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1. Introduction

In the mathematical literature there are several functiomehich let us measure
how the vector fields defined over any Riemannian manifatel aadered We can
ask ourselves which are thaptimal vector fields. In fact, we try to measure how far
from being parallel our vector field is. We can also extend thiestion to distribu-
tions.

Gluck, Ziller [5] and Johnson [6], among others, studied Wioéume of unit vec-
tor fields. They define the volume of a unit vector fietd to be todume of the
submanifold in the unit tangent bundle defined X¥yM ( ). For,this regard the vec-
tor field as a mapX M — 7'M and in T'M we consider the Sasaki metric. We
know [5] that in the ambient manifol&® the Hopf vector fields, and no others, mini-
mize this functional. For higher dimensional spheres, wevki6t] that the Hopf vector
fields are unstable critical points; that is, they are nothelegal minima.

Wiegmink [8] defined thdotal bendingof a unit vector fieldX . This functional is
related to theenergyof the mapX :M — TM, as we shall see in Section 3. Brito [1]
proved that the Hopf vector fields ®&° are the only minima of the total bending. Fur-
thermore, he proved a more general result giving an absabiténum in any dimen-
sion of the total bending corrected by the second fundarhémtan of the orthogonal
distribution to the fieldX . The coefficient of this correctisanishes in dimension 3
and then the corrected total bending agrees with the totadibg.

Similarly to the situation for vector fields, the energy ofgadistribution V in
a compact oriented Riemannian manifold is the energy of thetian of the
Grassmann manifold of -planes M  induced By

In this paper, we add to the energy the norms of the mean cuesbdfV and its
orthogonal distribution (with different weights) introciag in this way thecorrected
energy

In Theorem 1, we find a lower bound for the corrected energy filiation, and
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in Theorem 3 we prove the Hopf fibrations are minima of thisrected energy.

2. Notations

Let (M", g) be a compact oriented Riemannian manifold of dimemsic= p +¢,
over which an almost product structurgf, V) is defined. We shall cal the hor-
izontal distribution and) the vertical distribution. We only consider bases of the tan-
gent space adapted to the almost product structure, thédtisc M, for an orthonor-
mal local frame{es, ..., e,}x C T.M, we demand

{e1,....ep}x C Hy and  {ep+1, ..., €pigte C Vi .

We shall use the index convention<la,b,c <n, 1<i,j,k<pandp +1<

a,fB,y<n=ptgq.
We denote the dual basis and the connection forms resplgchiye

(1) {017 ey gn} ; wab(ec) = g(veueaa eb)7
whereV is the Levi-Civita connection. The curvature 2-forms wi#t denoted by
(2) Qab(Xv Y):g(R(X7 Y)eav eb)7

where R is the curvature tensor. The sectional curvature efplane spanned by the
vectors{e,, e} will be expressed by,, =Qu(es,en).

The second fundamental form of the distributiah in the directione,, is deter-
mined by the matrix /) ; wherehf; = —g(V,,eq, ¢;). Analogously the second fun-
damental form of) in the directione; is h;,; = —g(V.,ei, eg).

The mean curvature vector of the horizontal and verticalridigions are respec-
tively

N n 1 V4 . 1 n .
3) =S (EZhﬁ)ea CHy :Z<5 S h’m)e,- .
i=1

a=p+l i=1 a=p+l

For the sake of simplicity in notation, we shall wrile},, >, >, instead of
HD B >r_,, respectively, through the following.

a=p+1
3. Corrected energy for higher dimensions

For maps between Riemannian manifolfis M,g —)(N, h), the energyis de-
fined to be (see for example [3])

@ &n=3 [ Snldre. drte)) v
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wherev is the canonical volume form i . Now, we get an expressionttierenergy
of a ¢ -distribution.
We can regard a distribution like a sectionof G(¢, M) — M where

Glg. M)= | G(g. T:M)
xeM

and G g, T, M) is the Grassmann manifold of orientgd -planes inithémedsional
spaceT, M . We can define a metgg &g, ) called, as in the one dimealsi
case, the Sasaki metric. In fact, the splitting of the sp@ce, M() by the connection
V and the so-called connection m&p: TG(q, M) — G(q, M) are the natural gen-
eralizations of the same objects M. For a clear definition inT*M and a brief
comment for the higher dimensional case see [7].

