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Let 7 be a compact interval of the real line. For a continuous nfiap/ — I by
Misiurewicz et al. ([1, 12, 13]) the following relation betesm the topological entropy
h(f) and the growth rate of the number of periodic points is kriown

() h(f) <lim sup% logt Per(f, n)
where Perf, n) denotes the set of all fixed points ¢f' for n > 1, andgA the number
of elements of a se. (The equality of the expressior)(does not hold in general.
For instance, the topological entropy of the identity mamzéso, nevertheless all of
points of the interval are fixed by this map.)

For a periodic pointp of f with periodn we put

OF(p) = {p. f(p), -+, " Hp))-

Then we say thay is a homoclinic pointof p if ¢ ¢ O}(p) and there are a positive
integerm with f"(q) = p and a sequencey, g1, --., g, --- € 1 with go = g such
that

fa) = g1 (k= 1), lim g — O3(p)I =0

where|x — A| =inf{lx —y| : y € A} forx € I, A C I. It is known by Block ([2, 3])
that A(f) is positive if and only if f has a homoclinic point of a periodic point.

In this paper we shall establish more results (Theorems 12aridr differentiable
maps of intervals. To describe them we need some notations.

Let f: 1 — I be aC*™ map ¢ > 0). A periodic pointp of f with periodn is
a sourceif

v(p) = (/") ()" > 1.

Forn>1,v>1ands > 0 we define anf-invariant set by
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Per(f,n,v,8) = {p € Per(f,n) : v(p) = v, |f'(f'(p)=6forall 0<i<n-—1}.
Then we have
Per(f, n, v, 81) C Per(f, n, vp,82) if vy > vy, 81 > 68y,

and

{p : source of £} = [ J|J{JPer(f.n. v. ).

v>18>0n=1

One of our results is the following:

Theorem 1.
o 1
h(f)= max{o, |Im1(|slm0|lm sup— logt Per(f, n, v, 8)} .
v>16=0 psoo N

By Theorem 1 it is clear that for &% map of a compact interval if the topo-
logical entropy is positive then the map has infinitely maourses. However, the con-
verse is not true in general. In fact, for any> 1 it is easy to constract " diffeo-
morphism of a compact interval having infinitely many soufizxed points. But every
diffeomorphism of an interval has zero entropy.

RemaRrk. It is known that if f is a C? map with non-flat critical points, then any
periodic point of f with sufficiently large period is a source ([10]). In Theordmwe
do not assume any conditition concerned with critical minthen the mapf may
have flat critical points.

For a sourcep of f with periodn we denote byW (p) the maximal interval/
of I containingp such that

1Y ()] = {((L+v(p))/2)" forall xeJ.

We say that a homoclinic point of p is transversalif there are non-negative integers
m1, mp and a pointg’ € Wi (p) such that

fM@y=q. fM™"@)=f"@=p and (") (q) 7 0.

If £ has a transversal homoclinic point of a source, then theee@$ neighborhood
U of f such that every mag belonging tol/ has a transversal homoclinic point of
a source. We denote the set of transversal homoclinic paihts sourcep of f by
TH(p), and its closure byTH(p). We call TH(p) the transversal homolinic closuref
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p. It is easy to see thgt € TH(p), and TH(p) is f-invariant. Form > 1 andé$ > 0
define

H(p,m,8)={q € We(p): f™(q@)=p.1f (f'(q))) =8 forall 0<i <m—1}.
Then we have

H(p,m,8,) C H(p,m,8) if 8 =6

and
oo m—1
TH(p) = J U U rHp, m,8)\ O3(p).
§>0m=1 i=0

The second result of this paper is the following:

Theorem 2. If h(f) > O then

h(f) =suph(f |sagy) @ p is a source off},

and for a sourcep of f we have

h(f lragy) = max{o, (!im limsup 1 logttH(p, m, 8)} .

=0 m—soo M

A result corresponding to Theorem 2 is known for surfaceediffiorphisms by
Mendoza ([11]). As an easy corollary of Theorem 2 we have:

Corollary 3. The following statements are equivalent

i) h(f)=>0;
(i) f has a transversal homoclinic point of a source
(i) f has a homoclinic point of a periodic point.

