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0. Introduction

Let λ be the real maximum solution of the polynomial ( ) :1 2 ∈ N and

1 ≥ 2 ( 1 6= 0)

( ) = 3− 1
2− 2 − 1

The polynomial ( ) is given as the characteristic polynomial of the matrix :

=




1 2 1
1 0 0
0 1 0




And for each 1 2 the real cubic numberλ is a Pisot number. A Pisot number is
an algebraic integer whose conjugates other than itself have modulus less than one.
Hence,

|λ′| |λ′′| < 1

whereλ′ λ′′ are algebraic conjugates ofλ. We denote the column and row eigenvec-
tors of λ by




1
α

β


 = λ




1
α

β


 and




1
γ

δ


 = λ




1
γ

δ




where indicates the transpose.
Let λ : [0 1)→ [0 1) be the transformation given by

λ = λ − [λ ]
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where [ ] denotes the integer part of a real number .
Then each ∈ [0 1) is represented by

=
∞∑

=1
λ

(∗)

where =
[
λ −1

λ

]
= 1 2 . . . the expansion (∗) of is usually calledβ-

expansion. In this paper, we call itλ-expansion.
Let Q (λ) be the smallest extension field of rational numbersQ containing λ.

K. Shmidt showed the following result in [8].

Theorem (Schmidt). A real number is inQ (λ) ∩ [0 1) if and only if λ-
expansion of is eventually periodic.

In [1], Akiyama gives a sufficient condition of purely periodicity.
In this paper, we discuss whenλ-expansion of is purely periodic. For this pur-

pose, we introduce the three dimensional domain̂ with fractal boundary (see Fig. 1
and the definition in Section 2) and we say a real number∈ Q (λ)∩[0 ω) is reduced
if ρ ( ) ∈ ̂ whereω = 1/(1 +αγ + βδ), ρ ( ) is given by

ρ ( ) =

{ (
′ + ′′

(
′ − ′′

) )
if Q (λ) is not a totally real cubic field,(

′ ′′
)

if Q (λ) is a totally real cubic field,

and ′ and ′′ denote algebraic conjugates of .
The main result of this paper is the following:

Main Theorem. Let be a real number inQ (λ) ∩ [0 1) Thenλ-expansion of
is purely periodic if and only ifω is reduced.

The main tool of the proof is a natural extension on the domain̂ of the dynamical
system ([0 1) λ) which is discussed in [7] and [9] originally. And the basic idea of
the proof can be found in [4] and [5].

1. Dual transformation of T

From the property of the eigenvector (1γ δ) such that

1 + γ = λ · 1 2 + δ = λ · γ 1 = λ · δ

we see the transformationλ :

λ = λ (mod 1)
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Fig. 1. Figure of̂.

is the λ-transformation with the shift of finite type. The sequences
{
{ }∞=1

}
of λ-

expansion satisfies the following admissible condition:
(1) 0≤ ≤ 1

(2) if = 1 then +1 ≤ 2

(3) if ( +1) = ( 1 2) then +2 = 0.
In other words, the admissible sequence (1 2 . . . . . .) is given by the labeled
graph in Fig. 2.

Let ∗ =
⋃∞

=0 {1 2 3} be the free monoid of{1 2 3} and let us define the sub-
stitution σ 1 2 : ∗ → ∗ by

σ 1 2 :
1 −→

1︷ ︸︸ ︷
11. . .1 2

2 −→
2︷ ︸︸ ︷

11. . .1 3
3 −→ 1

Then the matrix of the substitutionσ 1 2 is given by and so it is called Pisot sub-
stitution. Moreover, the substitutionσ 1 2 satisfies the coincidence condition in [2].
Therefore, we have the following theorem.

Theorem (Arnoux-Ito ). Let P be the contractive invariant plane with respect to
the linear transformation , which is given by

P =
{

x ∈ R3 | 〈x (1 γ δ)〉 = 0
}
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Fig. 2. Labeled graph .

