
Kuwako, K.
Osaka J. Math.
43 (2006), 401–412

DEHN SURGERY CREATING KLEIN BOTTLES

Dedicated to Professor Yukio Matsumoto for his 60th birthday

KAZUYUKI KUWAKO

(Received February 28, 2005, revised April 15, 2005)

Abstract
We consider Dehn surgery creating Klein bottles. It is shownthat if a non-cabled

knot, which is not the figure eight knot, admits two Dehn surgeries creating Klein
bottles, then the geometric intersection number of these slopes is bounded by four.

1. Introduction

In this paper, we treat Dehn surgery creating Klein bottles.There are results con-
cerning Dehn surgeries which create closed non-orientablesurfaces. Ichihara and
Teragaito [7, 8] showed that if a nontrivial knot inS3 admits Dehn surgery creating
Klein bottles, then the geometric intersection number of this slope and the longitude
class is bounded by 4g + 4. Hereg is the genus of a knot. Matignon and Sayari [11]
also examined Dehn surgery on a nontrivial knot inS3 which produce a closed non-
orientable surface with higher genus. In this paper, we examine the geometric inter-
section number of slopes creating Klein bottles. We remark that Lee [9] and Matignon
and Sayari [12] have announced some extensions to our results independently.

To state our theorem, let us introduce some definitions needed in this paper. LetK
be a nontrivial knot inS3. The knotK is called acabled knotif there is an embedded
(maybe knotted) torus inS3 such thatK is isotoped on this torus and thatK runs
longitudinally at least twice. For example, any torus knot is a cabled knot. IfK is not
a cabled knot, thenK is called anon-cabledknot. In this paper, we assume thatK is
non-cabled.

Let N(K) be a regular neighborhood ofK andM the exterior ofK, S3�intN(K).
The unoriented isotopy class of a nontrivial simple closed curve on �M is called a
slope. We parametrize slopes as in [13], that is, if a simple closedcurve 
 on �M
runs meridionallya times and longitudinallyb times, then the slope of
 is a=b. For
example, the meridian class� has a slope 1=0 and the (preferred) longitude class�
has a slope 0=1. Under this parametrization, if a sloper is equal toa=1 (a 2 Z), thenr is called anintegral slope.
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In this paper,M(r) means the closed manifold obtained byr-Dehn filling, that is,M(r) is a manifoldM [f J . Here,J is a solid torus andf is a homeomorphism from�J to �M which sends the boundary of a meridian disk ofJ to an essential simple
closed curve representing the sloper.

Theorem 1.1. Let K be a non-cabled knot inS3. Assume thatK is a nontrivial
knot, which is not the figure eight knot. If there are two slopesr and s such that Dehn
surgered manifoldsM(r) and M(s) both contain Klein bottles, then the geometric in-
tersection number1(r; s) is bounded by four.

EXAMPLE 1.2 ([6]). Let K be the (�2;3;7)-pretzel knot. Then 16-surgery and
20-surgery yield Klein bottles.

This paper is organized as follows. We prove Theorem 1.1 by using combinatorial
methods. In Section 2, we recall properties of Klein bottlescreated after Dehn surgery.
The material of this section is proved in [14, 15]. In Section3, we examine graphs of
intersection. Roughly speaking, we prove that there cannotbe too many parallel edges.
Section 4 is devoted to a proof of Theorem 1.1. We divide the proof into two cases
according to whether one of the created Klein bottles is once-punctured in the knot
complement or not. Most of this section is devoted to the case where both of created
Klein bottles are not once-punctured in the knot complement. In this case, we use an
inequality obtained by [11] which tells us an upper bound of geometric intersection
number.

2. Klein bottles created after surgery

In this section, we recall fundamental facts about Klein bottles created after Dehn
surgery. If a surgered manifoldM(r) contains Klein bottles, then this sloper has the
following property.

Lemma 2.1 ([4, Theorem 1.3], [14, Lemma 2.4]).Slope r is integral, and is a
multiple of four.

REMARK 2.2. Combining this lemma and our theorem, we find that there are at
most two surgeries creating Klein bottles in our situation.

We use a combinatorial method to prove Theorem 1.1. Let us recall basic notions
and fix our notation. LetbP (resp.bQ) be a created Klein bottle inM(r) (resp.M(s)).
Assume thatP := bP \M (resp.Q := bQ \M) is chosen to minimize the number of
boundary components. Letp (resp.q) be the number of the boundary components ofP (resp.Q). By a small perturbation, we can assume thatP andQ intersect trans-
versely and that each component of�P meets each component of�Q exactly1(r; s)
times. Then the following holds. For a detailed proof, consult [14].
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Lemma 2.3. (1) Both p and q are odd.
(2) Both P andQ are incompressible and boundary incompressible inM.
(3) No arc component ofP \Q is boundary-parallel inP and inQ.