1. Proofs of Theorems

Let f: 1 — I be a continuous map. For integérsd > 1 we say that a closed-
invariant setl" is a (, [)-horseshoeof f if there are subset§?, ..., '*~1 of I such
that

r=rlu...urtt  £r/)=1r/*' (mod k)

and ¥ |0o: T9 — I'% is topologically conjugate to a one-sided full shift irsymbols.
If T is a &, /)-horseshoe, then it is clear that

1
h(f Ir) = % log! and [" < g[Per(f, kn) N T'] < kl"
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for all » > 1. It was proved by Misiurewicz et al. ([1, 12, 13]) that if thepblogical
entropy of f is positive then there are sequendgs/; of positive integers with ak(,
I;)-horseshod™; of f (j > 1) such that

1
h(f) = lim h(f |]“j): lim —logi;.
j=00 j=oo k;

Then the formula ) follows from this fact.

In order to prove our results, we need the notion of hypecbblrseshoe and
ideas of the theory of hyperbolic measures ([14, 15]). Kaf® has proved that if a
c'* diffeomorphism of a manifold has a hyperbolic measure thenietric entropy
is approximated by the entropy of a hyperbolic horseshoe dtthor has shown in
[5] that the result of Katok is also valid faf*** (non-invertible) maps.

Let f : I — I be a differentiable map. For integeks! > 1, numbersy > 1
andé§ > 0 we say thatl’ is a &, , v, §)-hyperbolic horseshoef f if I is a ,[)-
horseshoe and

P = 1) =8 (xel).
The following lemma plays an important role for the proofsTdfeorems 1 and 2.

Lemma 4. Let f : I — I be aC™ map. If 1(f) > 0, then for a numbeny
with 1 < v < exp{h(f)} there exist sequencds, [; of positive integers and; > 0
(j = 1) such that forj > 1 there is a(k;,;, vo, §;)-hyperbolic horsesho&'; of f so
that

1
h(f)= lim A(f |r,) = lim —logl;.
j—oo j—o00 kj

This is corresponding to the result obtained by Katok fofeme diffeomorphisms
([9]). For the proof we use the result stated in [5].

Proof of Lemma 4. For a numbern with 1 < vg < explh(f)} we take a se-
quencen; of positive numbers > 1) such that ex{h(f) —3n;} > vo andn; — 0 as
j — oo. By the variational principle for the topological entropi,(7, 8]), we have
an f-invariant ergodic Borel probability measure; on I such that

hj z h(f)—=n; >0

where i; denotes the metric entropy @f; with respect tof. If A; denotes the Lya-
punov exponent ofi;, that is,

= [ loglr wldu; ).
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then by the Ruelle inequality ([17]) we have
)\j > hj > 0,

and sou; is a hyperbolic measure of. Then by Theorem C (and its proof) of [5],
we can construct sequences of integersl; > 1 with (1/k;)-logl; > h;—n;, numbers
cj > 1 and closed setd; C I (j > 1) such that:

1) fH(A)=A)

@) 1,5 (x) = ¢;7t - explk;i(r; —n;)} for all x € A; andi > 1;

3) fk la,- A; — A; is topologically conjugate to a one-sided full shift in-
symbols.

For j > 1 we set

T;=A;UfA;---U 7.

ThenT; is f-invariant. Moreover we put

§; = min{|f'(x)| :x e T;} >0,
ej = ax{:;,g;: 1Xx,y € l"j} €[1, o0)

and take an integer; > 1 large enough so that
explknin;} > cjejkf.
Then we have
[(F9") () = v (x €T)).

This follows from the fact that for G i <k; —1 andx € f'A;

Y @)= 1Y YT @D IS - 1Y (9™ @)
> ;- expi(kjn,)(h; — )} - e,
> eXp[kjnj(Aj — 2”/)}
> explk;n;(h(f) — 3n,)}
> Vokj"j.

It is easy to see thaf*i"s la,» Aj — Aj is topologically conjugate to a one-sided full
shift in [;"7-symbols. Thusl'; is a (;n;,1;", vo, §;)-hyperbolic horseshoe, and from
which

1 )
h(f Ir;) = mmglj"]
jnj
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1

— log!;
K, 09
]’lj—)]j

h(f) = 2n;.

v

v

Sincen; — 0 asj — oo, we have
h(f) = lim h(F Ir).
Lemma 4 was proved. O
Proof of Theorem 1. Fov > 1 ands§ > 0 we want to findyy = yo(v, §) > 0 such

that Per(f, n, v, d) is an @, yo)-separated set of for all n > 1. Takey; = y1(§) > 0
so small that ifx, y € I satisfy|x — y| < y1 then

NI >

Lf'(x) = Ol =

We put

Iy = {x el:|f' )= g}

Obviously, I5 is closed. Fom > 1 andx € I,
|x — Per(f,n,v,8)| < y1 implies that x € I;.

