ON PERIODIC β-EXPANSIONS OF PISOT NUMBERS AND RAUZY FRACTALS

Shunii ITO, and Yuki SANO
(Received October 6, 1999)

0. Introduction

Let λ be the real maximum solution of the polynomial $p(x): k_{1}, k_{2} \in \mathbf{N}$ and $k_{1} \geq k_{2}\left(k_{1} \neq 0\right)$

$$
p(x)=x^{3}-k_{1} x^{2}-k_{2} x-1 .
$$

The polynomial $p(x)$ is given as the characteristic polynomial of the matrix M :

$$
M=\left[\begin{array}{ccc}
k_{1} & k_{2} & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

And for each k_{1}, k_{2} the real cubic number λ is a Pisot number. A Pisot number is an algebraic integer whose conjugates other than itself have modulus less than one. Hence,

$$
\left|\lambda^{\prime}\right|,\left|\lambda^{\prime \prime}\right|<1
$$

where $\lambda^{\prime}, \lambda^{\prime \prime}$ are algebraic conjugates of λ. We denote the column and row eigenvectors of λ by

$$
M\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right) \quad \text { and } \quad{ }^{t} M\left(\begin{array}{l}
1 \\
\gamma \\
\delta
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
\gamma \\
\delta
\end{array}\right)
$$

where t indicates the transpose.
Let $T_{\lambda}:[0,1) \rightarrow[0,1)$ be the transformation given by

$$
T_{\lambda} x=\lambda x-[\lambda x],
$$

where $[r]$ denotes the integer part of a real number r.
Then each $x \in[0,1)$ is represented by
(*)

$$
x=\sum_{k=1}^{\infty} \frac{b_{k}}{\lambda^{k}},
$$

where $b_{k}=\left[\lambda T_{\lambda}^{k-1} x\right], k=1,2, \ldots$, the expansion (*) of x is usually called β expansion. In this paper, we call it λ-expansion.

Let $\mathbf{Q}(\lambda)$ be the smallest extension field of rational numbers \mathbf{Q} containing λ. K. Shmidt showed the following result in [8].

Theorem (Schmidt). A real number x is in $\mathbf{Q}(\lambda) \cap[0,1)$ if and only if λ expansion of x is eventually periodic.

In [1], Akiyama gives a sufficient condition of purely periodicity.
In this paper, we discuss when λ-expansion of x is purely periodic. For this purpose, we introduce the three dimensional domain \widehat{Y} with fractal boundary (see Fig. 1 and the definition in Section 2) and we say a real number $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$ is reduced if $\rho(x) \in \widehat{Y}$ where $\omega=1 /(1+\alpha \gamma+\beta \delta), \rho(x)$ is given by

$$
\rho(x)= \begin{cases}t\left(x, x^{\prime}+x^{\prime \prime},\left(x^{\prime}-x^{\prime \prime}\right) i\right) & \text { if } \mathbf{Q}(\lambda) \text { is not a totally real cubic field, } \\ t\left(x, x^{\prime}, x^{\prime \prime}\right) & \text { if } \mathbf{Q}(\lambda) \text { is a totally real cubic field, }\end{cases}
$$

and x^{\prime} and $x^{\prime \prime}$ denote algebraic conjugates of x. The main result of this paper is the following:

Main Theorem. Let x be a real number in $\mathbf{Q}(\lambda) \cap[0,1)$. Then λ-expansion of x is purely periodic if and only if ωx is reduced.

The main tool of the proof is a natural extension on the domain \widehat{Y} of the dynamical system ($\left[0,1\right.$) , T_{λ}), which is discussed in [7] and [9] originally. And the basic idea of the proof can be found in [4] and [5].

1. Dual transformation of \boldsymbol{T}_{λ}

From the property of the eigenvector ${ }^{t}(1, \gamma, \delta)$ such that

$$
k_{1}+\gamma=\lambda \cdot 1 \quad k_{2}+\delta=\lambda \cdot \gamma \quad 1=\lambda \cdot \delta,
$$

we see the transformation T_{λ} :

$$
T_{\lambda} x=\lambda x \quad(\bmod 1)
$$

Fig. 1. Figure of \widehat{Y}.
is the λ-transformation with the shift of finite type. The sequences $\left\{\left\{b_{k}\right\}_{k=1}^{\infty}\right\}$ of λ expansion satisfies the following admissible condition:
(1) $0 \leq b_{i} \leq k_{1}$,
(2) if $b_{i}=k_{1}$ then $b_{i+1} \leq k_{2}$,
(3) if $\left(b_{i}, b_{i+1}\right)=\left(k_{1}, k_{2}\right)$ then $b_{i+2}=0$.

In other words, the admissible sequence $\left(b_{1}, b_{2}, \ldots, b_{k}, \ldots\right)$ is given by the labeled graph G in Fig. 2.

Let $W^{*}=\bigcup_{n=0}^{\infty}\{1,2,3\}$ be the free monoid of $\{1,2,3\}$ and let us define the substitution $\sigma_{k_{1}, k_{2}}: W^{*} \rightarrow W^{*}$ by

Then the matrix of the substitution $\sigma_{k_{1}, k_{2}}$ is given by M and so it is called Pisot substitution. Moreover, the substitution $\sigma_{k_{1}, k_{2}}$ satisfies the coincidence condition in [2]. Therefore, we have the following theorem.