Then, there exist the closed domains and = 1 2 3 on the planeP satisfying
the following properties:
The boundaries of and are fractal Jordan curves and

=
⋃

=1 2 3

(disjoint)

⋃

z∈{π( (e2−e1)+ (e3−e1)) | ∈Z}

( + πz) = P (disjoint)

and moreover

−1
1 =

1−1⋃

=0

( 1− πe3) ∪
2−1⋃

=0

( 2− πe3) ∪ 3 (disjoint)

−1
2 = 1− 1πe3

−1
3 = 2− 2πe3

where 〈e1 e2 e3〉 is the canonical basis ofR3, π : R3 → P is the projection along
(1 α β) and ∪ (disjoint) means that the interior of and the interior of are

disjoint sets.

REMARK. By using the notation of [6], we will give a survey how the domains
, = 1 2 3 are obtained. From the substitutionσ 1 2 , let us give the map 1 2
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0

(0 1)

P
2 17−→

0

0

(0 2)

P
2 17−→

0

0

(0 3)

P
2 17−→

0

Fig. 3. Figure of 2 1(0 ) = 1 2 3.

on the family of patches of the stepped surface ofP by

1 2 :
(0 1) −→ (0 3) +

1∑

=1

(e1 − e3 1) +
2∑

=1

(e2− e3 2)

(0 2) −→ (0 1)
(0 3) −→ (0 2)

1 2 (x ) := −1x + 1 2 (0 )

(see Fig. 3). Then, the domains and = 1 2 3 are given by

= lim
→∞

π
(

1 2

)
( ⋃

=1 2 3

(e )

)

and

= lim
→∞

π
(

1 2

)
(e )

(see Fig. 4).
The boundaries of the domains , = 1 2 3 are given by the following manner:
Let θ 1 2 : 〈1 2 3〉 → 〈1 2 3〉 be the endomorphism of the free group of rank 3
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Fig. 4. Figure of =
⋃

=1 2 3 on ( 1 2 = (1 1)).

given by

θ 1 2 :

1 −→ 3

2 −→ 1

1︷ ︸︸ ︷
3−13−1 . . .3−1

3 −→ 2

2︷ ︸︸ ︷
3−13−1 . . .3−1

then the boundaries are given by

∂ = lim
→∞

π
(

f ( )
1 +K

(
θ
(
21−132−113−1

)))

∂ = lim
→∞

π
(

f ( ) +K
(
θ
(

−1 −1
)))

where
(

f ( )
1 f ( )

2 f ( )
3

)
= − K is the polygonal realization map on 〈1 2 3〉 and

{ } = {1 2 3} (see [6], [3] in detail).

From the fact in Theorem (Arnoux-Ito) and the propertyπe3 = π e3 = πe1 we
know

=
1⋃

=0

( 1− πe1) ∪
2⋃

=0

( 2− πe1) ∪ 3 (disjoint)
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On the notation

(1) = 1− πe1 = 0 1 . . . 1

(2) = 2− πe1 = 0 1 . . . 2

(3)
0 = 3

the setξ = { (1)
0 . . . (1)

1

(2)
0 . . . (2)

2

(3)
0 } is a partition of . Using the partition

ξ, let us define the transformation∗λ on by

∗
λ x = −1x + ∗πe3 if x ∈ ( )

∗ for some and ∗

Then, for eachx ∈ we have the following sequence
(

∗
1

∗
2 . . .

)
by

∗
λ

−1x ∈ ( )
∗ for some

and we have the expansion: for eachx ∈ ,

x = −
∞∑

=1

∗ −1πe1

We see that the sequence
(

∗
1

∗
2 . . .

)
is obtained from the labeled graph∗, which

is dual of the graph (see Fig. 5). Therefore, we say the transformation∗
λ is a dual

transformaiton of λ.
Let us define the three dimensional domainŝ =

⋃
=1 2 3

̂ as follows: for =
1 2 3

̂ :=



 ω




1
α

β


 + x

∣∣∣∣∣∣
0≤ < 0 x ∈





where
(

0
1

0
2

0
3

)
= (1 γ δ) and ω = 1/(1 + αγ + βδ) (see Fig. 6). Let us define the

transformation λ̂ : ̂ → R3 by

λ̂


 ω




1
α

β


 + x


 :=


λ ω




1
α

β


− [λ ] ω




1
α

β


 + x− [λ ]πe1




Then we have the proposition.