Since a functionx — log|f'(x)| is bounded and varies continuously @j there is
y2 = y2(v, 8) > 0 such that ifx, y € I; satisfy |x — y| < y» then

1
|log| '(x)I —log | f'(v)I] = 5 logw.

We put yo = min{y1, y»}. Then it is checked that Pgf(n, v, 8) is an @, yo)-separated
set of f for n > 1. Indeed, if a pairp, p’ € Per(f, n, v, 8) with p < p’ satisfies

max{|f'(p) — f'(P) :0<i<n—1} <,
then we see that for € [p, p'l and 0<i <n —1,
1f1x) = f{(P) <v.  flx) el
On the other hand, by the mean value theorem there is a paintp, p’] such that

Lf"(p) = (O = 1Y@ - 1p = Pl



ToPOLOGICAL ENTROPY 7

Since f(§), f'(p) € Is and | f'(§) — f'(p)| < yo for 0 <i <n—1, we have

n—1

[log1 (") (&)l = logI(f"Y (P)I| < D [loglf'(f*(ENI —log | f'(f ()]

i=0

A

IA

nlo
209V

and so

Y@
R

Since p, p’ € Per(f, n, v, §), we have

exp(—g log v) =2,

1f"(p) = [ (P
1Y EN-1p =Pl

CASYE g
= oy Y@=

U—n/2 BRYLN |p _ p/|
V2 p = pl,

lp—p'l

%

and sop = p’ because ofb > 1. Thus Perf, n, v, 8) is an @, yp)-separated set of,
and then

(1.2) lim sup} logtdPer(f, n,v,8) < lim sup} logs(f, n, vo)
n—oo N n—oo N
L 1
< lim limsup-logs(f, n, y)

=0 ps00 N

h(f)

forv > 1 and§ > 0, wheres(f,n,y) denotes the maximal cardinality ofi,(y)-
separated sets fof. Therefore we have the conclusion of Theorem 1 whéfi) = 0.
Thus it remains to give the proof for the case whefy) > 0. Fix 1 < vy <
exp{h(f)}. Take sequencek;, [;, §; andI'; (j > 1) as in Lemma 4. Since

lj” < ﬁ[Per(f, nkj, Vo, (Sj) N Fj] < kjlj”

for all n > 1, we have

I 1
lim lim sup— log & Per(f, n, vo, 8)

=0 p500 N

v

. 1
nILmoo E logg[Per(f, nk;, vo, 8;) N T]

1
—log!;.
k; 9t
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If j — oo, then

(1.2) lim lim sup} logt Per(f, n, vo, 8) > h(f).

=20 p500 N

Combining (1.1) and (1.2) we have

h(f) < limlimsup

-0 p—soco

1
—logt Per(f, n, vg, 8)
n

1
lim lim lim sup— logt Per(f, n, v, §)

v>18-0 500 N

< h(f).

IA

Theorem 1 was proved. ]

Remark. In fact, from the proof of Theorem 1 it follows that
. 1
h(f)= yrrbllm sup— logg Per(f, n, vy, 8)
-0 ps00 N
if 1 < v < explh(f)}.
Proof of Theorem 2.

Proof of the first statement.Under the assumption of Theorem 2 we fix a num-
ber vo with 1 < vg < exp{a(f)}. By Lemma 4, forj > 1 there arek;, I; > 1 and

8; > 0 with a ;,;, vo, §;)-hyperbolic horsesho€; =T9U ..U Ffffl such that

1
h(f Ir;) = T logl; — h(f)
j

as j — oo. For j > 1 define a product space

zj:]_[{l,...,l,}

with the product topology and a shit; : ¥; — X; by

0j ((“m)mzl) = (aM+1)m21 ((am)mzl S Ej)

From the definition of hyperbolic horseshoe, there is a honwphismey; : ; — I‘?
such thatp; o o; = (f% |0) o @;. Thenp; =¢;(1,1,...) is a source off. Form > 1
anday,...,a, € {1,...,1;-} with a; 7 1 for some 1<i < m, ¢;(as,...,an,1,1,...)
is a transversal homoclinic point gf;. Thus, TH(p;) D I';, from which
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n(f) = lm a(f Ir,)

IA

jILmoo h(f |TH(p/-))

IA

suph(f I7mgy) © p is @ source off}

h(f).