Theorem (Arnoux-Ito). Let \mathbf{P} be the contractive invariant plane with respect to the linear transformation M, which is given by

$$
\mathbf{P}=\left\{\mathbf{x} \in \mathbf{R}^{3} \mid\left\langle\mathbf{x},{ }^{t}(1, \gamma, \delta)\right\rangle=0\right\} .
$$

Fig. 2. Labeled graph G.
Then, there exist the closed domains X and $X_{i}, i=1,2,3$ on the plane \mathbf{P} satisfying the following properties:
The boundaries of X and X_{i} are fractal Jordan curves and

$$
\begin{aligned}
& X=\bigcup_{i=1,2,3} X_{i} \quad(\text { disjoint }), \\
& \bigcup_{\mathbf{z} \in\left\{\pi\left(m\left(\mathbf{e}_{2}-\mathbf{e}_{1}\right)+n\left(\mathbf{e}_{3}-\mathbf{e}_{1}\right)\right) \mid m, n \in \mathbf{Z}\right\}}(X+\pi \mathbf{z})=\mathbf{P} \quad(\text { disjoint }),
\end{aligned}
$$

and moreover

$$
\begin{aligned}
& \left.M^{-1} X_{1}=\bigcup_{j=0}^{k_{1}-1}\left(X_{1}-j \pi \mathbf{e}_{3}\right) \cup \bigcup_{j=0}^{k_{2}-1}\left(X_{2}-j \pi \mathbf{e}_{3}\right) \cup X_{3} \quad \text { (disjoint }\right), \\
& M^{-1} X_{2}=X_{1}-k_{1} \pi \mathbf{e}_{3}, \quad M^{-1} X_{3}=X_{2}-k_{2} \pi \mathbf{e}_{3}
\end{aligned}
$$

where $\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$ is the canonical basis of $\mathbf{R}^{3}, \pi: \mathbf{R}^{3} \rightarrow \mathbf{P}$ is the projection along ${ }^{t}(1, \alpha, \beta)$, and $A \cup B$ (disjoint) means that the interior of A and the interior of B are disjoint sets.

Remark. By using the notation of [6], we will give a survey how the domains $X, X_{i}, i=1,2,3$ are obtained. From the substitution $\sigma_{k_{1}, k_{2}}$, let us give the map $\Sigma_{k_{1}, k_{2}}$

Fig. 3. Figure of $\Sigma_{2,1}\left(0, E_{i}\right), i=1,2,3$.
on the family of patches of the stepped surface of \mathbf{P} by

$$
\begin{aligned}
&\left(\mathbf{0}, E_{1}\right) \longrightarrow\left(\mathbf{0}, E_{3}\right)+\sum_{k=1}^{k_{1}}\left(\mathbf{e}_{1}-k \mathbf{e}_{3}, E_{1}\right)+\sum_{k=1}^{k_{2}}\left(\mathbf{e}_{2}-k \mathbf{e}_{3}, E_{2}\right) \\
& \Sigma_{k_{1}, k_{2}}: \\
&\left(\mathbf{0}, E_{2}\right) \longrightarrow\left(\mathbf{0}, E_{1}\right) \\
&\left(\mathbf{0}, E_{3}\right) \longrightarrow\left(\mathbf{0}, E_{2}\right)
\end{aligned}
$$

(see Fig. 3). Then, the domains X and $X_{i}, i=1,2,3$ are given by

$$
X=\lim _{n \rightarrow \infty} M^{n} \pi\left(\Sigma_{k_{1}, k_{2}}\right)^{n}\left(\bigcup_{i=1,2,3}\left(\mathbf{e}_{i}, E_{i}\right)\right),
$$

and

$$
X_{i}=\lim _{n \rightarrow \infty} M^{n} \pi\left(\Sigma_{k_{1}, k_{2}}\right)^{n}\left(\mathbf{e}_{i}, E_{i}\right)
$$

(see Fig. 4).
The boundaries of the domains $X, X_{i}, i=1,2,3$ are given by the following manner: Let $\theta_{k_{1}, k_{2}}: G\langle 1,2,3\rangle \rightarrow G\langle 1,2,3\rangle$ be the endomorphism of the free group of rank 3

Fig. 4. Figure of $X=\bigcup_{i=1,2,3} X_{i}$ on $\left(k_{1}, k_{2}=(1,1)\right)$.
given by

$$
\begin{array}{rl}
1 & 3 \\
\theta_{k_{1}, k_{2}}: 2 & \longrightarrow 1 \overbrace{3^{-1} 3^{-1} \ldots 3^{-1}}^{k_{1}}, \\
3 & \overbrace{3^{-1} 3^{-1} \ldots 3^{-1}}^{k_{2}}
\end{array}
$$

then the boundaries are given by

$$
\begin{aligned}
\partial X & =\lim _{n \rightarrow \infty} M^{n} \pi\left(\mathbf{f}_{1}^{(n)}+\mathcal{K}\left(\theta^{n}\left(21^{-1} 32^{-1} 13^{-1}\right)\right)\right) \\
\partial X_{i} & =\lim _{n \rightarrow \infty} M^{n} \pi\left(\mathbf{f}_{i}^{(n)}+\mathcal{K}\left(\theta^{n}\left(j k j^{-1} k^{-1}\right)\right)\right)
\end{aligned}
$$

where $\left(\mathbf{f}_{1}^{(n)}, \mathbf{f}_{2}^{(n)}, \mathbf{f}_{3}^{(n)}\right)=M^{-n}, \mathcal{K}$ is the polygonal realization map on $G\langle 1,2,3\rangle$, and $\{i, j, k\}=\{1,2,3\}$ (see [6], [3] in detail).

From the fact in Theorem (Arnoux-Ito) and the property $M \pi \mathbf{e}_{3}=\pi M \mathbf{e}_{3}=\pi \mathbf{e}_{1}$, we know

$$
\left.X=\bigcup_{j=0}^{k_{1}}\left(M X_{1}-j \pi \mathbf{e}_{1}\right) \cup \bigcup_{j=0}^{k_{2}}\left(M X_{2}-j \pi \mathbf{e}_{1}\right) \cup M X_{3} \quad \text { (disjoint }\right)
$$

On the notation

$$
\begin{array}{ll}
P_{j}^{(1)}=M X_{1}-j \pi \mathbf{e}_{1}, & j=0,1, \ldots, k_{1}, \\
P_{j}^{(2)}=M X_{2}-j \pi \mathbf{e}_{1}, & j=0,1, \ldots, k_{2}, \\
P_{0}^{(3)}=M X_{3},
\end{array}
$$

the set $\xi=\left\{P_{0}^{(1)}, \ldots, P_{k_{1}}^{(1)}, P_{0}^{(2)}, \ldots, P_{k_{2}}^{(2)}, P_{0}^{(3)}\right\}$ is a partition of X. Using the partition ξ, let us define the transformation T_{λ}^{*} on X by

$$
T_{\lambda}^{*} \mathbf{x}=M^{-1} \mathbf{x}+b^{*} \pi \mathbf{e}_{3} \quad \text { if } \quad \mathbf{x} \in P_{b^{*}}^{(i)} \text { for some } i \text { and } b^{*}
$$