Proof. (1) If p is even, then we can construct a closed non-orientable surface
in M � S3. SinceS3 cannot contain a closed non-orientable surface, this leadsto a
contradiction.

(2) See [14, Lemmas 2.1, 2.2].
(3) If there exists such an arc, then it contradicts (2) (See [14, Lemma 3.1]).

Let GP � bP be a graph of intersection withQ. That is, vertices ofGP are disksbP� intP , edges ofGP are arc components ofP \Q in P . We often call such vertices
as fat vertices. We define a graphGQ � bQ similarly.

We give an orientation on all components of�P so that they are all homologous
on �M. Let e be an edge ofGP . We may assume that a regular neighborhoodN(e)
of e is a disk inP . Let a and b are segments of�N(e)\�P . We can give an induced
orientations ona and b from the orientation of�P . If orientations ofa and b give an
orientation of�N(e), then this edgee is called apositive edge. If orientations ofa andb give inconsistent orientations on�N(e), then this edgee is called anegative edge.
Similar definitions are applied for edges inGQ. Then the followingparity rule holds.

Lemma 2.4 ([15, p.872 (parity rule)]). An edgee is a positive edge inGP if
and only if e is a negative edge inGQ.

3. Graphs of intersection

In this section, we assume that℄�P = p � 3. Namely, at least one of the created
Klein bottles is not once-punctured in the knot complement.

Let us recall some definitions needed in our discussion. A subgraph � of GQ
is called acycle if it becomes a closed loop when we regard fat vertices ofGQ as
points. Thelength of a cycle � is the number of edges ofGQ constructing� . If a
length one cycle� bounds a disk inQ, then such a cycle� is called atrivial loop.
Lemma 2.3 (3) shows that there exist no trivial loops inGQ.

We number components of�P 1;2; : : : ; p in the order in which they appear on�M. Then each edge ofGQ has a label on each endpoint. If an edgee of GQ has a
label i on both endpoints, thene is called alevel i-edge. If we do not have to specify
this numberi, then we calle a level edge.

Around a vertex ofGQ, these labels occur in the order 1;2; : : : ; p;1;2; : : : ; p; : : :
repeated1(r; s) times. A cycle� of GQ is called ani-cycle if all edges of� are
positive edges and if we can give an orientation on� so that every tail of each edge
has labeli. An i-cycle � of GQ is called aScharlemann cycleif � bounds a disk face
of bQ �GQ (see Fig. 1 left). Edgese1; e2 in GQ are calledparallel if there is a disk
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iii �eee�
Fig. 1. Scharlemann cycle, generalized S-cycle

D in Q such that�D are edgese1; e2 and corners (subarcs of fat vertices) and that
intD \GQ is empty. A triple of successive parallel positive edgese�1; e0; e1 � GQ is
called ageneralized S-cycleif e0 is a level i-edge, ande�1; e1 have labelsfi�1; i +1g
respectively (see Fig. 1 right).

Let us recall some basic facts about Scharlemann cycles and generalized S-cycles
in a Klein bottle.

Lemma 3.1. (1) There exist neither Scharlemann cycles nor generalized S-
cycles inGQ.
(2) Let P be the family of positive parallel edges inGQ. If ℄P � (p + 3)=2, then
there exists a Scharlemann cycle or a generalized S-cycle inGP .

Proof. See [14, Lemmas 3.2, 3.3] for proof of (1), and see [14,Lemma 3.4]
for (2). Remark that in the paper [14],Q is assumed to be a minimal genus Seifert
surface. But examining the proof of these lemmas, we find thatthe statements still
hold in our situation.

Next we consider parallel negative edges. In this case, we will see that we cannot
find too many edges in a negative parallel family.

Lemma 3.2. Let N be a family of negative parallel edges inGQ. If ℄N � p+1,
thenK is cabled.

Proof. Let e1; e2; : : : ; ek (k > p) be the successive parallel negative edges ofN .
By changing labels if necessary, we can assume that labels ofei arei andi+ l (modp).

