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Abstract
We consider Dehn surgery creating Klein bottles. It is shehat if a non-cabled
knot, which is not the figure eight knot, admits two Dehn stiggecreating Klein
bottles, then the geometric intersection number of thespesl is bounded by four.

1. Introduction

In this paper, we treat Dehn surgery creating Klein bottldsere are results con-
cerning Dehn surgeries which create closed non-orientsbléaces. Ichihara and
Teragaito [7, 8] showed that if a nontrivial knot i§¢ admits Dehn surgery creating
Klein bottles, then the geometric intersection number @ glope and the longitude
class is bounded bygd+ 4. Hereg is the genus of a knot. Matignon and Sayari [11]
also examined Dehn surgery on a nontrivial knotSth which produce a closed non-
orientable surface with higher genus. In this paper, we é@xarthe geometric inter-
section number of slopes creating Klein bottles. We remhst Lee [9] and Matignon
and Sayari [12] have announced some extensions to our gaaditpendently.

To state our theorem, let us introduce some definitions rieadéhis paper. Le
be a nontrivial knot inS®. The knotK is called acabled knotif there is an embedded
(maybe knotted) torus ir§® such thatK is isotoped on this torus and th&t runs
longitudinally at least twice. For example, any torus kreticabled knot. IfK is not
a cabled knot, therK is called anon-cabledknot. In this paper, we assume thétis
non-cabled.

Let N(K) be a regular neighborhood & and M the exterior ofK, S°—int N(K).
The unoriented isotopy class of a nontrivial simple closedve on oM is called a
slope We parametrize slopes as in [13], that is, if a simple closetve ¢ on aM
runs meridionallya times and longitudinallyp times, then the slope af is a/b. For
example, the meridian clags has a slope M and the (preferred) longitude clags
has a slope Q.. Under this parametrization, if a slopeis equal toa/1 (a € Z), then
r is called anintegral slope
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In this paper,M(r) means the closed manifold obtained /pehn filling, that is,
M(r) is a manifoldM U, J. Here, J is a solid torus andf is a homeomorphism from
dJ to aM which sends the boundary of a meridian disk bfto an essential simple
closed curve representing the slope

Theorem 1.1. Let K be a non-cabled knot is®. Assume thak is a nontrivial
knot, which is not the figure eight knolf there are two slopes and s such that Dehn
surgered manifoldsV/(r) and M(s) both contain Klein bottlesthen the geometric in-
tersection numbel(r, s) is bounded by four

ExAmPLE 1.2 ([6]). Let K be the (2,3, 7)-pretzel knot. Then 16-surgery and
20-surgery yield Klein bottles.

This paper is organized as follows. We prove Theorem 1.1 loygusombinatorial
methods. In Section 2, we recall properties of Klein bottiesated after Dehn surgery.
The material of this section is proved in [14, 15]. In Sect®rnwe examine graphs of
intersection. Roughly speaking, we prove that there cabeaibo many parallel edges.
Section 4 is devoted to a proof of Theorem 1.1. We divide thmofpinto two cases
according to whether one of the created Klein bottles is gnoectured in the knot
complement or not. Most of this section is devoted to the calserevboth of created
Klein bottles are not once-punctured in the knot complembnthis case, we use an
inequality obtained by [11] which tells us an upper bound ebmetric intersection
number.

2. Klein bottles created after surgery

In this section, we recall fundamental facts about Kleintlbstcreated after Dehn
surgery. If a surgered manifold?(r) contains Klein bottles, then this slopehas the
following property.

Lemma 2.1 ([4, Theorem 1.3], [14, Lemma 2.4]).Sloper is integral and is a
multiple of four

REMARK 2.2. Combining this lemma and our theorem, we find that theeeaa
most two surgeries creating Klein bottles in our situation.

We use a combinatorial method to prove Theorem 1.1. Let wallirbasic notions
and fix our notation. Let? (resp.@) be a created Klein bottle it (r) (resp. M(s)).
Assume thatP = P N M (resp.Q = @ N M) is chosen to minimize the number of
boundary components. Let (resp.q) be the number of the boundary components of
P (resp. Q). By a small perturbation, we can assume tlfatand Q intersect trans-
versely and that each component@P meets each component 600 exactly A(r, s)
times. Then the following holds. For a detailed proof, cdngl4].
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Lemma 2.3. (1) Both p and g are odd
(2) Both P and Q are incompressible and boundary incompressibleMn
(3) No arc component of N Q is boundary-parallel inP and in Q.