Then, for each $\mathbf{x} \in X$ we have the following sequence $\left(b_{1}^{*}, b_{2}^{*}, \ldots\right)$ by

$$
T_{\lambda}^{* k-1} \mathbf{x} \in P_{b_{k}^{*}}^{(i)} \quad \text { for some } i,
$$

and we have the expansion: for each $\mathbf{x} \in X$,

$$
\mathbf{x}=-\sum_{k=1}^{\infty} b_{k}^{*} M^{k-1} \pi \mathbf{e}_{1}
$$

We see that the sequence $\left(b_{1}^{*}, b_{2}^{*}, \ldots\right)$ is obtained from the labeled graph G^{*}, which is dual of the graph G (see Fig. 5). Therefore, we say the transformation T_{λ}^{*} is a dual transformaiton of T_{λ}.

Let us define the three dimensional domains $\widehat{X}=\bigcup_{i=1,2,3} \widehat{X}_{i}$ as follows: for $i=$ 1,2,3

$$
\widehat{X}_{i}:=\left\{\begin{array}{l|l}
t \omega\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)+\mathbf{x} & 0 \leq t<t_{i}^{0}, \mathbf{x} \in X_{i}
\end{array}\right\},
$$

where $\left(t_{1}^{0}, t_{2}^{0}, t_{3}^{0}\right)=(1, \gamma, \delta)$ and $\omega=1 /(1+\alpha \gamma+\beta \delta)$ (see Fig. 6). Let us define the transformation $\widehat{T}_{\lambda}: \widehat{X} \rightarrow \mathbf{R}^{3}$ by

$$
\widehat{T}_{\lambda}\left(t \omega\left(\begin{array}{c}
1 \\
\alpha \\
\beta
\end{array}\right)+\mathbf{x}\right):=\left(\lambda t \omega\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)-[\lambda t] \omega\left(\begin{array}{c}
1 \\
\alpha \\
\beta
\end{array}\right)+M \mathbf{x}-[\lambda t] \pi \mathbf{e}_{1}\right) .
$$

Then we have the proposition.
Proposition 1.1. The transformation \widehat{T}_{λ} is surjective and a.e. injective transformation on \widehat{X}.

Fig. 5. Dual graph G^{*}.
Proof. By the Theorem (Arnoux-Ito), the domains $X_{i}, i=1,2,3$ are decomposed in the following way:

$$
\begin{aligned}
& X_{1}=\bigcup_{j=0}^{k_{1}-1}\left(M X_{1}-j \pi \mathbf{e}_{1}\right) \cup \bigcup_{j=0}^{k_{2}-1}\left(M X_{2}-j \pi \mathbf{e}_{1}\right) \cup M X_{3}, \\
& X_{2}=M X_{1}-k_{1} \pi \mathbf{e}_{1}, \\
& X_{3}=M X_{2}-k_{2} \pi \mathbf{e}_{1} .
\end{aligned}
$$

On the other hand, the sets $\widehat{X}_{i}, i=1,2,3$ are transformed by M

$$
M \widehat{X}_{i}=\left\{\begin{array}{l|l}
\lambda t \omega\left(\begin{array}{c}
1 \\
\alpha \\
\beta
\end{array}\right)+M \mathbf{x} & \left.0 \leq t<t_{i}^{0}, \mathbf{x} \in X_{i}\right\} .
\end{array}\right.
$$

By using the fact that $\lambda \cdot 1=k_{1}+\gamma, \lambda \cdot \gamma=k_{2}+\delta$, and $\lambda \cdot \delta=1$, we cut the cylinder $M \widehat{X}_{1}$ to k_{1} pieces of the length ω and one piece of length $\gamma \omega$. Analogously, we cut the cylinder $M \widehat{X}_{2}$ to k_{2} pieces of the length ω and one piece of length $\delta \omega$. Then, applying \widehat{T}_{λ} shows that \widehat{T}_{λ} is surjective and injective except the boundary on \widehat{X} (see Fig. 6).

Fig. 6. Figure of \widehat{X}.

2. Preliminaries from algebra

We know the vector $\langle 1, \alpha, \beta\rangle$ is the basis of $\mathbf{Q}(\lambda)$, that is, for any $x \in \mathbf{Q}(\lambda)$ there exist rational numbers c_{0}, c_{1} and c_{2} such that

$$
x=c_{0}+c_{1} \alpha+c_{2} \beta,
$$

and we denote x^{\prime} and $x^{\prime \prime}$ which are algebraic conjugates of x, that is,

$$
\begin{aligned}
x^{\prime} & =c_{0}+c_{1} \alpha^{\prime}+c_{2} \beta^{\prime} \in \mathbf{Q}\left(\lambda^{\prime}\right), \\
x^{\prime \prime} & =c_{0}+c_{1} \alpha^{\prime \prime}+c_{2} \beta^{\prime \prime} \in \mathbf{Q}\left(\lambda^{\prime \prime}\right) .
\end{aligned}
$$

First, let us assume that the cubic field is not totally real. We will begin with introducing two maps $\eta: \mathbf{Q}(\lambda) \rightarrow \mathbf{R} \times \mathbf{C}^{2}$ and $\rho: \mathbf{Q}(\lambda) \rightarrow \mathbf{R}^{3}$ by

$$
\eta(x):=\left(\begin{array}{c}
x \\
x^{\prime} \\
x^{\prime \prime}
\end{array}\right) \quad \text { and } \quad \rho(x):=\left(\begin{array}{c}
x \\
x^{\prime}+x^{\prime \prime} \\
\left(x^{\prime}-x^{\prime \prime}\right) i
\end{array}\right) .
$$

