ON PERIODIC β -EXPANSIONS OF PISOT NUMBERS AND RAUZY FRACTALS

SHUNJI ITO, and YUKI SANO

(Received October 6, 1999)

0. Introduction

Let λ be the real maximum solution of the polynomial $p(x) : k_1, k_2 \in \mathbf{N}$ and $k_1 \ge k_2$ $(k_1 \ne 0)$

$$p(x) = x^3 - k_1 x^2 - k_2 x - 1.$$

The polynomial p(x) is given as the characteristic polynomial of the matrix M:

$$M = \begin{bmatrix} k_1 & k_2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

And for each k_1, k_2 the real cubic number λ is a Pisot number. A Pisot number is an algebraic integer whose conjugates other than itself have modulus less than one. Hence,

$$|\lambda'|, |\lambda''| < 1,$$

where λ', λ'' are algebraic conjugates of λ . We denote the column and row eigenvectors of λ by

$$M\begin{pmatrix}1\\lpha\\eta\end{pmatrix} = \lambda\begin{pmatrix}1\\lpha\\eta\end{pmatrix}$$
 and ${}^{t}M\begin{pmatrix}1\\\gamma\\\delta\end{pmatrix} = \lambda\begin{pmatrix}1\\\gamma\\\delta\end{pmatrix}$,

where t indicates the transpose.

Let $T_{\lambda} : [0, 1) \rightarrow [0, 1)$ be the transformation given by

$$T_{\lambda}x = \lambda x - [\lambda x],$$

where [r] denotes the integer part of a real number r. Then each $x \in [0, 1)$ is represented by

(*)
$$x = \sum_{k=1}^{\infty} \frac{b_k}{\lambda^k},$$

where $b_k = [\lambda T_{\lambda}^{k-1}x]$, k = 1, 2, ..., the expansion (*) of x is usually called β -expansion. In this paper, we call it λ -expansion.

Let $\mathbf{Q}(\lambda)$ be the smallest extension field of rational numbers \mathbf{Q} containing λ . K. Shmidt showed the following result in [8].

Theorem (Schmidt). A real number x is in $\mathbf{Q}(\lambda) \cap [0, 1)$ if and only if λ -expansion of x is eventually periodic.

In [1], Akiyama gives a sufficient condition of purely periodicity.

In this paper, we discuss when λ -expansion of x is purely periodic. For this purpose, we introduce the three dimensional domain \widehat{Y} with fractal boundary (see Fig. 1 and the definition in Section 2) and we say a real number $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$ is reduced if $\rho(x) \in \widehat{Y}$ where $\omega = 1/(1 + \alpha\gamma + \beta\delta)$, $\rho(x)$ is given by

$$\rho(x) = \begin{cases} t (x, x' + x'', (x' - x'')i) & \text{if } \mathbf{Q}(\lambda) \text{ is not a totally real cubic field,} \\ t (x, x', x'') & \text{if } \mathbf{Q}(\lambda) \text{ is a totally real cubic field,} \end{cases}$$

and x' and x'' denote algebraic conjugates of x. The main result of this paper is the following:

Main Theorem. Let x be a real number in $\mathbf{Q}(\lambda) \cap [0, 1)$. Then λ -expansion of x is purely periodic if and only if ωx is reduced.

The main tool of the proof is a natural extension on the domain \hat{Y} of the dynamical system ([0, 1), T_{λ}), which is discussed in [7] and [9] originally. And the basic idea of the proof can be found in [4] and [5].

1. Dual transformation of T_{λ}

From the property of the eigenvector $t(1, \gamma, \delta)$ such that

$$k_1 + \gamma = \lambda \cdot 1$$
 $k_2 + \delta = \lambda \cdot \gamma$ $1 = \lambda \cdot \delta$,

we see the transformation T_{λ} :

$$T_{\lambda}x = \lambda x \pmod{1}$$

Fig. 1. Figure of \widehat{Y} .

is the λ -transformation with the shift of finite type. The sequences $\{\{b_k\}_{k=1}^{\infty}\}$ of λ -expansion satisfies the following admissible condition:

- (1) $0 \le b_i \le k_1$,
- (2) if $b_i = k_1$ then $b_{i+1} \le k_2$,
- (3) if $(b_i, b_{i+1}) = (k_1, k_2)$ then $b_{i+2} = 0$.

In other words, the admissible sequence $(b_1, b_2, \ldots, b_k, \ldots)$ is given by the labeled graph G in Fig. 2.

Let $W^* = \bigcup_{n=0}^{\infty} \{1, 2, 3\}$ be the free monoid of $\{1, 2, 3\}$ and let us define the substitution $\sigma_{k_1,k_2} : W^* \to W^*$ by

$$\sigma_{k_1,k_2}: \underbrace{\begin{array}{c}1 \longrightarrow \overbrace{11\dots 12}^{k_1}\\2 \longrightarrow \overbrace{11\dots 13}^{k_2}\\3 \longrightarrow 1\end{array}}_{k_2}.$$

Then the matrix of the substitution σ_{k_1,k_2} is given by M and so it is called Pisot substitution. Moreover, the substitution σ_{k_1,k_2} satisfies the coincidence condition in [2]. Therefore, we have the following theorem.

Theorem (Arnoux-Ito). Let \mathbf{P} be the contractive invariant plane with respect to the linear transformation M, which is given by

$$\mathbf{P} = \left\{ \mathbf{x} \in \mathbf{R}^3 \mid \langle \mathbf{x}, t(1, \gamma, \delta) \rangle = 0 \right\}.$$

Fig. 2. Labeled graph G.