Proposition 1.1. The transformation λ̂ is surjective and a.e. injective transfor-
mation on ̂ .
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Fig. 5. Dual graph ∗.

Proof. By the Theorem (Arnoux-Ito), the domains = 1 2 3 are decomposed
in the following way:

1 =
1−1⋃

=0

( 1− πe1) ∪
2−1⋃

=0

( 2− πe1) ∪ 3

2 = 1− 1πe1

3 = 2− 2πe1

On the other hand, the setŝ = 1 2 3 are transformed by

̂ =



λ ω




1
α

β


 + x

∣∣∣∣∣∣
0≤ < 0 x ∈





By using the fact thatλ · 1 = 1 + γ λ · γ = 2 + δ and λ · δ = 1 we cut the cylin-
der ̂

1 to 1 pieces of the lengthω and one piece of lengthγω. Analogously, we
cut the cylinder ̂

2 to 2 pieces of the lengthω and one piece of lengthδω. Then,
applying λ̂ shows that λ̂ is surjective and injective except the boundary on̂ (see
Fig. 6).
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Fig. 6. Figure of̂ .

2. Preliminaries from algebra

We know the vector〈1 α β〉 is the basis ofQ (λ) that is, for any ∈ Q (λ)
there exist rational numbers0 1 and 2 such that

= 0 + 1α + 2β

and we denote ′ and ′′ which are algebraic conjugates of , that is,

′ = 0 + 1α
′ + 2β

′ ∈ Q
(
λ′
)

′′ = 0 + 1α
′′ + 2β

′′ ∈ Q
(
λ′′
)

First, let us assume that the cubic field is not totally real. We will begin with in-
troducing two mapsη : Q (λ)→ R× C2 and ρ : Q (λ)→ R3 by

η ( ) :=


 ′

′′


 and ρ ( ) :=


 ′ + ′′
(

′ − ′′
)




We get a few primitive lemmas and corollaries.

Lemma 2.1. Let

:=




1 1 1
α α′ α′′

β β′ β′′


 and := [u0 u1 u2]
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where

u0 :=




1
α

β


 u1 :=

1
2






1
α′

β′


 +




1
α′′

β′′




 u2 :=

1
2






1
α′

β′


−




1
α′′

β′′






Then, we have
(1) for any ∈ Q (λ)

(η ( )) = (ρ ( ))

(2) the inverse matrix of is given by

−1 =



ω µ ν

ω′ µ′ ν′

ω′′ µ′′ ν′′




where

ω =
1
∣∣∣∣
α′ α′′

β′ β′′

∣∣∣∣ µ =
1 (

β′ − β′′
)

ν =
1 (

α′′ − α′
)

= det

(In Corollary 2.3, we seeω = 1/(1 +αγ + βδ))

Proof. (1) is easily obtained.
(2) By Cramer’s rule, we have

(
−1
)

11
= ω

(
−1
)

12
= µ and

(
−1
)

13
= ν

In Corollary 2.3, we can see thatω µ, andν are elements ofQ(λ). Consider the ma-
trix · :

· =




1 1 1
α α′ α′′

β β′ β′′






1 α β

1 α′ β′

1 α′′ β′′


 =




3 (α) (β)
(α) (α2) (αβ)
(β) (αβ) (β2)




where

(θ) = θ + θ′ + θ′′

for any algebraic numberθ. Since (θ) is rational, each element of · is a ratio-
nal number. Then there exists a right elementary transformation whose elements are
rational numbers such that

(
·

)
· =
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where indicates the identity matrix. So that,

·
(
·
)

=

Therefore we know

−1 = · =



ω µ ν

ω′ µ′ ν′

ω′′ µ′′ ν′′




Lemma 2.2. The inverse matrix of is given by

−1 =




ω µ ν

ω′ + ω′′ µ′ + µ′′ ν′ + ν′′(
ω′ − ω′′

) (
µ′ − µ′′

) (
ν′ − ν ′′

)