CASE 3.3. The numberl is equal to zero.
In this case,e1; : : : ; ep+1 are all level edges (see Fig. 2 left). SinceN is a family

of negative edges inGQ, the edgese1; : : : ; ep+1 are all positive inGP . Remark that
each of these edges becomes an essential loop inbP if we regard fat vertices as points



DEHN SURGERY CREATING KLEIN BOTTLES 405
peeepepABCDB;DD;BDPGQbP

Fig. 2. Bothe1 and ep+1 join the same fat vertex inGP .

because there exists no trivial loop inGP . Since there exists only one family of posi-
tive loops inbP , the edgese1 and ep+1 are parallel inGP . We name endpoints ofe1 asA;C and ep+1 asB;D so that pointsA;B lie in the same fat vertex ofGQ andC;D
lie in the same fat vertex ofGQ. Remark that these pointsA;B;C;D do not need to
lie in the same fat vertex ofGQ. If these four points appear on the same component
of �Q, we may assume that they appear in the orderA;B;C;D.

We first consider the case where the four pointsA;B;C;D are all contained in
the same fat vertex ofGQ. Then since the surgery slopes are integral, this ordering
must be respected inGP . But this is impossible becausee1 and ep+1 are also parallel
in GP (see Fig. 2 right).

Next we consider the case where the fat vertex containingA;B and the fat ver-
tex containingC;D are different. In this case, let us consider the subgraph0 of GP
consisting of all fat vertices ofGP and the edgese1; : : : ; ep+1. In this subgraph,e1

and ep+1 are parallel. LetDP be the disk representing parallelism ofe1 and ep+1 in 0.
Remark that this diskDP has no fat vertices in intDP because there exist no trivial
loops inGP . Let DQi be the disk representing parallelism ofei and ei+1 in GQ, andDQ the disk consisting of

Spi=1DQi in GQ. TopologicallyA := DP [DQ is an annu-
lus or a M̈obius band according to the orientation of the edges ofe1 and ep+1 in GP .
By taking small perturbation if necessary, we can assume that A is properly embed-
ded inM.

If A is a Möbius band, then since slopes of�P and �Q are both integral, it fol-
lows that�A runs longitudinally only once. Thus, considering the boundary of the reg-
ular neighborhoodN(A) in M, we find a cabling torus, which shows thatK is cabled.

If A is an annulus, then let
1; 
2 be the boundary components ofA. We orient
1 and 
2 from the orientation of�Q. Exchanging
1 and 
2 if necessary, we may as-
sume that the orientation induced on
1 is consistent with the orientation of�P while
the orientation induced on
2 is inconsistent. Then examining the intersection number
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Fig. 3. A = DP [DQ is an annulus inM.

between
i and �, the meridian class of�M, we find that
1 and 
2 have different
slopes. Namely, they represent different slopes. SinceA is a properly embedded annu-
lus, 
1 and 
2 must represent the same slope. Hence we find a contradiction.

CASE 3.4. The numberl is not equal to zero.
In this case,e1; e2; : : : ; ep make cycles (may be one cycle) inGP . Since we as-

sume l 6� 0 (modp), each of these cycles has the same length greater than one. Re-
mark thate1; : : : ; ep+1 are all positive edges inGP so that each regular neighborhood
of these cycles is an annulus inbP . If one of these cycles bounds a disk inP , then
the argument [3, Section 5] shows thatK is cabled. Thus we can assume that none of
these cycles bound a disk.

Let 0 be the subgraph ofGP consisting of all fat verticesGP and edgese1; : : : ;ep+1. Let � be the cycle of0 containinge1. If e1 and ep+1 are not parallel in0, then
the cycle (� � e1) [ ep+1 bounds a disk. Again, using the argument [3, Section 5], we
find thatK is cabled. Thus we can assume thate1 and ep+1 are parallel in0.

Let DP be the disk representing parallelism ofe1 and ep+1 in 0. Also let DQi be
the disk representing parallelism ofei , and ei+1 in GQ andDQ the disk consisting ofSpi=1DQi in GQ. By taking small perturbation if necessary, we can assume that A :=DP [ DQ is a properly embedded annulus inM. See Fig. 3. Arguing as in the last
paragraph of Case 3.3, we find a contradiction.

4. Main argument

In this section, we prove Theorem 1.1. First we consider the case℄�Q = q = 1.
The case℄�P = p = 1 is already examined in the paper [6]. Recall that thecross-
cap numberis the minimal number of the first Betti numbers of non-orientable Seifert
surfaces for the knot.
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Lemma 4.1 ([6, Theorem 2], [10, Theorem 1.2]).For a crosscap number two
knotK, the boundary slope of its minimal genus non-orientable Seifert surfaceF is a
multiple of four, and there are at most two slopes which can be a boundary slope ofF . If there are two, � and �, then j�� �j = 4 or 8. Furthermore, if j�� �j = 8, thenK is the figure eight knot andf�; �g = f�4;4g.