Then, there exist the closed domains X and X_i , i = 1, 2, 3 on the plane **P** satisfying the following properties:

The boundaries of X and X_i are fractal Jordan curves and

$$X = \bigcup_{i=1,2,3} X_i \quad (disjoint),$$
$$\bigcup_{\mathbf{z} \in \{\pi(m(\mathbf{e}_2 - \mathbf{e}_1) + n(\mathbf{e}_3 - \mathbf{e}_1)) \mid m, n \in \mathbf{Z}\}} (X + \pi \mathbf{z}) = \mathbf{P} \quad (disjoint),$$

and moreover

$$M^{-1}X_1 = \bigcup_{j=0}^{k_1-1} (X_1 - j\pi \mathbf{e}_3) \cup \bigcup_{j=0}^{k_2-1} (X_2 - j\pi \mathbf{e}_3) \cup X_3 \quad (disjoint),$$

$$M^{-1}X_2 = X_1 - k_1\pi \mathbf{e}_3, \qquad M^{-1}X_3 = X_2 - k_2\pi \mathbf{e}_3,$$

where $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ is the canonical basis of \mathbf{R}^3 , $\pi : \mathbf{R}^3 \to \mathbf{P}$ is the projection along ${}^t(1, \alpha, \beta)$, and $A \cup B$ (disjoint) means that the interior of A and the interior of B are disjoint sets.

REMARK. By using the notation of [6], we will give a survey how the domains X, X_i , i = 1, 2, 3 are obtained. From the substitution σ_{k_1,k_2} , let us give the map Σ_{k_1,k_2}

Fig. 3. Figure of $\Sigma_{2,1}(0, E_i)$, i = 1, 2, 3.

on the family of patches of the stepped surface of P by

$$\Sigma_{k_1,k_2} : (\mathbf{0}, E_1) \longrightarrow (\mathbf{0}, E_3) + \sum_{k=1}^{k_1} (\mathbf{e}_1 - k\mathbf{e}_3, E_1) + \sum_{k=1}^{k_2} (\mathbf{e}_2 - k\mathbf{e}_3, E_2)$$

(0, E_2) $\longrightarrow (\mathbf{0}, E_1)$
(0, E_3) $\longrightarrow (\mathbf{0}, E_2)$
 $\Sigma_{k_1,k_2} (\mathbf{x}, E_i) := M^{-1}\mathbf{x} + \Sigma_{k_1,k_2} (\mathbf{0}, E_i)$

(see Fig. 3). Then, the domains X and X_i , i = 1, 2, 3 are given by

$$X = \lim_{n \to \infty} M^n \pi \left(\Sigma_{k_1, k_2} \right)^n \left(\bigcup_{i=1,2,3} (\mathbf{e}_i, E_i) \right),$$

and

$$X_i = \lim_{n \to \infty} M^n \pi \left(\Sigma_{k_1, k_2} \right)^n (\mathbf{e}_i, E_i)$$

(see Fig. 4).

The boundaries of the domains $X, X_i, i = 1, 2, 3$ are given by the following manner: Let $\theta_{k_1,k_2} : G \langle 1, 2, 3 \rangle \to G \langle 1, 2, 3 \rangle$ be the endomorphism of the free group of rank 3 S. Ito, and Y. Sano

Fig. 4. Figure of $X = \bigcup_{i=1,2,3} X_i$ on $(k_1, k_2 = (1, 1))$.

given by

$$1 \longrightarrow 3$$

$$\theta_{k_1,k_2}: 2 \longrightarrow 1 \overbrace{3^{-1}3^{-1}\dots3^{-1}}^{k_1},$$

$$3 \longrightarrow 2 \overbrace{3^{-1}3^{-1}\dots3^{-1}}^{k_2}$$

then the boundaries are given by

$$\partial X = \lim_{n \to \infty} M^n \pi \left(\mathbf{f}_1^{(n)} + \mathcal{K} \left(\theta^n \left(21^{-1} 32^{-1} 13^{-1} \right) \right) \right),$$

$$\partial X_i = \lim_{n \to \infty} M^n \pi \left(\mathbf{f}_i^{(n)} + \mathcal{K} \left(\theta^n \left(jkj^{-1}k^{-1} \right) \right) \right),$$

where $(\mathbf{f}_1^{(n)}, \mathbf{f}_2^{(n)}, \mathbf{f}_3^{(n)}) = M^{-n}$, \mathcal{K} is the polygonal realization map on $G \langle 1, 2, 3 \rangle$, and $\{i, j, k\} = \{1, 2, 3\}$ (see [6], [3] in detail).

From the fact in Theorem (Arnoux-Ito) and the property $M\pi \mathbf{e}_3 = \pi M \mathbf{e}_3 = \pi \mathbf{e}_1$, we know

$$X = \bigcup_{j=0}^{k_1} (MX_1 - j\pi \mathbf{e}_1) \cup \bigcup_{j=0}^{k_2} (MX_2 - j\pi \mathbf{e}_1) \cup MX_3 \quad (disjoint).$$

On the notation

$$P_j^{(1)} = MX_1 - j\pi \mathbf{e}_1, \quad j = 0, 1, \dots, k_1,$$

$$P_j^{(2)} = MX_2 - j\pi \mathbf{e}_1, \quad j = 0, 1, \dots, k_2,$$

$$P_0^{(3)} = MX_3,$$

the set $\xi = \{P_0^{(1)}, \dots, P_{k_1}^{(1)}, P_0^{(2)}, \dots, P_{k_2}^{(2)}, P_0^{(3)}\}$ is a partition of X. Using the partition ξ , let us define the transformation T_{λ}^* on X by

$$T_{\lambda}^* \mathbf{x} = M^{-1} \mathbf{x} + b^* \pi \mathbf{e}_3$$
 if $\mathbf{x} \in P_{b^*}^{(i)}$ for some *i* and b^* .