Therefore, the canonical basis〈e1 e2 e3〉 of R3 is given by

e1 = ωu0 +
(
ω′ + ω′′

)
u1 +

(
ω′ − ω′′

)
u2

e2 = µu0 +
(
µ′ + µ′′

)
u1 +

(
µ′ − µ′′

)
u2

e3 = νu0 +
(
ν′ + ν′′

)
u1 +

(
ν′ − ν ′′

)
u2

Corollary 2.3. The projections ofe = 1 2 3 by π are given by

πe1 =
(
ω′ + ω′′

)
u1 +

(
ω′ − ω′′

)
u2

πe2 =
(
µ′ + µ′′

)
u1 +

(
µ′ − µ′′

)
u2

πe3 =
(
ν′ + ν′′

)
u1 +

(
ν′ − ν ′′

)
u2

Moreover, we have

−1πe1 =




0
ω′ + ω′′
(
ω′ − ω′′

)


 −1πe2 =




0
µ′ + µ′′
(
µ′ − µ′′

)




−1πe3 =




0
ν′ + ν′′(
ν′ − ν ′′

)


 and (ω µ ν) =

1
1 +αγ + βδ

(1 γ δ)

Proof. Recall thatπ is the projection on the planeP along u0. The planeP
which is orthogonal (1γ δ) is spanned byu1 and u2 Hence, we can get the above
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from Lemma 2.2. The second assertion is obtained by−1u1 = e2
−1u2 = e3 Put

e = πe + u0 = 1 2 3

Then from the relation

〈
e




1
γ

δ



〉

=

〈
πe




1
γ

δ



〉

+

〈
u0




1
γ

δ



〉

we have

( 1 2 3) =
1

1 +αγ + βδ
(1 γ δ)

On the other hand, we know from Lemma 2.2 that

( 1 2 3) = (ω µ ν)

Therefore, we arrive at the conclusion.

Lemma 2.4. The following relation holds:

=



λ 0 0
0 (λ′ + λ′′)/2 −

(
λ′ − λ′′

)
/2

0
(
λ′ − λ′′

)
/2 (λ′ + λ′′)/2




Proof. The proof is easily obtained from the equations

u0 = λu0 u1 =
λ′

2
(u1 + u2) +

λ′′

2
(u1− u2)

u2 =
λ′

2
(u1 + u2)− λ′′

2
(u1− u2)

and the definitions ofu1 and u2.

Secondly, let us assume that the cubic field is totally real. We use the same nota-
tion ρ as the map fromQ (λ) to R3 by

ρ ( ) :=


 ′

′′
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Lemma 2.5. Let

=




1 1 1
α α′ α′′

β β′ β′′


 = [u0 u1 u2]

Then the inverse matrix of is given by

−1 =



ω µ ν

ω′ µ′ ν′

ω′′ µ′′ ν′′




whereω µ ν is given as(2) in Lemma 2.1.

In stead of Lemma 2.2, Corollary 2.3, and Lemma 2.4, we have

Lemma 2.6. The following formula hold:

πe1 = ω′u1 + ω′′u2

πe2 = µ′u1 + µ′′u2

πe3 = ν′u1 + ν′′u2

Therefore, we have

−1πe1 =




0
ω′

ω′′


 −1πe2 =




0
µ′

µ′′


 −1πe3 =




0
ν′

ν′′




and

(ω µ ν) =
1

1 +αγ + βδ
(1 γ δ)

Moreover, we know trivially

=



λ 0 0
0 λ′ 0
0 0 λ′′




We have the following corollary in the both cases:
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Corollary 2.7. Let us define λ by

λ :=





[
(λ′ + λ′′)/2 −

(
λ′ − λ′′

)
/2(

λ′ − λ′′
)
/2 (λ′ + λ′′)/2

]
if Q (λ) is not totally real,

[
λ′ 0
0 λ′′

]
if Q (λ) is totally real,

then we have

=



λ 0 0
0
0 λ




Let us define the domainŝ and ̂ = 1 2 3 as follows:

̂ := −1
(
̂
)

and ̂ := −1
(
̂
)

Then the domainŝ and ̂ have explicit forms (see Fig. 1). From now on, remark
that ̂ and ̂ are written as domains inR× R2.

Lemma 2.8. The domainŝ and ̂ = 1 2 3 are given by

̂ =

{(
ω −

∞∑

=1

∗ −1
λ v

) ∣∣∣∣ 0≤ < 0

( ∗
1

∗
2 . . .) is an admissible sequence starting at in∗

}

where

v =





(
ω′ + ω′′
(
ω′ − ω′′

)
)

if Q (λ) is not totally real,

(
ω′

ω′′

)
if Q (λ) is totally real.