We get a few primitive lemmas and corollaries.
Lemma 2.1. Let

$$
P:=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \alpha^{\prime} & \alpha^{\prime \prime} \\
\beta & \beta^{\prime} & \beta^{\prime \prime}
\end{array}\right] \text { and } Q:=\left[\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}\right],
$$

where

$$
\mathbf{u}_{0}:=\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right), \mathbf{u}_{1}:=\frac{1}{2}\left(\left(\begin{array}{c}
1 \\
\alpha^{\prime} \\
\beta^{\prime}
\end{array}\right)+\left(\begin{array}{c}
1 \\
\alpha^{\prime \prime} \\
\beta^{\prime \prime}
\end{array}\right)\right), \mathbf{u}_{2}:=\frac{1}{2 i}\left(\left(\begin{array}{c}
1 \\
\alpha^{\prime} \\
\beta^{\prime}
\end{array}\right)-\left(\begin{array}{c}
1 \\
\alpha^{\prime \prime} \\
\beta^{\prime \prime}
\end{array}\right)\right) .
$$

Then, we have
(1) for any $x \in \mathbf{Q}(\lambda)$

$$
P(\eta(x))=Q(\rho(x)),
$$

(2) the inverse matrix of P is given by

$$
P^{-1}=\left[\begin{array}{ccc}
\omega & \mu & \nu \\
\omega^{\prime} & \mu^{\prime} & \nu^{\prime} \\
\omega^{\prime \prime} & \mu^{\prime \prime} & \nu^{\prime \prime}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \omega=\frac{1}{D}\left|\begin{array}{ll}
\alpha^{\prime} & \alpha^{\prime \prime} \\
\beta^{\prime} & \beta^{\prime \prime}
\end{array}\right|, \quad \mu=\frac{1}{D}\left(\beta^{\prime}-\beta^{\prime \prime}\right), \\
& \nu=\frac{1}{D}\left(\alpha^{\prime \prime}-\alpha^{\prime}\right), \quad D=\operatorname{det} P
\end{aligned}
$$

(In Corollary 2.3, we see $\omega=1 /(1+\alpha \gamma+\beta \delta)$).
Proof. (1) is easily obtained.
(2) By Cramer's rule, we have

$$
\left(P^{-1}\right)_{11}=\omega, \quad\left(P^{-1}\right)_{12}=\mu, \quad \text { and } \quad\left(P^{-1}\right)_{13}=\nu
$$

In Corollary 2.3 , we can see that ω, μ, and ν are elements of $\mathbf{Q}(\lambda)$. Consider the matrix $P \cdot{ }^{t} P$:

$$
P \cdot{ }^{t} P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \alpha^{\prime} & \alpha^{\prime \prime} \\
\beta & \beta^{\prime} & \beta^{\prime \prime}
\end{array}\right]\left[\begin{array}{ccc}
1 & \alpha & \beta \\
1 & \alpha^{\prime} & \beta^{\prime} \\
1 & \alpha^{\prime \prime} & \beta^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
3 & \operatorname{Tr}(\alpha) & \operatorname{Tr}(\beta) \\
\operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}(\alpha \beta) \\
\operatorname{Tr}(\beta) & \operatorname{Tr}(\alpha \beta) & \operatorname{Tr}\left(\beta^{2}\right)
\end{array}\right]
$$

where

$$
\operatorname{Tr}(\theta)=\theta+\theta^{\prime}+\theta^{\prime \prime}
$$

for any algebraic number θ. Since $\operatorname{Tr}(\theta)$ is rational, each element of $P \cdot{ }^{t} P$ is a rational number. Then there exists a right elementary transformation U whose elements are rational numbers such that

$$
\left(P \cdot{ }^{t} P\right) \cdot U=I
$$

where I indicates the identity matrix. So that,

$$
P \cdot\left({ }^{t} P \cdot U\right)=I
$$

Therefore we know

$$
P^{-1}={ }^{t} P \cdot U=\left[\begin{array}{ccc}
\omega & \mu & \nu \\
\omega^{\prime} & \mu^{\prime} & \nu^{\prime} \\
\omega^{\prime \prime} & \mu^{\prime \prime} & \nu^{\prime \prime}
\end{array}\right]
$$

Lemma 2.2. The inverse matrix of Q is given by

$$
Q^{-1}=\left[\begin{array}{ccc}
\omega & \mu & \nu \\
\omega^{\prime}+\omega^{\prime \prime} & \mu^{\prime}+\mu^{\prime \prime} & \nu^{\prime}+\nu^{\prime \prime} \\
i\left(\omega^{\prime}-\omega^{\prime \prime}\right) & i\left(\mu^{\prime}-\mu^{\prime \prime}\right) & i\left(\nu^{\prime}-\nu^{\prime \prime}\right)
\end{array}\right]
$$

Therefore, the canonical basis $\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$ of \mathbf{R}^{3} is given by

$$
\begin{aligned}
& \mathbf{e}_{1}=\omega \mathbf{u}_{0}+\left(\omega^{\prime}+\omega^{\prime \prime}\right) \mathbf{u}_{1}+i\left(\omega^{\prime}-\omega^{\prime \prime}\right) \mathbf{u}_{2} \\
& \mathbf{e}_{2}=\mu \mathbf{u}_{0}+\left(\mu^{\prime}+\mu^{\prime \prime}\right) \mathbf{u}_{1}+i\left(\mu^{\prime}-\mu^{\prime \prime}\right) \mathbf{u}_{2} \\
& \mathbf{e}_{3}=\nu \mathbf{u}_{0}+\left(\nu^{\prime}+\nu^{\prime \prime}\right) \mathbf{u}_{1}+i\left(\nu^{\prime}-\nu^{\prime \prime}\right) \mathbf{u}_{2}
\end{aligned}
$$