Then, for each $\mathbf{x} \in X$ we have the following sequence (b_1^*, b_2^*, \ldots) by

$$T_{\lambda}^{*k-1}\mathbf{x} \in P_{b_k^*}^{(i)}$$
 for some i ,

and we have the expansion: for each $\mathbf{x} \in X$,

$$\mathbf{x} = -\sum_{k=1}^{\infty} b_k^* M^{k-1} \pi \mathbf{e}_1.$$

We see that the sequence $(b_1^*, b_2^*, ...)$ is obtained from the labeled graph G^* , which is dual of the graph G (see Fig. 5). Therefore, we say the transformation T_{λ}^* is a *dual* transformation of T_{λ} .

Let us define the three dimensional domains $\hat{X} = \bigcup_{i=1,2,3} \hat{X}_i$ as follows: for i = 1, 2, 3

$$\widehat{X}_i := \left\{ t \omega \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix} + \mathbf{x} \mid 0 \le t < t_i^0, \mathbf{x} \in X_i \right\},\$$

where $(t_1^0, t_2^0, t_3^0) = (1, \gamma, \delta)$ and $\omega = 1/(1 + \alpha\gamma + \beta\delta)$ (see Fig. 6). Let us define the transformation $\widehat{T}_{\lambda} : \widehat{X} \to \mathbf{R}^3$ by

$$\widehat{T}_{\lambda}\left(t\omega\begin{pmatrix}1\\\alpha\\\beta\end{pmatrix}+\mathbf{x}\right) := \left(\lambda t\omega\begin{pmatrix}1\\\alpha\\\beta\end{pmatrix}-[\lambda t]\omega\begin{pmatrix}1\\\alpha\\\beta\end{pmatrix}+M\mathbf{x}-[\lambda t]\pi\mathbf{e}_{1}\right).$$

Then we have the proposition.

Proposition 1.1. The transformation \hat{T}_{λ} is surjective and a.e. injective transformation on \hat{X} .

Fig. 5. Dual graph G^* .

Proof. By the Theorem (Arnoux-Ito), the domains X_i , i = 1, 2, 3 are decomposed in the following way:

$$X_{1} = \bigcup_{j=0}^{k_{1}-1} (MX_{1} - j\pi \mathbf{e}_{1}) \cup \bigcup_{j=0}^{k_{2}-1} (MX_{2} - j\pi \mathbf{e}_{1}) \cup MX_{3},$$

$$X_{2} = MX_{1} - k_{1}\pi \mathbf{e}_{1},$$

$$X_{3} = MX_{2} - k_{2}\pi \mathbf{e}_{1}.$$

On the other hand, the sets \hat{X}_i , i = 1, 2, 3 are transformed by M

$$M\widehat{X}_i = \left\{ \lambda t \omega \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix} + M \mathbf{x} \mid 0 \le t < t_i^0, \mathbf{x} \in X_i \right\}.$$

By using the fact that $\lambda \cdot 1 = k_1 + \gamma$, $\lambda \cdot \gamma = k_2 + \delta$, and $\lambda \cdot \delta = 1$, we cut the cylinder $M\hat{X}_1$ to k_1 pieces of the length ω and one piece of length $\gamma \omega$. Analogously, we cut the cylinder $M\hat{X}_2$ to k_2 pieces of the length ω and one piece of length $\delta \omega$. Then, applying \hat{T}_{λ} shows that \hat{T}_{λ} is surjective and injective except the boundary on \hat{X} (see Fig. 6).

Fig. 6. Figure of \hat{X} .

2. Preliminaries from algebra

We know the vector $\langle 1, \alpha, \beta \rangle$ is the basis of $\mathbf{Q}(\lambda)$, that is, for any $x \in \mathbf{Q}(\lambda)$ there exist rational numbers c_0, c_1 and c_2 such that

$$x = c_0 + c_1 \alpha + c_2 \beta,$$

and we denote x' and x'' which are algebraic conjugates of x, that is,

$$x' = c_0 + c_1 \alpha' + c_2 \beta' \in \mathbf{Q} \left(\lambda' \right),$$

$$x'' = c_0 + c_1 \alpha'' + c_2 \beta'' \in \mathbf{Q} \left(\lambda'' \right).$$

First, let us assume that the cubic field is not totally real. We will begin with introducing two maps $\eta : \mathbf{Q}(\lambda) \to \mathbf{R} \times \mathbf{C}^2$ and $\rho : \mathbf{Q}(\lambda) \to \mathbf{R}^3$ by

$$\eta(x) \coloneqq \begin{pmatrix} x \\ x' \\ x'' \end{pmatrix}$$
 and $\rho(x) \coloneqq \begin{pmatrix} x \\ x' + x'' \\ (x' - x'') i \end{pmatrix}$.

We get a few primitive lemmas and corollaries.