We write the vertical distributior as the map.: M — G(g, M) where&(x) is
the ¢ -vector inT,M determined by,; that is,

£(x) = epra(x) A -+ Aen(x).
Now, we calculatd|d|| from the definition ofgs ,
gs(dé(ea), dé(ea)) = g(ma(d(ea)), muldE(ea))) + g (K(dE(ea)), K(dE(ea)))-
Note that we denote by the same letter the metri@td/ and inG ¢, T, M ). Since
¢ is a section we haver, o d{ = d(mw o &) = d(idy) = idy1y,. We also know [7] that

K(d¢(ed)) = Ve, &, then

> gs(délea), déen)) = glear €a) + 8(Ve &, Ve, )
and the energy (4) of the distributiow is

em=3 [ SIVae

Wiegmink in [8] defined theotal bendingfor a unit vector fieldX as

|2y + %VOKM).

1 2
= @@ > .
Bix) (n — 1) vol(S") /M ; Ve, X[V for n>2

The relation between total bending and energy of vectordiédd

(n — 1) vol(S")

E(X) = 2

B(X) + % vol(M).

With this, the study of the possible minima of the total bewdl is the same as the
study of the possible minima of the energy
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Derinimion 1. For ag -distribution) we define the corrected energy to be
D) = 2600) ~ nvoln) + [ ity = D + a2 vl ?) v
M
or more explicitly,

(5) rv)= [ (Z IVt

where( is the g -vector defined by as before.

2+ p(p — 2| Hr|? +612||Hv||2> v

RemARk. This corrected energy is not an extension of the correcitad bending
of [1]. However, for vector fields the two functionals haves teame lower bound and
the same minimality conditions.

We can calculaté/¢ and obtain its norm in terms of the second fundamental form
of H and V. Recall that the connection acts as a derivation in the wadtor algebra.
We have,

2= (h ) +Z(hfxﬁ)2 :

i,j,a i3

(6) Z Ve,

It is clear that this expression is independent of the adihjueal basis. Note that the
trivial minima of the energy are the totally geodesic disitions with horizontal also
totally geodesic.

Theorem 1. If V is integrable then

D(V)Z/Miza:cia v,

wherec;, is the sectional curvature of the plane spannedeby¥ H ande, € V.

Proof. From the definition of mean curvature vector (3) aranfr(6), we have

D Iveg

m =TS ‘Z(Zhﬁf

2 2 2 2 ;
=5 | SR " ) PR S s+ S 007
iZj i<j i

2+ p(p — 2)| Hy|)?
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But the sums:Z(h,-o;)2 and Z(h,o‘j)2 may be written, for eachy, in the following
way

(r - 1)2 L= (hg gyt + 25

8) -~
S (g)* =D (he +h) - 2505
i#j i<j

Then from (7) and (8)

> IVe

2+ p(p — 2)||Hr* = Z(h

a 1<jcx
(9) + Y (g +hG2+2 > (MR — hGhG) + > (k)
i<j,a i<j,o i,o 3
223 (W5, —HHG) + D2 () =23 S0 + 3 (i)
i<ja i, i,

with ¢§ the second elementary symmetric function of the secondafimeaital form of
‘H in the directione,,.

Under the integrability assumption of, i.e. il ; = hj;,, we can relate the mean
curvature of) with the second symmetric functias, in the following way:

. 2 .
(Do) =3 Hhaklss
a a,3

=) 1a)?+ Y (Maahizs — hoghise + hiphiss)

(10) o
= Z(hlaa)z +2 Z (hlozoz lﬂﬁ - hlaﬂhl a) + Z(h ﬂ)z
a<p a7

= 2‘72 + Z(h 5)2

Now, considering that the mean curvature (3) is normalizeg ,can write, using
equation (10),

(11) G2l = Z(Z W ) =Y 20 Y0k

i,a,3
With (9) and (11) we get

2 Ve
>2Za2 +2Zo—2+22(h ).

i,a,3

2+ p(p — 2)| Hy|? + ¢*| Hy |?

(12)
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To evaluate the integral o and o5, we need a lemma proved in [4]. There,
with the definitions (1) and (2), we can find the definition oé tollowing differential
forms:

p= Z Z 6((7')6(’7—)"‘1(7(1)7'(17+1) A 90(2) ARRRA 00(17) A 07'(p+2) JANRERIAN ar(n)
o€, TEG!