REMARK 4.2. To use Lemma 4.1 for the proof of Theorem 1.1 in the casep =q = 1, we need to check thatK is a crosscap number two knot. This is shown
as follows.

BecauseK bounds a once-punctured Klein bottle, it follows that the crosscap num-
ber of K is less than or equal to two. If the crosscap number ofK is one, then by
definition the of a crosscap number, we find a Möbius bandB � M whose boundary
is K. Taking a regular neighborhood ofB, we find thatK � �N(B). This shows thatK is a cabled knot, which is a contradiction.

Thus, we only have to consider the casep � 3.

Proposition 4.3. If q = 1 and p � 3, then1(r; s) � 4.

Proof. All edges inGQ are partitioned into one of the following families: the
one consisting of parallel positive edgesP, and the one consisting of parallel negatives
edgesN1;N2 (possiblyP;Ni is empty). By Lemma 3.1, we get℄P � (p + 1)=2. By
Lemma 3.2,℄Ni � p. Therefore the total number of endpoints around the fat vertex
of GQ is less than or equal to 2[(p + 1)=2 + 2 � p] = 5p + 1. Hence we obtain an
inequalityp1(r; s) � 5p+1. Since we know that1(r; s) is a multiple of four, we find
that1(r; s) � 4.

In the remainder of this section, we treat the case where bothp and q are larger
than one. Sincep and q are odd numbers, it follows thatp; q � 3. Before analyzingGP andGQ, we examine their “double coverings.”

Let bR be the surface�N(bP ) in M(r) andbS be the surface�N(bQ) in M(s). Topo-
logically bR andbS are tori, the double coverings ofbP and bQ. As usual, letR be the
surfacebR\M. We can assume thatR and S intersect transversely and that each com-
ponent of�R meets each component of�S in exactly1(r; s) times. Taking a thin reg-
ular neighborhood if necessary, we can think ofN(bP ) as a twistedI -bundle overbP .
Thus each boundary component ofP corresponds to the two boundary components ofR. Let us think ofR \ Q. Each arc component ofP \ Q (edge component ofGP )
corresponds to the two arc components ofR \ Q. Thus if we take a graph of inter-
sectionGR\Q � bR with Q, we can thinkGR\Q as a double covering ofGP . SincebS = �N(bQ), each arc component ofR \Q corresponds to the two arc components ofR \ S. Thus each arc component ofP \Q corresponds to the four arc components ofR \ S. Now let us take a graph of intersectionGR � bR with S. Similar construction
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gives a graphGS . For a detailed construction, see [1, p.139–141]. We use graphsGR
andGS to examine positive level edges inGP and inGQ.

Lemma 4.4. There is no trivial loop inGR and inGS .
Proof. Assume that there is a trivial loope in GR. Using the projection

pr : �N(bP ) ! bP , we find that the edge corresponding to pr(e) in GP must be a trivial
loop. Since there is no trivial loop inGP , this is a contradiction.

SincebS is a separating surface, we can color intN(bQ) black andM(s) � N(bQ)
white. Using this coloring, we can divide all faces ofGR into two families: white
faces and black faces. Remark that the boundary of any black face is a length two cy-
cle because black face corresponds to an edge inGP . We can introduce an orientation
on each component of�R from an orientation on�P . Using this orientation on each
boundary component, we can define a Scharlemann cycle as in the previous section. If
a Scharlemann cycle� bounds a white disk inGR, then the cycle� is called awhite
Scharlemann cycle. Similarly we can define ablack Scharlemann cycle. Remark that
this coloring can be applied to faces ofGS .

We can also give a label on each endpoint of an edge. We number components of�R 1�;1+;2�; : : : ; p�; p+ in the order in which they appear on�M. We assume that
this numbering has the following property. If we cut an attaching solid torusJ along
meridian disks corresponding to 1� and 1+ of GR, then two 1-handlesJ1 and J2 are
obtained. LetJ1 be the 1-handle containing no meridian disks correspondingto other
fat vertices ofGR. We give a numbering of�GR so thatJ1 contains the meridian disk
corresponding to 1 ofGP .

Under this numbering, we note that an edge of a white Scharlemann cycle inGR
has labelsfa+; (a + 1)�g and that an edge of a black Scharlemann cycle has labelsfa�; a+g. By assumptions onGP andGQ, we can show the following.