Lemma 2.1. Let

$$P := \begin{bmatrix} 1 & 1 & 1 \\ \alpha & \alpha' & \alpha'' \\ \beta & \beta' & \beta'' \end{bmatrix} \text{ and } Q := [\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2],$$

where

$$\mathbf{u}_0 := \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix}, \mathbf{u}_1 := \frac{1}{2} \left(\begin{pmatrix} 1 \\ \alpha' \\ \beta' \end{pmatrix} + \begin{pmatrix} 1 \\ \alpha'' \\ \beta'' \end{pmatrix} \right), \mathbf{u}_2 := \frac{1}{2i} \left(\begin{pmatrix} 1 \\ \alpha' \\ \beta' \end{pmatrix} - \begin{pmatrix} 1 \\ \alpha'' \\ \beta'' \end{pmatrix} \right).$$

Then, we have (1) for any $x \in \mathbf{Q}(\lambda)$

$$P(\eta(x)) = Q(\rho(x)),$$

(2) the inverse matrix of P is given by

$$P^{-1} = \begin{bmatrix} \omega & \mu & \nu \\ \omega' & \mu' & \nu' \\ \omega'' & \mu'' & \nu'' \end{bmatrix},$$

where

$$\omega = \frac{1}{D} \begin{vmatrix} \alpha' & \alpha'' \\ \beta' & \beta'' \end{vmatrix}, \quad \mu = \frac{1}{D} \left(\beta' - \beta'' \right),$$
$$\nu = \frac{1}{D} \left(\alpha'' - \alpha' \right), \quad D = \det P$$

(In Corollary 2.3, we see $\omega = 1/(1 + \alpha\gamma + \beta\delta)$).

Proof. (1) is easily obtained. (2) By Cramer's rule, we have

$$(P^{-1})_{11} = \omega, \ (P^{-1})_{12} = \mu, \text{ and } (P^{-1})_{13} = \nu.$$

In Corollary 2.3, we can see that ω, μ , and ν are elements of $\mathbf{Q}(\lambda)$. Consider the matrix $P \cdot {}^t P$:

$$P \cdot {}^{t}P = \begin{bmatrix} 1 & 1 & 1 \\ \alpha & \alpha' & \alpha'' \\ \beta & \beta' & \beta'' \end{bmatrix} \begin{bmatrix} 1 & \alpha & \beta \\ 1 & \alpha' & \beta' \\ 1 & \alpha'' & \beta'' \end{bmatrix} = \begin{bmatrix} 3 & Tr(\alpha) & Tr(\beta) \\ Tr(\alpha) & Tr(\alpha^{2}) & Tr(\alpha\beta) \\ Tr(\beta) & Tr(\alpha\beta) & Tr(\beta^{2}) \end{bmatrix},$$

where

$$Tr(\theta) = \theta + \theta' + \theta'',$$

for any algebraic number θ . Since $Tr(\theta)$ is rational, each element of $P \cdot {}^t P$ is a rational number. Then there exists a right elementary transformation U whose elements are rational numbers such that

$$\left(P\cdot^{t}P\right)\cdot U=I,$$

where I indicates the identity matrix. So that,

$$P\cdot \left({}^{t}P\cdot U\right) = I.$$

Therefore we know

$$P^{-1} = {}^{t}P \cdot U = \begin{bmatrix} \omega & \mu & \nu \\ \omega' & \mu' & \nu' \\ \omega'' & \mu'' & \nu'' \end{bmatrix}.$$

Lemma 2.2. The inverse matrix of Q is given by

$$Q^{-1} = \begin{bmatrix} \omega & \mu & \nu \\ \omega' + \omega'' & \mu' + \mu'' & \nu' + \nu'' \\ i (\omega' - \omega'') & i (\mu' - \mu'') & i (\nu' - \nu'') \end{bmatrix}.$$

Therefore, the canonical basis $\langle e_1, e_2, e_3 \rangle$ of R^3 is given by

$$\mathbf{e}_{1} = \omega \mathbf{u}_{0} + (\omega' + \omega'') \mathbf{u}_{1} + i (\omega' - \omega'') \mathbf{u}_{2},$$

$$\mathbf{e}_{2} = \mu \mathbf{u}_{0} + (\mu' + \mu'') \mathbf{u}_{1} + i (\mu' - \mu'') \mathbf{u}_{2},$$

$$\mathbf{e}_{3} = \nu \mathbf{u}_{0} + (\nu' + \nu'') \mathbf{u}_{1} + i (\nu' - \nu'') \mathbf{u}_{2}.$$

Corollary 2.3. The projections of \mathbf{e}_i , i = 1, 2, 3 by π are given by

$$\pi \mathbf{e}_1 = (\omega' + \omega'') \mathbf{u}_1 + i (\omega' - \omega'') \mathbf{u}_2,$$

$$\pi \mathbf{e}_2 = (\mu' + \mu'') \mathbf{u}_1 + i (\mu' - \mu'') \mathbf{u}_2,$$

$$\pi \mathbf{e}_3 = (\nu' + \nu'') \mathbf{u}_1 + i (\nu' - \nu'') \mathbf{u}_2.$$

Moreover, we have

$$\begin{aligned} Q^{-1}\pi\mathbf{e}_{1} &= \begin{pmatrix} 0\\ \omega'+\omega''\\ i\left(\omega'-\omega''\right) \end{pmatrix}, \ Q^{-1}\pi\mathbf{e}_{2} &= \begin{pmatrix} 0\\ \mu'+\mu''\\ i\left(\mu'-\mu''\right) \end{pmatrix}, \\ Q^{-1}\pi\mathbf{e}_{3} &= \begin{pmatrix} 0\\ \nu'+\nu''\\ i\left(\nu'-\nu''\right) \end{pmatrix}, \ and \ (\omega,\mu,\nu) &= \frac{1}{1+\alpha\gamma+\beta\delta} \left(1,\gamma,\delta\right). \end{aligned}$$