Corollary 2.3. The projections of $\mathbf{e}_{i}, i=1,2,3$ by π are given by

$$
\begin{aligned}
& \pi \mathbf{e}_{1}=\left(\omega^{\prime}+\omega^{\prime \prime}\right) \mathbf{u}_{1}+i\left(\omega^{\prime}-\omega^{\prime \prime}\right) \mathbf{u}_{2} \\
& \pi \mathbf{e}_{2}=\left(\mu^{\prime}+\mu^{\prime \prime}\right) \mathbf{u}_{1}+i\left(\mu^{\prime}-\mu^{\prime \prime}\right) \mathbf{u}_{2} \\
& \pi \mathbf{e}_{3}=\left(\nu^{\prime}+\nu^{\prime \prime}\right) \mathbf{u}_{1}+i\left(\nu^{\prime}-\nu^{\prime \prime}\right) \mathbf{u}_{2}
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& Q^{-1} \pi \mathbf{e}_{1}=\left(\begin{array}{c}
0 \\
\omega^{\prime}+\omega^{\prime \prime} \\
i\left(\omega^{\prime}-\omega^{\prime \prime}\right)
\end{array}\right), Q^{-1} \pi \mathbf{e}_{2}=\left(\begin{array}{c}
0 \\
\mu^{\prime}+\mu^{\prime \prime} \\
i\left(\mu^{\prime}-\mu^{\prime \prime}\right)
\end{array}\right) \\
& Q^{-1} \pi \mathbf{e}_{3}=\left(\begin{array}{c}
0 \\
\nu^{\prime}+\nu^{\prime \prime} \\
i\left(\nu^{\prime}-\nu^{\prime \prime}\right)
\end{array}\right), \text { and }(\omega, \mu, \nu)=\frac{1}{1+\alpha \gamma+\beta \delta}(1, \gamma, \delta)
\end{aligned}
$$

Proof. Recall that π is the projection on the plane \mathbf{P} along \mathbf{u}_{0}. The plane \mathbf{P} which is orthogonal ${ }^{t}(1, \gamma, \delta)$ is spanned by \mathbf{u}_{1} and \mathbf{u}_{2}. Hence, we can get the above
from Lemma 2.2. The second assertion is obtained by $Q^{-1} \mathbf{u}_{1}=\mathbf{e}_{2}, Q^{-1} \mathbf{u}_{2}=\mathbf{e}_{3}$. Put

$$
\mathbf{e}_{i}=\pi \mathbf{e}_{i}+c_{i} \mathbf{u}_{0}, \quad i=1,2,3
$$

Then from the relation

$$
\left\langle\mathbf{e}_{i},\left(\begin{array}{l}
1 \\
\gamma \\
\delta
\end{array}\right)\right\rangle=\left\langle\pi \mathbf{e}_{i},\left(\begin{array}{c}
1 \\
\gamma \\
\delta
\end{array}\right)\right\rangle+c_{i}\left\langle\mathbf{u}_{0},\left(\begin{array}{l}
1 \\
\gamma \\
\delta
\end{array}\right)\right\rangle
$$

we have

$$
\left(c_{1}, c_{2}, c_{3}\right)=\frac{1}{1+\alpha \gamma+\beta \delta}(1, \gamma, \delta)
$$

On the other hand, we know from Lemma 2.2 that

$$
\left(c_{1}, c_{2}, c_{3}\right)=(\omega, \mu, \nu)
$$

Therefore, we arrive at the conclusion.

Lemma 2.4. The following relation holds:

$$
M Q=Q\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \left(\lambda^{\prime}+\lambda^{\prime \prime}\right) / 2 & -i\left(\lambda^{\prime}-\lambda^{\prime \prime}\right) / 2 \\
0 & i\left(\lambda^{\prime}-\lambda^{\prime \prime}\right) / 2 & \left(\lambda^{\prime}+\lambda^{\prime \prime}\right) / 2
\end{array}\right]
$$

Proof. The proof is easily obtained from the equations

$$
\begin{aligned}
M \mathbf{u}_{0} & =\lambda \mathbf{u}_{0}, \quad M \mathbf{u}_{1}=\frac{\lambda^{\prime}}{2}\left(\mathbf{u}_{1}+i \mathbf{u}_{2}\right)+\frac{\lambda^{\prime \prime}}{2}\left(\mathbf{u}_{1}-i \mathbf{u}_{2}\right) \\
M \mathbf{u}_{2} & =\frac{\lambda^{\prime}}{2 i}\left(\mathbf{u}_{1}+i \mathbf{u}_{2}\right)-\frac{\lambda^{\prime \prime}}{2 i}\left(\mathbf{u}_{1}-i \mathbf{u}_{2}\right)
\end{aligned}
$$

and the definitions of \mathbf{u}_{1} and \mathbf{u}_{2}.

Secondly, let us assume that the cubic field is totally real. We use the same notation ρ as the map from $\mathbf{Q}(\lambda)$ to \mathbf{R}^{3} by

$$
\rho(x):=\left(\begin{array}{c}
x \\
x^{\prime} \\
x^{\prime \prime}
\end{array}\right)
$$

Lemma 2.5. Let

$$
Q=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \alpha^{\prime} & \alpha^{\prime \prime} \\
\beta & \beta^{\prime} & \beta^{\prime \prime}
\end{array}\right]=\left[\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}\right] .
$$

Then the inverse matrix of Q is given by

$$
Q^{-1}=\left[\begin{array}{ccc}
\omega & \mu & \nu \\
\omega^{\prime} & \mu^{\prime} & \nu^{\prime} \\
\omega^{\prime \prime} & \mu^{\prime \prime} & \nu^{\prime \prime}
\end{array}\right]
$$

where ω, μ, ν is given as (2) in Lemma 2.1.
In stead of Lemma 2.2, Corollary 2.3, and Lemma 2.4, we have
Lemma 2.6. The following formula hold:

$$
\begin{aligned}
& \pi \mathbf{e}_{1}=\omega^{\prime} \mathbf{u}_{1}+\omega^{\prime \prime} \mathbf{u}_{2}, \\
& \pi \mathbf{e}_{2}=\mu^{\prime} \mathbf{u}_{1}+\mu^{\prime \prime} \mathbf{u}_{2}, \\
& \pi \mathbf{e}_{3}=\nu^{\prime} \mathbf{u}_{1}+\nu^{\prime \prime} \mathbf{u}_{2} .
\end{aligned}
$$