Proof. (1) If p is even, then we can construct a closed non-orientable cgurfa
in M C S°. Since S® cannot contain a closed non-orientable surface, this léads
contradiction.

(2) See [14, Lemmas 2.1, 2.2].

(3) If there exists such an arc, then it contradicts (2) (See Lemma 3.1]). [

Let Gp C P be a graph of intersection witld. That is, vertices oG p are disks
P—intP, edges ofGp are arc components @d*NQ in P. We often call such vertices
asfat vertices We define a graplG, C O similarly.

We give an orientation on all components @P so that they are all homologous
on dM. Let e be an edge ofGp. We may assume that a regular neighborhdo@)
of e is a disk inP. Let a andb are segments aiN(e)NdP. We can give an induced
orientations orz and b from the orientation o P. If orientations ofa and b give an
orientation ofd N (e), then this edge is called apositive edgelf orientations ofa and
b give inconsistent orientations aiV (¢), then this edge: is called anegative edge
Similar definitions are applied for edges @y. Then the followingparity rule holds.

Lemma 2.4 ([15, p.872 (parity rule)]). An edgee is a positive edge inGp if
and only ife is a negative edge ;.

3. Graphs of intersection

In this section, we assume th@@ P = p > 3. Namely, at least one of the created
Klein bottles is not once-punctured in the knot complement.

Let us recall some definitions needed in our discussion. Agyih o of Gy
is called acycle if it becomes a closed loop when we regard fat verticesGegf as
points. Thelength of a cycleo is the number of edges aff, constructingo. If a
length one cycles bounds a disk inQ, then such a cycle is called atrivial loop.
Lemma 2.3 (3) shows that there exist no trivial loopsGp.

We number components &P 1,2,..., p in the order in which they appear on
dM. Then each edge offi, has a label on each endpoint. If an edgef G, has a
label i on both endpoints, thea is called alevel i-edge If we do not have to specify
this numberi, then we calle a level edge

Around a vertex ofG, these labels occur in the order2l..., p,1,2,...,p, ...
repeatedA(r, s) times. A cycleo of G, is called ani-cycle if all edges ofc are
positive edges and if we can give an orientationcorso that every tail of each edge
has labeli. An i-cycleo of G is called aScharlemann cyclé o bounds a disk face
of Q — Gy (see Fig. 1 left). Edgesy, e; in Gy are calledparallel if there is a disk
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Fig. 1. Scharlemann cycle, generalized S-cycle

D in Q such thatoD are edgess, e and corners (subarcs of fat vertices) and that
intD NGy is empty. A triple of successive parallel positive edges, eg, e1 C G is
called ageneralized S-cycld ¢ is a leveli-edge, anck_1, e; have labelsi —1,i +1}
respectively (see Fig. 1 right).

Let us recall some basic facts about Scharlemann cycles anerglized S-cycles
in a Klein bottle.

Lemma 3.1. (1) There exist neither Scharlemann cycles nor generalized S-
cycles inGy.
(2) Let P be the family of positive parallel edges iGi,. If 8P > (p + 3)/2, then
there exists a Scharlemann cycle or a generalized S-cycl@pn

Proof. See [14, Lemmas 3.2, 3.3] for proof of (1), and see [ldmma 3.4]
for (2). Remark that in the paper [14]) is assumed to be a minimal genus Seifert
surface. But examining the proof of these lemmas, we find thatstatements still
hold in our situation. [

Next we consider parallel negative edges. In this case, Wlese& that we cannot
find too many edges in a negative parallel family.

Lemma 3.2. Let N be a family of negative parallel edges &y. If N > p+1,
then K is cabled

Proof. Letey, es,...,e; (k> p) be the successive parallel negative edgesVof
By changing labels if necessary, we can assume that labejsaoéi andi+/ (mod p).

CAsE 3.3. The numbef is equal to zero.