Proof. Recall that π is the projection on the plane **P** along \mathbf{u}_0 . The plane **P** which is orthogonal ${}^t(1, \gamma, \delta)$ is spanned by \mathbf{u}_1 and \mathbf{u}_2 . Hence, we can get the above

from Lemma 2.2. The second assertion is obtained by $Q^{-1}\mathbf{u}_1 = \mathbf{e}_2$, $Q^{-1}\mathbf{u}_2 = \mathbf{e}_3$. Put

$$\mathbf{e}_i = \pi \mathbf{e}_i + c_i \mathbf{u}_0, \qquad i = 1, 2, 3.$$

Then from the relation

$$\left\langle \mathbf{e}_{i}, \begin{pmatrix} 1\\ \gamma\\ \delta \end{pmatrix} \right\rangle = \left\langle \pi \mathbf{e}_{i}, \begin{pmatrix} 1\\ \gamma\\ \delta \end{pmatrix} \right\rangle + c_{i} \left\langle \mathbf{u}_{0}, \begin{pmatrix} 1\\ \gamma\\ \delta \end{pmatrix} \right\rangle,$$

we have

$$(c_1, c_2, c_3) = \frac{1}{1 + \alpha \gamma + \beta \delta} (1, \gamma, \delta).$$

On the other hand, we know from Lemma 2.2 that

$$(c_1, c_2, c_3) = (\omega, \mu, \nu).$$

Therefore, we arrive at the conclusion.

Lemma 2.4. The following relation holds:

$$MQ = Q \begin{bmatrix} \lambda & 0 & 0 \\ 0 & (\lambda' + \lambda'')/2 & -i(\lambda' - \lambda'')/2 \\ 0 & i(\lambda' - \lambda'')/2 & (\lambda' + \lambda'')/2 \end{bmatrix}.$$

Proof. The proof is easily obtained from the equations

$$M\mathbf{u}_0 = \lambda \mathbf{u}_0, \quad M\mathbf{u}_1 = \frac{\lambda'}{2} (\mathbf{u}_1 + i\mathbf{u}_2) + \frac{\lambda''}{2} (\mathbf{u}_1 - i\mathbf{u}_2),$$
$$M\mathbf{u}_2 = \frac{\lambda'}{2i} (\mathbf{u}_1 + i\mathbf{u}_2) - \frac{\lambda''}{2i} (\mathbf{u}_1 - i\mathbf{u}_2),$$

and the definitions of \mathbf{u}_1 and \mathbf{u}_2 .

Secondly, let us assume that the cubic field is totally real. We use the same notation ρ as the map from $\mathbf{Q}(\lambda)$ to \mathbf{R}^3 by

$$\rho(x) := \begin{pmatrix} x \\ x' \\ x'' \end{pmatrix}.$$

Lemma 2.5. Let

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ \alpha & \alpha' & \alpha'' \\ \beta & \beta' & \beta'' \end{bmatrix} = [\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2].$$

Then the inverse matrix of Q is given by

$$Q^{-1} = \begin{bmatrix} \omega & \mu & \nu \\ \omega' & \mu' & \nu' \\ \omega'' & \mu'' & \nu'' \end{bmatrix},$$

where ω, μ, ν is given as (2) in Lemma 2.1.

In stead of Lemma 2.2, Corollary 2.3, and Lemma 2.4, we have

Lemma 2.6. The following formula hold:

$$\pi \mathbf{e}_1 = \omega' \mathbf{u}_1 + \omega'' \mathbf{u}_2,$$

$$\pi \mathbf{e}_2 = \mu' \mathbf{u}_1 + \mu'' \mathbf{u}_2,$$

$$\pi \mathbf{e}_3 = \nu' \mathbf{u}_1 + \nu'' \mathbf{u}_2.$$

Therefore, we have

$$Q^{-1}\pi\mathbf{e}_1 = \begin{pmatrix} 0\\ \omega'\\ \omega'' \end{pmatrix}, Q^{-1}\pi\mathbf{e}_2 = \begin{pmatrix} 0\\ \mu'\\ \mu'' \end{pmatrix}, Q^{-1}\pi\mathbf{e}_3 = \begin{pmatrix} 0\\ \nu'\\ \nu'' \end{pmatrix},$$

and

$$(\omega, \mu, \nu) = \frac{1}{1 + \alpha \gamma + \beta \delta} (1, \gamma, \delta).$$

Moreover, we know trivially

$$MQ = Q \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda' & 0 \\ 0 & 0 & \lambda'' \end{bmatrix}.$$

We have the following corollary in the both cases:

Corollary 2.7. Let us define R_{λ} by

$$R_{\lambda} := \begin{cases} \begin{bmatrix} (\lambda' + \lambda'')/2 & -i (\lambda' - \lambda'')/2 \\ i (\lambda' - \lambda'')/2 & (\lambda' + \lambda'')/2 \end{bmatrix} & \text{if } \mathbf{Q}(\lambda) \text{ is not totally real,} \\ \\ \begin{bmatrix} \lambda' & 0 \\ 0 & \lambda'' \end{bmatrix} & \text{if } \mathbf{Q}(\lambda) \text{ is totally real,} \end{cases}$$

then we have

$$MQ = Q \begin{bmatrix} \lambda & 0 & 0 \\ 0 & R_{\lambda} \end{bmatrix}.$$

Let us define the domains \widehat{Y} and \widehat{Y}_i , i = 1, 2, 3 as follows:

$$\widehat{Y} := Q^{-1}\left(\widehat{X}\right)$$
 and $\widehat{Y}_i := Q^{-1}\left(\widehat{X}_i\right)$.