Proof. From the definitions of̂ and ̂ , ̂ is given by

̂ =
{
ω −1u0 + −1x | 0≤ < 0 x ∈

}

Using the formula of and −1u0 = e1, we have
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̂ =

{
ωe1−

∞∑

=1

∗ −1 −1πe1

∣∣∣∣ 0≤ < 0

( ∗
1

∗
2 . . .) is an admissible sequence starting at in∗

}

From the fact that

−1 =



λ 0 0
0
0 λ


 −1 and −1πe1 = v

we have the conclusion.

Now, let us define the transformation̂λ on ̂ by

̂
λ := −1 ◦ λ̂ ◦

Proposition 2.9. The transformation̂ λ on ̂ is given explicitly by

̂
λ

(
ω −

∞∑

=1

∗ −1
λ v

)
=

(
(λ ω − [λ ] ω) − [λ ] v−

∞∑

=1

∗
λv

)

and ̂λ on ̂ is surjective.

Proof. The proof is obtained from Proposition 1.1.

3. Reduction theorem

Let Ẑ := [0 ω)× R2 and let us define the transformatioñλ on Ẑ by

˜
λ

( ( ))
=

((
λ − ω

[
λ

ω

])
−
[
λ

ω

]
v + λ

( ))

Then, the restriction of the map̃λ on the set̂ coincides witĥλ
In stead of the transformationλ : [0 1)→ [0 1)

λ = λ − [λ ]

let us introduce the following transformation′λ : [0 ω)→ [0 ω) by

′
λ = λ − ω

[
λ

ω

]
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Then dynamical systems ([0 1) λ) and
(
[0 ω) ′

λ

)
are isomorphic by the map :

→ ω and for any ∈ [0 ω) can be expressed by

= ω
∞∑

=1
λ

where ( 1 2 . . .) is the admissible sequence of/ω ∈ [0 1) by the transformation

λ. And we can say that the transformation̂λ is the natural extension of ′λ and λ

Hereafter, we denoteρ( ) by the map fromQ(λ) to R× R2, that is,

ρ ( ) =





( (
′ + ′′

(
′ − ′′

)
))

if Q (λ) is not a totally real cubic field,

( (
′

′′

))
if Q (λ) is a totally real cubic field.

Lemma 3.1. For any real number ∈ Q (λ) ∩ [0 ω), we have

˜
λρ ( ) = ρ ( )

where = ′
λ

Proof. From the definitions of ′
λ

˜
λ and ρ, we know

˜
λρ ( ) =





(
λ − ω

[
λ

ω

]
−
[
λ

ω

](
ω′ + ω′′

(
ω′ − ω′′

)
)

+ λ

(
′ + ′′

(
′ − ′′

)
))

if Q (λ) is not totally real,

(
λ − ω

[
λ

ω

]
−
[
λ

ω

](
ω′

ω′′

)
+ λ

(
′

′′

))

if Q (λ) is totally real.

On the other hand, by =λ − ω
[
λ /ω

]
we seeρ ( ) = ˜λρ ( )

Let us introduce the concept ofreduced.

DEFINITION 3.2. A real number ∈ Q (λ)∩ [0 ω) is said to be reduced ifρ ( ) ∈
̂.

Lemma 3.3. Let ∈ Q (λ) ∩ [0 ω) be reduced. Then
(1) ′

λ is reduced,
(2) there exists ∗ such that ∗ is reduced and ′

λ
∗ =
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Proof. (1) is easily obtained from Lemma 3.1.
(2) From Proposition 2.9, the transformatioñλ|̂ = ̂λ is surjective. Hence, there ex-
ists x∗ ∈ ̂ such that

̂
λ(x∗) = ρ( )

We put

x∗ =

(
∗

(
2

3

))

Then

′
λ

∗ =

Thus it suffice to show that

x∗ = ρ( ∗)

Here we only show this in the caseQ(λ) is not totally real field. In the case of totally
real, it is easy to show this relation. From̂λ(x∗) = ρ( ), we have

λ ∗ − ω
[
λ ∗

ω

]
=

and

−
[
λ ∗

ω

]
v + λ

(
2

3

)
=

(
′ + ′′

( ′ − ′′)

)

In the two equations above, we take algebraic conjugates of the former one and sub-
stitute it to−

[
(λ ∗/ω)(v)

]
of the latter one. From the fact thatλ′ 6= λ′′, we have

2 = ∗′ + ∗′′ and 3 = ( ∗′ − ∗′′)

We can get the result.