$1= Y > e(0)e(r) (Z Wo(l)a N wozo(Z)) Aoy A+
cc6, Te6 «a
A Oo(p) N Orpry A+ A i)

¢2 = Z Z 6(0’)6(’7’)90_(1) A---A 90([,) A (Z Wr(p+1)i A w,'.,—(p+2)> A -
cEG, TEGT i

A 07’(17+3) ARERAY er(n)
Q= Z Z e()e(T)QLoyr(priy N Oo@ A+ Aoy A Orpey A= AN r@y

o€, TE6!
where &, denotes the group of permutations {f, ..., p}, &7 the permutations of
{p+1,...,p+q} and ¢(7) denotes the signature of the permutationThe forms

v, ¢1, ¢2 and Q are invariant under adapted orthonormal frame chafigesse forms
satisfy the following lemma.

Lemma 2 ([4]). For ¢, ¢1, ¢2 and Q defined as aboye

-1 -1
P ¢1+q 2| +Q.
q )4

do = (-1)
For the proof of the lemma, we only use the structure equsitimnM and the
properties of the group of permutations (in [4], the authexzk under the assump-

tion of integrability of both distributions, but it is not ocessary for the proof of this
lemma). Evaluating the -formé;, ¢, and Q2 on the basige, ..., e,} we get

i, .-, en) = —q!(p— 21 203,
(13) aler, ... en) = —pl(g — 21 205,
Qer, ... e) = (-1 (p — Dig — DD _ cra-

Now, applying Stokes’ Theorem to Lemma 2, with the help of)(#& deduce
that

(14) /M <za: 205 + Z 20—;) v= /M gcm v.
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To obtain the corrected energy (5), we integrate equati@) §¢hd use (14):

(15) p0) = [ Yawr2 S vz [ e,
M i, M I,

i,a,3

as we claimed. O

In the inequalities (9) and (15) of the proof, we have lostesalterms. These
terms will give us the conditions for a foliation to be a minimum ofD. The condi-
tions are

(16) STP=0 3 (G —h%)?=0 > (h+h%)P =0,

a,B,i i<j,a i<j,o

The first condition means that is totally geodesic. The second and third condi-
tions mean that the vertical vecto{s,+1, ..., e,} are conformal vector fields for the
horizontal ones. That is, we have

L. 8(X,Y)=Xg(X,Y) foranya and X ,Y € H,

where L, is the Lie derivative in the directio@ and is a function onM . Killing
vector fields are conformal vector fields with= 0.

Note that the lower bound in Theorem 1 depends on the dissibdor an arbi-
trary manifold. In any case, the lower bound is interestimgduse it is the integral
of the cross sectional curvature of the almost product strac This cross sectional
curvature is an invariant of order 2 (called linear invar&rof the Riemannian almost
product structure [2]. In the casd S%, the lower bound depends only an  and

Theorem 3. Among the integral distributions of dimensidn (resp. 3) of S2'*1
(resp. S**3), Hopf fibrationsSt — S%*1 — CP" V¥n > 1 (resp.S® — S**3
HP") minimizeD.

Proof. To be more explicit, here we show the case of the (4 spBpre with
g = 3. In the other case, the proof is very similar.

By definition, the fibers ofs® < S**3 are the intersection of the sphe®é"*3 ¢
R4*4 > [+ with quaternionic lines ifl"*! (a 4-plane inR**4). Then, the fibers are
great 3-spheres insid®*** and the distribution tangent to the fibers is integrable and
totally geodesic.

In order to prove the other minimality conditions (16), we=ube natural almost
complex structures, J and K defined onH"*1. For each pointr € S**3 c H"*,
the vector tangents to the fiber will H€x), J(x) and K(x). We consider a real basis
{%, 1%, J%, KX, v1, lvy, Ju, Kvg, va, ..., Ku, } in H'?! which is adapted to the sphere
and to the fibration. In this nice basis we can calculate thersk fundamental form
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of H. For that, we need use that the almost complex structuresameetries and par-
allels (in R**4). The calculations give us the conditions of (16) we need. [l

Remark. The Hopf fibrationS’ — S'® — CaP is not considered in this pa-
per. The fibers are not the intersection $f with Cayley lines inR® =~ ca’ (note
that this does not make a fibration 8£°). Then the fibers are not determined by the
almost complex structures induced by the Cayley produdt witaginary units. There-
fore the argument in Theorem 3 cannot be applied. Thus weoteasecide whether
this Hopf fibration is a minimum of the corrected energy.
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