Then the domains \hat{Y} and \hat{Y}_i have explicit forms (see Fig. 1). From now on, remark that \hat{Y} and \hat{Y}_i are written as domains in $\mathbf{R} \times \mathbf{R}^2$.

Lemma 2.8. The domains \widehat{Y} and \widehat{Y}_i , i = 1, 2, 3 are given by

$$\begin{split} \widehat{Y}_i &= \left\{ \left(t\omega, -\sum_{k=1}^{\infty} b_k^* R_{\lambda}^{k-1} \mathbf{v} \right) \mid 0 \leq t < t_i^0, \\ &(b_1^*, b_2^*, \ldots) \text{ is an admissible sequence starting at } i \text{ in } G^* \end{split} \right. \end{split}$$

where

$$\mathbf{v} = \begin{cases} \begin{pmatrix} \omega' + \omega'' \\ i (\omega' - \omega'') \end{pmatrix} & \text{if } \mathbf{Q}(\lambda) \text{ is not totally real,} \\ \begin{pmatrix} \omega' \\ \omega'' \end{pmatrix} & \text{if } \mathbf{Q}(\lambda) \text{ is totally real.} \end{cases}$$

Proof. From the definitions of \widehat{X}_i and \widehat{Y}_i , \widehat{Y}_i is given by

$$\widehat{Y}_i = \left\{ t \omega Q^{-1} \mathbf{u}_0 + Q^{-1} \mathbf{x} \mid 0 \leq t < t_i^0, \mathbf{x} \in X_i \right\}.$$

Using the formula of X_i and $Q^{-1}\mathbf{u}_0 = \mathbf{e}_1$, we have

$$\widehat{Y}_{i} = \left\{ t \omega \mathbf{e}_{1} - \sum_{k=1}^{\infty} b_{k}^{*} Q^{-1} M^{k-1} \pi \mathbf{e}_{1} \mid 0 \leq t < t_{i}^{0}, \\ (b_{1}^{*}, b_{2}^{*}, \ldots) \text{ is an admissible sequence starting at } i \text{ in } G^{*} \right\}.$$

From the fact that

$$Q^{-1}M^{k} = \begin{bmatrix} \frac{\lambda^{k} \mid 0 \mid 0}{0} \\ 0 \mid R^{k}_{\lambda} \end{bmatrix} Q^{-1} \quad \text{and} \quad Q^{-1}\pi\mathbf{e}_{1} = \mathbf{v},$$

we have the conclusion.

Now, let us define the transformation \widehat{S}_{λ} on \widehat{Y} by

$$\widehat{S}_{\lambda} \coloneqq Q^{-1} \circ \widehat{T}_{\lambda} \circ Q.$$

Proposition 2.9. The transformation \hat{S}_{λ} on \hat{Y} is given explicitly by

$$\widehat{S}_{\lambda}\left(t\omega,-\sum_{k=1}^{\infty}b_{k}^{*}R_{\lambda}^{k-1}\mathbf{v}\right)=\left(\left(\lambda t\omega-\left[\lambda t\right]\omega\right),-\left[\lambda t\right]\mathbf{v}-\sum_{k=1}^{\infty}b_{k}^{*}R_{\lambda}^{k}\mathbf{v}\right)$$

and \widehat{S}_{λ} on \widehat{Y} is surjective.

Proof. The proof is obtained from Proposition 1.1.

3. Reduction theorem

Let $\widehat{\mathbf{Z}} := [0, \omega) \times \mathbf{R}^2$ and let us define the transformation \widetilde{S}_{λ} on $\widehat{\mathbf{Z}}$ by

$$\widetilde{S}_{\lambda}\left(x, \begin{pmatrix} y \\ z \end{pmatrix}\right) = \left(\left(\lambda x - \omega \begin{bmatrix} \lambda x \\ \omega \end{bmatrix}\right), -\begin{bmatrix} \lambda x \\ \omega \end{bmatrix}\mathbf{v} + R_{\lambda}\begin{pmatrix} y \\ z \end{pmatrix}\right).$$

Then, the restriction of the map \widetilde{S}_{λ} on the set \widehat{Y} coincides with \widehat{S}_{λ} . In stead of the transformation $T_{\lambda} : [0, 1) \to [0, 1)$

$$T_{\lambda}x = \lambda x - [\lambda x],$$

let us introduce the following transformation $T_{\lambda}':[0,\omega) \to [0,\omega)$ by

$$T'_{\lambda}x = \lambda x - \omega \left[\frac{\lambda x}{\omega}\right].$$

Then dynamical systems ([0, 1), T_{λ}) and ([0, ω), T'_{λ}) are isomorphic by the map : $x \to \omega x$ and for any $x \in [0, \omega)$ can be expressed by

$$x = \omega \sum_{k=1}^{\infty} \frac{b_k}{\lambda^k},$$

where $(b_1, b_2, ...)$ is the admissible sequence of $x/\omega \in [0, 1)$ by the transformation T_{λ} . And we can say that the transformation \widehat{S}_{λ} is the natural extension of T'_{λ} and T_{λ} .