Therefore, we have

$$
Q^{-1} \pi \mathbf{e}_{1}=\left(\begin{array}{c}
0 \\
\omega^{\prime} \\
\omega^{\prime \prime}
\end{array}\right), Q^{-1} \pi \mathbf{e}_{2}=\left(\begin{array}{c}
0 \\
\mu^{\prime} \\
\mu^{\prime \prime}
\end{array}\right), Q^{-1} \pi \mathbf{e}_{3}=\left(\begin{array}{c}
0 \\
\nu^{\prime} \\
\nu^{\prime \prime}
\end{array}\right),
$$

and

$$
(\omega, \mu, \nu)=\frac{1}{1+\alpha \gamma+\beta \delta}(1, \gamma, \delta) .
$$

Moreover, we know trivially

$$
M Q=Q\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda^{\prime} & 0 \\
0 & 0 & \lambda^{\prime \prime}
\end{array}\right]
$$

We have the following corollary in the both cases:

Corollary 2.7. Let us define R_{λ} by

$$
R_{\lambda}:= \begin{cases}{\left[\begin{array}{cc}
\left(\lambda^{\prime}+\lambda^{\prime \prime}\right) / 2 & -i\left(\lambda^{\prime}-\lambda^{\prime \prime}\right) / 2 \\
i\left(\lambda^{\prime}-\lambda^{\prime \prime}\right) / 2 & \left(\lambda^{\prime}+\lambda^{\prime \prime}\right) / 2
\end{array}\right]} & \text { if } \\
\mathbf{Q}(\lambda) \text { is not totally real, } \\
{\left[\begin{array}{cc}
\lambda^{\prime} & 0 \\
0 & \lambda^{\prime \prime}
\end{array}\right]} & \text { if } \\
\mathbf{Q}(\lambda) \text { is totally real, }\end{cases}
$$

then we have

$$
M Q=Q\left[\begin{array}{c|cc}
\lambda & 0 & 0 \\
\hline 0 & R_{\lambda} \\
0 &
\end{array}\right]
$$

Let us define the domains \widehat{Y} and $\widehat{Y}_{i}, i=1,2,3$ as follows:

$$
\widehat{Y}:=Q^{-1}(\widehat{X}) \quad \text { and } \quad \widehat{Y}_{i}:=Q^{-1}\left(\widehat{X}_{i}\right) .
$$

Then the domains \widehat{Y} and \widehat{Y}_{i} have explicit forms (see Fig. 1). From now on, remark that \widehat{Y} and \widehat{Y}_{i} are written as domains in $\mathbf{R} \times \mathbf{R}^{2}$.

Lemma 2.8. The domains \widehat{Y} and $\widehat{Y}_{i}, i=1,2,3$ are given by

$$
\begin{aligned}
\widehat{Y}_{i}= & \left\{\left(t \omega,-\sum_{k=1}^{\infty} b_{k}^{*} R_{\lambda}^{k-1} \mathbf{v}\right) \mid 0 \leq t<t_{i}^{0},\right. \\
& \left.\left(b_{1}^{*}, b_{2}^{*}, \ldots\right) \text { is an admissible sequence starting at } i \text { in } G^{*}\right\},
\end{aligned}
$$

where

$$
\mathbf{v}=\left\{\begin{array}{lll}
\binom{\omega^{\prime}+\omega^{\prime \prime}}{i\left(\omega^{\prime}-\omega^{\prime \prime}\right)} & \text { if } & \mathbf{Q}(\lambda) \text { is not totally real, } \\
\binom{\omega^{\prime}}{\omega^{\prime \prime}} & \text { if } & \mathbf{Q}(\lambda) \text { is totally real. }
\end{array}\right.
$$

Proof. From the definitions of \widehat{X}_{i} and $\widehat{Y}_{i}, \widehat{Y}_{i}$ is given by

$$
\widehat{Y}_{i}=\left\{t \omega Q^{-1} \mathbf{u}_{0}+Q^{-1} \mathbf{x} \mid 0 \leq t<t_{i}^{0}, \mathbf{x} \in X_{i}\right\} .
$$

Using the formula of X_{i} and $Q^{-1} \mathbf{u}_{0}=\mathbf{e}_{1}$, we have

$$
\begin{aligned}
\widehat{Y}_{i}= & \left\{t \omega \mathbf{e}_{1}-\sum_{k=1}^{\infty} b_{k}^{*} Q^{-1} M^{k-1} \pi \mathbf{e}_{1} \mid 0 \leq t<t_{i}^{0},\right. \\
& \left.\left(b_{1}^{*}, b_{2}^{*}, \ldots\right) \text { is an admissible sequence starting at } i \text { in } G^{*}\right\} .
\end{aligned}
$$

From the fact that

$$
Q^{-1} M^{k}=\left[\begin{array}{c|ll}
\lambda^{k} & 0 & 0 \\
\hline 0 & R_{\lambda}^{k} \\
0 &
\end{array}\right] \quad Q^{-1} \quad \text { and } \quad Q^{-1} \pi \mathbf{e}_{1}=\mathbf{v},
$$

we have the conclusion.
Now, let us define the transformation \widehat{S}_{λ} on \widehat{Y} by

$$
\widehat{S}_{\lambda}:=Q^{-1} \circ \widehat{T}_{\lambda} \circ Q .
$$

Proposition 2.9. The transformation \widehat{S}_{λ} on \widehat{Y} is given explicitly by

$$
\widehat{S}_{\lambda}\left(t \omega,-\sum_{k=1}^{\infty} b_{k}^{*} R_{\lambda}^{k-1} \mathbf{v}\right)=\left((\lambda t \omega-[\lambda t] \omega),-[\lambda t] \mathbf{v}-\sum_{k=1}^{\infty} b_{k}^{*} R_{\lambda}^{k} \mathbf{v}\right)
$$

and \widehat{S}_{λ} on \widehat{Y} is surjective.
Proof. The proof is obtained from Proposition 1.1.

