of this
lemma). Evaluating the -formsφ1, φ2 and on the basis{ 1 . . . } we get

φ1( 1 . . . ) = − !( − 2)!
∑

α

2σα
2

φ2( 1 . . . ) = − !( − 2)!
∑

2σ2

( 1 . . . ) = (−1) ( − 1)!( − 1)!
∑

α

α

(13)

Now, applying Stokes’ Theorem to Lemma 2, with the help of (13) we deduce
that

(14)
∫ (∑

α

2σα
2 +

∑
2σ2

)
ν =

∫ ∑

α

α ν
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To obtain the corrected energy (5), we integrate equation (12) and use (14):

(15) D(V) ≥
∫ ∑

α

α + 2
∑

α β

( αβ)2ν ≥
∫ ∑

α

αν

as we claimed.

In the inequalities (9) and (15) of the proof, we have lost several terms. These
terms will give us the conditions for a foliationV to be a minimum ofD. The condi-
tions are

(16)
∑

α β

( αβ)2 = 0 ;
∑

< α

( α − α )2 = 0 ;
∑

< α

( α + α )2 = 0

The first condition means thatV is totally geodesic. The second and third condi-
tions mean that the vertical vectors{ +1 . . . } are conformal vector fields for the
horizontal ones. That is, we have

L α ( ) = λ ( ) for any α and , ∈ H

whereL is the Lie derivative in the direction andλ is a function on . Killing
vector fields are conformal vector fields withλ ≡ 0.

Note that the lower bound in Theorem 1 depends on the distribution for an arbi-
trary manifold. In any case, the lower bound is interesting because it is the integral
of the cross sectional curvature of the almost product structure. This cross sectional
curvature is an invariant of order 2 (called linear invariants) of the Riemannian almost
product structure [2]. In the case =S , the lower bound depends only on and .

Theorem 3. Among the integral distributions of dimension1 (resp. 3) of S2 +1

(resp. S4 +3), Hopf fibrationsS1 → S2 +1 → CP ∀ ≥ 1 (resp. S3 → S4 +3 →
HP ) minimizeD.

Proof. To be more explicit, here we show the case of the (4 + 3)-sphere with
= 3. In the other case, the proof is very similar.

By definition, the fibers ofS3 → S4 +3 are the intersection of the sphereS4 +3⊂
R4 +4∼= H +1 with quaternionic lines inH +1 (a 4-plane inR4 +4). Then, the fibers are
great 3-spheres insideS4 +3 and the distribution tangent to the fibers is integrable and
totally geodesic.

In order to prove the other minimality conditions (16), we use the natural almost
complex structuresI , J and K defined onH +1. For each point ∈ S4 +3 ⊂ H +1,
the vector tangents to the fiber will beI (~ ) J(~ ) and K (~ ). We consider a real basis
{~ I~ J~ K~ 1 I 1 J 1 K 1 2 . . . K } in H +1 which is adapted to the sphere
and to the fibration. In this nice basis we can calculate the second fundamental form
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of H. For that, we need use that the almost complex structures areisometries and par-
allels (in R4 +4). The calculations give us the conditions of (16) we need.

REMARK. The Hopf fibrationS7 → S15 → CaP is not considered in this pa-
per. The fibers are not the intersection ofS15 with Cayley lines inR16 ∼= Ca2 (note
that this does not make a fibration ofS15). Then the fibers are not determined by the
almost complex structures induced by the Cayley product with imaginary units. There-
fore the argument in Theorem 3 cannot be applied. Thus we cannot decide whether
this Hopf fibration is a minimum of the corrected energy.
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