Hereafter, we denote $\rho(x)$ by the map from $\mathbf{Q}(\lambda)$ to $\mathbf{R} \times \mathbf{R}^2$, that is,

$$\rho(x) = \begin{cases} \left(x, \left(\begin{array}{c} x' + x'' \\ (x' - x'') i \end{array}\right)\right) & \text{if } \mathbf{Q}(\lambda) \text{ is not a totally real cubic field,} \\ \left(x, \left(\begin{array}{c} x' \\ x'' \end{array}\right)\right) & \text{if } \mathbf{Q}(\lambda) \text{ is a totally real cubic field.} \end{cases}$$

Lemma 3.1. For any real number $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$, we have

$$S_{\lambda}\rho(x) = \rho(y),$$

where $y = T'_{\lambda}x$.

Proof. From the definitions of $T'_{\lambda}x$, \tilde{S}_{λ} and ρ , we know

$$\widetilde{S}_{\lambda}\rho\left(x\right) = \begin{cases} \left(\lambda x - \omega \begin{bmatrix} \frac{\lambda x}{\omega} \end{bmatrix}, -\begin{bmatrix} \frac{\lambda x}{\omega} \end{bmatrix} \begin{pmatrix} \omega' + \omega'' \\ (\omega' - \omega'') i \end{pmatrix} + R_{\lambda} \begin{pmatrix} x' + x'' \\ (x' - x'') i \end{pmatrix} \right) \\ \text{if } \mathbf{Q}\left(\lambda\right) \text{ is not totally real,} \\ \left(\lambda x - \omega \begin{bmatrix} \frac{\lambda x}{\omega} \end{bmatrix}, -\begin{bmatrix} \frac{\lambda x}{\omega} \end{bmatrix} \begin{pmatrix} \omega' \\ \omega'' \end{pmatrix} + R_{\lambda} \begin{pmatrix} x' \\ x'' \end{pmatrix} \right) \\ \text{if } \mathbf{Q}\left(\lambda\right) \text{ is totally real.} \end{cases}$$

On the other hand, by $y = \lambda x - \omega [\lambda x/\omega]$, we see $\rho(y) = \tilde{S}_{\lambda}\rho(x)$.

Let us introduce the concept of *reduced*.

DEFINITION 3.2. A real number $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$ is said to be reduced if $\rho(x) \in \widehat{Y}$.

Lemma 3.3. Let $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$ be reduced. Then

- (1) $T'_{\lambda}x$ is reduced,
- (2) there exists x^* such that x^* is reduced and $T'_{\lambda}x^* = x$.

Proof. (1) is easily obtained from Lemma 3.1.

(2) From Proposition 2.9, the transformation $\widetilde{S}_{\lambda}|\widehat{Y} = \widehat{S}_{\lambda}$ is surjective. Hence, there exists $\mathbf{x}^* \in \widehat{Y}$ such that

$$\widehat{S}_{\lambda}(\mathbf{x}^*) = \rho(x).$$

We put

$$\mathbf{x}^* = \left(x^*, \left(\frac{x_2}{x_3}\right)\right).$$

Then

$$T'_{\lambda}x^* = x.$$

Thus it suffice to show that

$$\mathbf{x}^* = \rho(x^*).$$

Here we only show this in the case $\mathbf{Q}(\lambda)$ is not totally real field. In the case of totally real, it is easy to show this relation. From $\widehat{S}_{\lambda}(\mathbf{x}^*) = \rho(x)$, we have

$$\lambda x^* - \omega \left[\frac{\lambda x^*}{\omega} \right] = x,$$

and

$$-\left[\frac{\lambda x^*}{\omega}\right]\mathbf{v}+R_\lambda\begin{pmatrix}x_2\\x_3\end{pmatrix}=\begin{pmatrix}x'+x''\\(x'-x'')i\end{pmatrix}.$$

In the two equations above, we take algebraic conjugates of the former one and substitute it to $-[(\lambda x^*/\omega)(\mathbf{v})]$ of the latter one. From the fact that $\lambda' \neq \lambda''$, we have

$$x_2 = x^{*'} + x^{*''}$$
 and $x_3 = (x^{*'} - x^{*''})i$.

We can get the result.

Lemma 3.4. For $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$ we put

$$x=rac{1}{q}\left(u+vrac{1}{\lambda}+wrac{1}{\lambda^2}
ight), \quad q,u,v,w\in {f Z},$$

and

$$\omega=rac{1}{q_0}\left(u_0+v_0rac{1}{\lambda}+w_0rac{1}{\lambda^2}
ight),\quad q_0,u_0,v_0,w_0\in {f Z}.$$

Let $T_{\lambda}^{'k}y = x$, then there exist integers u_k, v_k and w_k such that

$$y = \frac{1}{qq_0} \left(u_k + v_k \frac{1}{\lambda} + w_k \frac{1}{\lambda^2} \right).$$

Proof. From $T'_{\lambda} y = x$, y is represented by

$$y = \omega \left(\sum_{i=1}^k b_i \lambda^{-i} \right) + x \lambda^{-k}.$$

Therefore, using the equation $1/\lambda^3 = 1 - k_1/\lambda - k_2/\lambda^2$, we can get the above.

We call qq_0 the *quotient* of $T_{\lambda}^{'k}(x)$. We claim that the quotient is independent of k.

Proposition 3.5. Let $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$ be reduced. Then λ -expansion of x/ω is purely periodic, that is, there exists an integer k such that $T'_{\lambda} x = x$.