3. Reduction theorem

Let $\widehat{\mathbf{Z}}:=[0, \omega) \times \mathbf{R}^{2}$ and let us define the transformation \widetilde{S}_{λ} on $\widehat{\mathbf{Z}}$ by

$$
\widetilde{S}_{\lambda}\left(x,\binom{y}{z}\right)=\left(\left(\lambda x-\omega\left[\frac{\lambda x}{\omega}\right]\right),-\left[\frac{\lambda x}{\omega}\right] \mathbf{v}+R_{\lambda}\binom{y}{z}\right) .
$$

Then, the restriction of the map \widetilde{S}_{λ} on the set \widehat{Y} coincides with \widehat{S}_{λ}. In stead of the transformation $T_{\lambda}:[0,1) \rightarrow[0,1)$

$$
T_{\lambda} x=\lambda x-[\lambda x],
$$

let us introduce the following transformation $T_{\lambda}^{\prime}:[0, \omega) \rightarrow[0, \omega)$ by

$$
T_{\lambda}^{\prime} x=\lambda x-\omega\left[\frac{\lambda x}{\omega}\right] .
$$

Then dynamical systems $\left([0,1), T_{\lambda}\right)$ and $\left([0, \omega), T_{\lambda}^{\prime}\right)$ are isomorphic by the map : $x \rightarrow \omega x$ and for any $x \in[0, \omega)$ can be expressed by

$$
x=\omega \sum_{k=1}^{\infty} \frac{b_{k}}{\lambda^{k}},
$$

where $\left(b_{1}, b_{2}, \ldots\right)$ is the admissible sequence of $x / \omega \in[0,1)$ by the transformation T_{λ}. And we can say that the transformation \widehat{S}_{λ} is the natural extension of T_{λ}^{\prime} and T_{λ}.

Hereafter, we denote $\rho(x)$ by the map from $\mathbf{Q}(\lambda)$ to $\mathbf{R} \times \mathbf{R}^{2}$, that is,

$$
\rho(x)= \begin{cases}\left(x,\binom{x^{\prime}+x^{\prime \prime}}{\left(x^{\prime}-x^{\prime \prime}\right) i}\right) & \text { if } \mathbf{Q}(\lambda) \text { is not a totally real cubic field, } \\ \left(x,\binom{x^{\prime}}{x^{\prime \prime}}\right) & \text { if } \mathbf{Q}(\lambda) \text { is a totally real cubic field. }\end{cases}
$$

Lemma 3.1. For any real number $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$, we have

$$
\widetilde{S}_{\lambda} \rho(x)=\rho(y),
$$

where $y=T_{\lambda}^{\prime} x$.
Proof. From the definitions of $T_{\lambda}^{\prime} x, \widetilde{S}_{\lambda}$ and ρ, we know

On the other hand, by $y=\lambda x-\omega[\lambda x / \omega]$, we see $\rho(y)=\widetilde{S}_{\lambda} \rho(x)$.
Let us introduce the concept of reduced.
Definition 3.2. A real number $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$ is said to be reduced if $\rho(x) \in$ \widehat{Y}.

Lemma 3.3. Let $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$ be reduced. Then
(1) $T_{\lambda}^{\prime} x$ is reduced,
(2) there exists x^{*} such that x^{*} is reduced and $T_{\lambda}^{\prime} x^{*}=x$.

Proof. (1) is easily obtained from Lemma 3.1.
(2) From Proposition 2.9, the transformation $\widetilde{S}_{\lambda} \mid \widehat{Y}=\widehat{S}_{\lambda}$ is surjective. Hence, there exists $\mathbf{x}^{*} \in \widehat{Y}$ such that

$$
\widehat{S}_{\lambda}\left(\mathbf{x}^{*}\right)=\rho(x)
$$

We put

$$
\mathbf{x}^{*}=\left(x^{*},\binom{x_{2}}{x_{3}}\right)
$$

Then

$$
T_{\lambda}^{\prime} x^{*}=x
$$

Thus it suffice to show that

$$
\mathbf{x}^{*}=\rho\left(x^{*}\right) .
$$

Here we only show this in the case $\mathbf{Q}(\lambda)$ is not totally real field. In the case of totally real, it is easy to show this relation. From $\widehat{S}_{\lambda}\left(\mathbf{x}^{*}\right)=\rho(x)$, we have

$$
\lambda x^{*}-\omega\left[\frac{\lambda x^{*}}{\omega}\right]=x
$$

and

$$
-\left[\frac{\lambda x^{*}}{\omega}\right] \mathbf{v}+R_{\lambda}\binom{x_{2}}{x_{3}}=\binom{x^{\prime}+x^{\prime \prime}}{\left(x^{\prime}-x^{\prime \prime}\right) i}
$$

In the two equations above, we take algebraic conjugates of the former one and substitute it to $-\left[\left(\lambda x^{*} / \omega\right)(\mathbf{v})\right]$ of the latter one. From the fact that $\lambda^{\prime} \neq \lambda^{\prime \prime}$, we have

$$
x_{2}=x^{* \prime}+x^{* \prime \prime} \text { and } x_{3}=\left(x^{* \prime}-x^{* \prime \prime}\right) i
$$

We can get the result.

Lemma 3.4. For $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$ we put

$$
x=\frac{1}{q}\left(u+v \frac{1}{\lambda}+w \frac{1}{\lambda^{2}}\right), \quad q, u, v, w \in \mathbf{Z}
$$

and

$$
\omega=\frac{1}{q_{0}}\left(u_{0}+v_{0} \frac{1}{\lambda}+w_{0} \frac{1}{\lambda^{2}}\right), \quad q_{0}, u_{0}, v_{0}, w_{0} \in \mathbf{Z}
$$

Let $T_{\lambda}^{\prime k} y=x$, then there exist integers u_{k}, v_{k} and w_{k} such that

$$
y=\frac{1}{q q_{0}}\left(u_{k}+v_{k} \frac{1}{\lambda}+w_{k} \frac{1}{\lambda^{2}}\right) .
$$

Proof. From $T_{\lambda}^{\prime k} y=x, y$ is represented by

$$
y=\omega\left(\sum_{i=1}^{k} b_{i} \lambda^{-i}\right)+x \lambda^{-k} .
$$

Therefore, using the equation $1 / \lambda^{3}=1-k_{1} / \lambda-k_{2} / \lambda^{2}$, we can get the above.
We call $q q_{0}$ the quotient of $T_{\lambda}^{\prime k}(x)$. We claim that the quotient is independent of k.

Proposition 3.5. Let $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$ be reduced. Then λ-expansion of x / ω is purely periodic, that is, there exists an integer k such that $T_{\lambda}^{\prime k} x=x$.