Lemma 3.4. For ∈ Q (λ) ∩ [0 ω) we put

=
1
(

+
1
λ

+
1
λ2

)
∈ Z

and

ω =
1

0

(
0 + 0

1
λ

+ 0
1
λ2

)
0 0 0 0∈ Z
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Let
′

λ = then there exist integers and such that

=
1

0

(
+

1
λ

+
1
λ2

)

Proof. From
′

λ = is represented by

= ω

(∑

=1

λ−

)
+ λ−

Therefore, using the equation 1/λ3 = 1− 1/λ− 2/λ
2 we can get the above.

We call 0 the quotientof
′

λ ( ) We claim that the quotient is independent of
.

Proposition 3.5. Let ∈ Q (λ) ∩ [0 ω) be reduced. Thenλ-expansion of /ω is
purely periodic, that is, there exists an integer such that

′

λ =

Proof. We put

=
1
(

+
1
λ

+
1
λ2

)
∈ Z

Lemma 3.3 shows that there exists a sequence (∗
0

∗
1 . . .) such that ∗ is reduced and

′
λ

∗ = ∗
−1 for ∈ N where ∗

0 := We know the finiteness of the cardinarity of the

set
{

∗
∣∣ ∗ is reduced and ′

λ
∗ = ∗

−1 for ∈ N
}

since ̂ is a bounded set and the
quotient of ′

λ is invariant. Hence, there exist integers and (− > 0) such that

∗ = ∗
−

Then we have

∗ = ∗
0

Consequently, we get

′

λ =

Proposition 3.6. Let ∈ Q (λ)∩[0 ω) Then there exists 1 > 0 such that
′

λ

is reduced for any > 1.

Proof. For any ∈ Q (λ) ∩ [0 ω) the point
(

(0 0)
)

is in ̂. We consider

the Euclidean distance betweeñλρ ( ) and ˜λ
(

(0 0)
)

for all ∈ N. The first
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coordinates are equal to each other for all∈ N. Hence, we have

(
˜
λ (ρ ( )) ˜λ

(
(0 0)

))
≤

(
ρ ( )

(
(0 0)

))

where

= max
(
|λ′| |λ′′|

)

On the other hand, from the fact
(

(0 0)
)
∈ ̂ and ˜λ|̂ = ̂λ we know

˜
λ

(
(0 0)

)
∈ ̂

for all . Thereforêλρ ( ) must exponentially comes near the set̂. Since the quo-
tient of

′

λ is also invariant, using Lemma 3.1, we have

˜
λ ρ ( ) = ρ

(
′

λ

)
∈ ̂

for sufficiently large . Then
′

λ is reduced. And, from Lemma 3.3 (1) we can get
the above.

We can get the following result:

Theorem 3.7. Let ∈ [0 ω) then
(1) ∈ Q (λ) if and only if λ-expansion of /ω is eventually periodic,
(2) ∈ Q (λ) is reduced if and only ifλ-expansion of /ω is purely periodic.

Proof. (1) Assume that ∈ Q (λ)∩[0 ω) By Proposition 3.6, there exists > 0
such that

′

λ is reduced. Proposition 3.5 says that
′

λ /ω = λ ( /ω) has a purely
periodic λ-expansion. Hence,λ-expansion of /ω is eventually periodic. The opposite
direction is trivial.
(2) Necessity is obtained by Proposition 3.5. Conversely, assume thatλ-expansion of
/ω is purely periodic. From (1), we see ∈ Q (λ) ∩ [0 ω) According to Proposi-

tion 3.6, there exists > 0 such that
′

λ is reduced. Therefore, we know that is
reduced by Lemma 3.3 (1) because of purely periodicity.
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