Proof. We put

$$x=rac{1}{q}\left(u+vrac{1}{\lambda}+wrac{1}{\lambda^2}
ight), \quad q,u,v,w\in {f Z}.$$

Lemma 3.3 shows that there exists a sequence $(x_0^*, x_1^*, ...)$ such that x_i^* is reduced and $T'_{\lambda}x_i^* = x_{i-1}^*$ for $i \in \mathbb{N}$ where $x_0^* := x$. We know the finiteness of the cardinarity of the set $\{x_i^* \mid x_i^* \text{ is reduced and } T'_{\lambda}x_i^* = x_{i-1}^*$ for $i \in \mathbb{N}$ since \widehat{Y} is a bounded set and the quotient of $T'_{\lambda}x$ is invariant. Hence, there exist integers j and k(j-k>0) such that

$$x_{i}^{*} = x_{i-k}^{*}$$

Then we have

$$x_k^* = x_0^*$$

Consequently, we get

$$T_{\lambda}^{'k}x = x.$$

Proposition 3.6. Let $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$. Then there exists $N_1 > 0$ such that $T_{\lambda}^{'N}x$ is reduced for any $N > N_1$.

Proof. For any $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$, the point $(x, {}^{t}(0, 0))$ is in \widehat{Y} . We consider the Euclidean distance d between $\widetilde{S}_{\lambda}^{k}\rho(x)$ and $\widetilde{S}_{\lambda}^{k}(x, {}^{t}(0, 0))$ for all $k \in \mathbf{N}$. The first coordinates are equal to each other for all $k \in \mathbb{N}$. Hence, we have

$$d\left(\widetilde{S}_{\lambda}^{k}\left(\rho\left(x\right)\right),\widetilde{S}_{\lambda}^{k}\left(x,{}^{t}(0,0)\right)\right) \leq u^{k}d\left(\rho\left(x\right), \left(x,{}^{t}(0,0)\right)\right)$$

where

$$u = \max\left(\left|\lambda'\right|, \left|\lambda''\right|\right)$$

On the other hand, from the fact $(x, {}^{t}(0, 0)) \in \widehat{Y}$ and $\widetilde{S}_{\lambda} | \widehat{Y} = \widehat{S}_{\lambda}$ we know

$$\widetilde{S}^k_{\lambda}(x, {}^t(0, 0)) \in \widehat{Y}$$

for all k. Therefore $\widehat{S}_{\lambda}^{k}\rho(x)$ must exponentially comes near the set \widehat{Y} . Since the quotient of $T_{\lambda}^{'k}x$ is also invariant, using Lemma 3.1, we have

$$\widetilde{S}_{\lambda}^{N}\rho\left(x
ight)=
ho\left(T_{\lambda}^{'N}x
ight)\in\widehat{Y}$$

for sufficiently large N. Then $T_{\lambda}^{'N}x$ is reduced. And, from Lemma 3.3 (1) we can get the above.

We can get the following result:

Theorem 3.7. Let $x \in [0, \omega)$, then

- (1) $x \in \mathbf{Q}(\lambda)$ if and only if λ -expansion of x/ω is eventually periodic,
- (2) $x \in \mathbf{Q}(\lambda)$ is reduced if and only if λ -expansion of x/ω is purely periodic.

Proof. (1) Assume that $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$. By Proposition 3.6, there exists N > 0 such that $T_{\lambda}^{'N}x$ is reduced. Proposition 3.5 says that $T_{\lambda}^{'N}x/\omega = T_{\lambda}^{N}(x/\omega)$ has a purely periodic λ -expansion. Hence, λ -expansion of x/ω is eventually periodic. The opposite direction is trivial.

(2) Necessity is obtained by Proposition 3.5. Conversely, assume that λ -expansion of x/ω is purely periodic. From (1), we see $x \in \mathbf{Q}(\lambda) \cap [0, \omega)$. According to Proposition 3.6, there exists N > 0 such that $T_{\lambda}^{'N}x$ is reduced. Therefore, we know that x is reduced by Lemma 3.3 (1) because of purely periodicity.

References

- S. Akiyama: Pisot numbers and greedy algorithm, Number Theory, Diophantine, Computational and Algebraic Aspects, Edited by K. Györy, A. Pethö and V. T. Sós, 9–21, de Gruyter 1998.
- [2] P. Arnoux and Sh. Ito: Pisot substitutions and Rauzy fractals, Preprint.

- [3] F.M. Dekking: Recurrent sets, Adv. in Math., 44 (1982), 78-104.
- [4] Y. Hara and Sh. Ito: On real quadratic fields and periodic expansions, Tokyo J. Math., 12 (1989), 357–370.
- [5] Sh. Ito: On periodic expansions of cubic numbers and Rauzy fractals, Preprint.
- [6] Sh. Ito and M. Ohtsuki: *Modified Jacobi-Pirron Algorithm and Generating Markov Partitions* for Special Hyperbolic Toral Automorphisms, Tokyo J. Math., **16** (1993), 441–472.
- [7] B. Praggastis: Numeration systems and Markov partitions from self similar tilings, Transactions of the American Mathematical Society, 351 (1999), 3315–3349.
- [8] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers, Bull. London math. Soc., 12 (1980), 269–278.
- [9] B. Solmyak: Dynamics of self-similar tilings, Ergod. Th. & Dynam. Sys., 17 (1997), 1-44.

Shunji Ito Department of Mathematics Tsuda College 2-1-1 Tsuda-machi Kodaira Tokyo, 187-8577 Japan e-mail: ito@tsuda.ac.jp

Yuki Sano Department of Mathematics Tsuda College 2-1-1 Tsuda-machi Kodaira Tokyo, 187-8577 Japan e-mail: sano@tsuda.ac.jp