Proof. We put

$$
x=\frac{1}{q}\left(u+v \frac{1}{\lambda}+w \frac{1}{\lambda^{2}}\right), \quad q, u, v, w \in \mathbf{Z} .
$$

Lemma 3.3 shows that there exists a sequence $\left(x_{0}^{*}, x_{1}^{*}, \ldots\right)$ such that x_{i}^{*} is reduced and $T_{\lambda}^{\prime} x_{i}^{*}=x_{i-1}^{*}$ for $i \in \mathbf{N}$ where $x_{0}^{*}:=x$. We know the finiteness of the cardinarity of the set $\left\{x_{i}^{*} \mid x_{i}^{*}\right.$ is reduced and $T_{\lambda}^{\prime} x_{i}^{*}=x_{i-1}^{*}$ for $\left.i \in \mathbf{N}\right\}$ since \widehat{Y} is a bounded set and the quotient of $T_{\lambda}^{\prime} x$ is invariant. Hence, there exist integers j and $k(j-k>0)$ such that

$$
x_{j}^{*}=x_{j-k}^{*} .
$$

Then we have

$$
x_{k}^{*}=x_{0}^{*} .
$$

Consequently, we get

$$
T_{\lambda}^{\prime k} x=x
$$

Proposition 3.6. Let $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$. Then there exists $N_{1}>0$ such that $T_{\lambda}{ }^{\prime}{ }^{N} x$ is reduced for any $N>N_{1}$.

Proof. For any $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$, the point $\left(x,{ }^{t}(0,0)\right)$ is in \widehat{Y}. We consider the Euclidean distance d between $\widetilde{S}_{\lambda}^{k} \rho(x)$ and $\widetilde{S}_{\lambda}^{k}\left(x,{ }^{t}(0,0)\right)$ for all $k \in \mathbf{N}$. The first
coordinates are equal to each other for all $k \in \mathbf{N}$. Hence, we have

$$
d\left(\widetilde{S}_{\lambda}^{k}(\rho(x)), \widetilde{S}_{\lambda}^{k}\left(x,{ }^{t}(0,0)\right)\right) \leq u^{k} d\left(\rho(x), \quad\left(x,{ }^{t}(0,0)\right)\right)
$$

where

$$
u=\max \left(\left|\lambda^{\prime}\right|,\left|\lambda^{\prime \prime}\right|\right) .
$$

On the other hand, from the fact $\left(x,{ }^{t}(0,0)\right) \in \widehat{Y}$ and $\widetilde{S}_{\lambda} \mid \widehat{Y}=\widehat{S}_{\lambda}$ we know

$$
\widetilde{S}_{\lambda}^{k}\left(x,{ }^{t}(0,0)\right) \in \widehat{Y}
$$

for all k. Therefore $\widehat{S}_{\lambda}^{k} \rho(x)$ must exponentially comes near the set \widehat{Y}. Since the quotient of $T_{\lambda}{ }^{k} x$ is also invariant, using Lemma 3.1, we have

$$
\widetilde{S}_{\lambda}^{N} \rho(x)=\rho\left(T_{\lambda}^{\prime N} x\right) \in \widehat{Y}
$$

for sufficiently large N. Then $T_{\lambda}^{\prime} N_{x}$ is reduced. And, from Lemma 3.3 (1) we can get the above.

We can get the following result:

Theorem 3.7. Let $x \in[0, \omega)$, then
(1) $x \in \mathbf{Q}(\lambda)$ if and only if λ-expansion of x / ω is eventually periodic,
(2) $x \in \mathbf{Q}(\lambda)$ is reduced if and only if λ-expansion of x / ω is purely periodic.

Proof. (1) Assume that $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$. By Proposition 3.6, there exists $N>0$ such that $T_{\lambda}^{\prime N} x$ is reduced. Proposition 3.5 says that $T_{\lambda}^{\prime N} x / \omega=T_{\lambda}^{N}(x / \omega)$ has a purely periodic λ-expansion. Hence, λ-expansion of x / ω is eventually periodic. The opposite direction is trivial.
(2) Necessity is obtained by Proposition 3.5. Conversely, assume that λ-expansion of x / ω is purely periodic. From (1), we see $x \in \mathbf{Q}(\lambda) \cap[0, \omega)$. According to Proposition 3.6, there exists $N>0$ such that $T_{\lambda}^{\prime N} x$ is reduced. Therefore, we know that x is reduced by Lemma 3.3 (1) because of purely periodicity.

References

[1] S. Akiyama: Pisot numbers and greedy algorithm, Number Theory, Diophantine, Computational and Algebraic Aspects, Edited by K. Györy, A. Pethö and V. T. Sós, 9-21, de Gruyter 1998.
[2] P. Arnoux and Sh. Ito: Pisot substitutions and Rauzy fractals, Preprint.
[3] F.M. Dekking: Recurrent sets, Adv. in Math., 44 (1982), 78-104.
[4] Y. Hara and Sh. Ito: On real quadratic fields and periodic expansions, Tokyo J. Math., 12 (1989), 357-370.
[5] Sh. Ito: On periodic expansions of cubic numbers and Rauzy fractals, Preprint.
[6] Sh. Ito and M. Ohtsuki: Modified Jacobi-Pirron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms, Tokyo J. Math., 16 (1993), 441-472.
[7] B. Praggastis: Numeration systems and Markov partitions from self similar tilings, Transactions of the American Mathematical Society, 351 (1999), 3315-3349.
[8] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers, Bull. London math. Soc., 12 (1980), 269-278.
[9] B. Solmyak: Dynamics of self-similar tilings, Ergod. Th. \& Dynam. Sys., 17 (1997), 1-44.

Shunji Ito
Department of Mathematics Tsuda College
2-1-1 Tsuda-machi Kodaira Tokyo, 187-8577 Japan
e-mail: ito@tsuda.ac.jp
Yuki Sano
Department of Mathematics Tsuda College
2-1-1 Tsuda-machi Kodaira Tokyo, 187-8577 Japan
e-mail: sano@tsuda.ac.jp