Lemma 4.5. There exists no white Scharlemann cycle inGR and inGS .
Proof. Assume that there exists a white Scharlemann cycle� in GR. Let a+ and

(a + 1)� be labels of each edge constructing� . By construction ofGR andGS , if we
take an edgee of � , then there exists a black face next toe. Remark that these black
faces consist of two edges. One of the edge has labelsa+ and (a + 1)�, the other has
labels a� and (a + 1)+. Since black faces correspond to edges inGP , existence of�
shows that there exists a cycle� 0

in GP . Remark that each edge of� 0
has labelsa

and a + 1 in GP . Since � bounds a disk inGR, � 0
also bounds a disk inGP . By

construction ofGR, each edge of� 0
is a positive edge. Thus we find that this� 0

is
in fact a Scharlemann cycle inGP . See Fig. 4. Since we are assumingq � 3, we can
apply Lemma 3.1 (1). Therefore we find a contradiction.
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a�aa �
a �

Fig. 4. A white Scharlemann cycle inGR yields a Scharlemann cycle inGP .

Proposition 4.6. If p; q � 3, then1(r; s) � 4.

Proof. Assume that1(r; s) � 8 seeking a contradiction. Applying Lemma 4.4
and the inequality [11, Lemma 2.1], we get

1(r; s) � 2 +

�
0� � �bR��

2p +

�
0� � �bS ��

2q +
mR
2p +

mS
2q

= 2 +
mR
2p +

mS
2q :

HeremR stands for the number of Scharlemann cycles inGR, andmS the number of
Scharlemann cycles inGS . Since there are no white Scharlemann cycles by Lemma 4.5,
all Scharlemann cycles inGR and inGS are black Scharlemann cycles. Thus we can
assume that there are at least 3� 2p black Scharlemann cycles inGR. Since a black
Scharlemann cycle corresponds to a positive level edge, there are at least 3p positive
level edges inGP . By the parity rule, this shows that there are at least 3p negative
loops inGQ.

SincebQ has at most two parallel families of negative loops, we find that one of
those families has at least 3p=2 + 1=2 (p is odd) negative loops joining the same fat
vertex v. Let e1; : : : ; ek(k � 3p=2 + 1=2) be such edges inGQ and0 the subgraph ofGQ consisting these edges and the fat vertexi. In this subgraph, edgesei and ei+1

are parallel by construction. LetDi be the disk representing the parallelism ofei andei+1 in 0.
If none of the disksD1; : : : ; Dk�1 contain fat vertices ofGQ, then edgese1; : : : ; ek

are parallel inGQ. By applying Lemma 3.2, we find that this contradicts our assump-
tion onK.

Thus we have to consider the case where these edgese1; : : : ; ek are not parallel inGQ. Let D := Di be the disk containing at least one fat vertex ofGQ. By examining
the Euler characteristic ofD, we will find a contradiction.
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eieiD3vGQ
Fig. 5. Reduced graph̄3

Let v1; : : : ; vV be the fat vertices ofGQ contained in intD. Let us define the sub-
graph3 of GQ on D as follows: vertices of3 are two corners ofv facing atD and
the fat verticesv1; : : : ; vV , edges of3 are edges ofGQ in intD and ei; ei+1. Instead
of 3, we consider its reduced graph̄3, that is, parallel edges of3 are amalgamated
(see Fig. 5). Remark that̄3(0), the 0-skeleton of3̄, is the same as3(0) by definition
so that we get℄3̄(0) = ℄3(0) = V + 2. Let E be the number of the edges of̄3 such
that at least one of their endpoints belongs to somevm (1 � m � V ). Because the
endpoints ofei and ei+1 lie in the fat vertexv, we find that3̄ hasE + 2 edges. Let
F be the faces ofD separated bȳ3 andF the number of components ofF . We re-
mark that since3̄ is a reduced graph andGQ has no trivial loops, the boundary of
each face ofF is a cycle having length at least three. Thus we have 2E + 2 � 3F .
Calculating the Euler characteristic�(D), we find that

1 = �(D) = (V + 2)� (E + 2) +
X
f2F �(f );

1� V +E =
X
f2F �(f ) � F � 2E + 2

3
:

Then we get the inequality

([) E � 3V � 1:
Now let us evaluate the numberE. By Lemmas 3.1, 3.2, we find that eachvm

has at least1(r; s)p=p = 1(r; s) endpoints of3̄(1). Let l be the number of edges of3̄ which connectv and somevm. ThenE is greater than or equal to (1(r; s)V + l)=2.
Substituting this inequality into the previous inequality([), we get

(1(r; s)� 6)V + l + 2� 0:
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Since we are assuming1(r; s) � 8, this is a contradiction.
Therefore we obtain the desired inequality1(r; s) � 4.

Now Theorem 1.1 follows from Lemma 4.1, Propositions 4.3, 4.6.
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