IA

The first statement was proved.
Proof of the second statementLet p be a source off. Without loss of general-
ity we may assume that is a fixed point, i.e.,f(p) = p. To show that for§ > 0

. 1
h(f |sagy) = limsup—logtH (p, m, 3),
m—soo M
take yp = y0(8) > 0 so small that ifx, y € I satisfy |[x — y| < yp then
! ! 8
TORFOIERS
Then, form > 1 and a pairg, ¢’ € H(p, m, 8) satisfying
max(| f'(¢g) — f(¢):0<i<m—1} <,
we can find a sequend®, ..., &,-1 € I such that

& — @) < w

and
1F7Hg) = £ = 1@ 1 (@) = @)l O<i<m—1).
Since f™(q) = f™(¢’) = p, we have

0=1f"(q)— ")

|f' G2l 1" Hg) — ")
m—1
[T1FE)N-1a—4'

i=0

m—1

[T (e -3) ta=d!

i=0

- 6!11| /|
=\2 q9—41I

and sog = g¢'. Thus H(p, m, 8) is an (n, yo)-separated set of |ygp,;, from which it
follows that

v
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3 limsup>logzH(p,m.8) < msup= logs(f . m. 10
m m

m—o00 m—0Q

< h(f lram))-

If A(f Itm() = O, then nothing to prove for the second statement. Thus wst check
the conclusion for the case when(f |tgp)) > 0. To do so fix a numbery with

1 < vo < min{v(p), exph(f |sugy)}- By the same way as in the proof of Lemma 4,
we can take sequences of integérs /; > 1, numberss; > 0 with (k;,/;, vo, §;)-
hyperbolic horseshoeB; = F? U..-u F';ffl containingp (j > 1) such that

h(f Ir;) = (1/k;) -109l; — h(f |fagy) as j — oo.

Then there is a homeomorphisg) : ; — F? such thatp; oo; = (f*i |F5_>)O(pj, where
oj . X; — X; is the shift defined as in the proof of the first statement. Withloss
of generality we may assume thaf(1,1,...) = p. By taking an integen; > 1 large
enough we have

(pj([l, HCRR] 1]"j) - VVI’(A)c(p)

where
[1,.... 1, ={(bw)m=1 € Zj : by =1 for all L<m < n;}.
Since
n; times
——
¢i,.... a1, ...,an n;,1,1,...) € H(p, mkj, §;)
holds for allm > n; +1 anday, ..., an—y, € {1,...,1;}, we have
tIH(p,mkj,Sj) 2 l?z_nj.
Thus,

- 1 . 1
lim limsup— logtH(p, m,§) > Ilmsup—klogjo(p,mkj,(Sj)

=0 mosoo M m—oo MKj
. m — I’lj
> lim log!;
m—00 mj
-1 logl
kj 9 /
for j > 1. If j - oo, then we have
(1.4) lim lim su 1 loggH ( 8) = h(f |l=mry)
) §—0 m~>oopm 9 P - TH(p)7*
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Combining (1.3) and (1.4),

. 1
W(f Ivwgy) = lim limsup-— log£H (p, m. 3)
< h(f lagy)-

The second statement was proved. This completes the prodbhedrem 2. ]

2. Circle Maps

In the same way as above, it can be checked that our resulendins 1 and 2)
are also valid forC*™ maps ¢ > 0) of the circle S*. However, the existence of a
homoclinic point does not imply that the topological enyrdp positive. In fact, we
know an example of &> map g : S* — S! such thatg has a homoclinic point of
a source fixed point, nevertheleség) = 0 ([16]). It is known that the topological en-
tropy of a continuous circle map is positive if and only if theap has a nonwandering
homocinic point of a periodic point ([4]). Since any transa homoclinic point of a
source is nonwandering, we have:

Corollary 5. For a C*** map f : S — S* (« > 0) the following statements are
equivalent
) n(f)>0;
(i) f has a transversal homoclinic point of a source
(i) f has a nonwandering homoclinic point of a periodic point.

Added in proof. After this manuscript was completed the author learned from
A. Katok that he and A. Mezhirov had obtained a result that lapsr with Theorem
1 for C* maps with finitely many critical points ([18]). ]
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