In this casees, ..., e,+1 are all level edges (see Fig. 2 left). Singéis a family
of negative edges iy, the edgesy, ..., e,+1 are all positive inGp. Remark that
each of these edges becomes an essential Ioc?p ilnwe regard fat vertices as points
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Fig. 2. Bothe; ande,+1 join the same fat vertex iz p.

because there exists no trivial loop @p. Since there exists only one family of posi-
tive loops inP, the edges; ande,., are parallel inGp. We name endpoints af, as
A,C andeps1 as B, D so that pointsA, B lie in the same fat vertex oGy, and C, D

lie in the same fat vertex of;,. Remark that these point$, B, C, D do not need to

lie in the same fat vertex of;,. If these four points appear on the same component
of 30, we may assume that they appear in the ordeB, C, D.

We first consider the case where the four poiAtsB, C, D are all contained in
the same fat vertex o&,. Then since the surgery slopes are integral, this ordering
must be respected iF . But this is impossible becausg ande,.;, are also parallel
in Gp (see Fig. 2 right).

Next we consider the case where the fat vertex containing and the fat ver-
tex containingC, D are different. In this case, let us consider the subgriapbf G p
consisting of all fat vertices ofi» and the edges;, ..., ep+1. In this subgraphe;
ande,.; are parallel. LetDp be the disk representing parallelism @f ande,+; in T'.
Remark that this diskDp has no fat vertices in i because there exist no trivial
loops inGp. Let Dy, be the disk representing parallelism @f and e;+1 in G, and
Dy the disk consisting of JI_; Dy, in Go. Topologically A := Dp U Dy is an annu-
lus or a Mbbius band according to the orientation of the edgesicdnde,.1 in Gp.

By taking small perturbation if necessary, we can assume Ah& properly embed-
ded in M.

If A is a Mobius band, then since slopes ®P and dQ are both integral, it fol-
lows thatd A runs longitudinally only once. Thus, considering the baamdof the reg-
ular neighborhoodV(A) in M, we find a cabling torus, which shows thétis cabled.

If A is an annulus, then let;, y, be the boundary components df We orient
y1 and y» from the orientation o Q. Exchangingy: and y; if necessary, we may as-
sume that the orientation induced ¢@n is consistent with the orientation @fP while
the orientation induced om, is inconsistent. Then examining the intersection number
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Fig. 3. A= Dp U Dy is an annulus inM.

betweeny; and i, the meridian class oM, we find thaty; and y, have different
slopes. Namely, they represent different slopes. Side a properly embedded annu-
lus, y1 and y» must represent the same slope. Hence we find a contradiction.

CAse 3.4. The numbef is not equal to zero.

In this caseq, es, ..., e, make cycles (may be one cycle) @p. Since we as-
sumel # 0 (mod p), each of these cycles has the same length greater than ene. R
mark thates, ..., e,+1 are all po§itive edges G p so that each regular neighborhood
of these cycles is an annulus iP. If one of these cycles bounds a disk i then
the argument [3, Section 5] shows thiitis cabled. Thus we can assume that none of
these cycles bound a disk.

Let " be the subgraph ofi » consisting of all fat verticess» and edges;, ...,
ep+1. Let o be the cycle ofl" containinges. If e; ande,+1 are not parallel in", then
the cycle & — e1) Uep+1 bounds a disk. Again, using the argument [3, Section 5], we
find that K is cabled. Thus we can assume thatande,.; are parallel inT".

Let Dp be the disk representing parallelism af ande,+; in I'. Also let Dy, be
the disk representing parallelism ef, ande;+1 in Go and Dy the disk consisting of
U%; Do, in Gy. By taking small perturbation if necessary, we can assurae Ah=
Dp U Dy is a properly embedded annulus M. See Fig. 3. Arguing as in the last
paragraph of Case 3.3, we find a contradiction. ]

4. Main argument

In this section, we prove Theorem 1.1. First we consider @gegoQ = g = 1.
The casefdP = p = 1 is already examined in the paper [6]. Recall that thess-
cap numberis the minimal number of the first Betti numbers of non-orédai¢ Seifert
surfaces for the knot.
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Lemma 4.1 ([6, Theorem 2], [10, Theorem 1.2])For a crosscap number two
knot K, the boundary slope of its minimal genus non-orientablee®egfurfaceF is a
multiple of four and there are at most two slopes which can be a boundary slépe o
F. If there are twg o and B, then |a — 8] = 4 or 8. Furthermore if |« — 8] = 8, then
K is the figure eight knot andw, 8} = {—4, 4}.

REMARK 4.2. To use Lemma 4.1 for the proof of Theorem 1.1 in the gase
g =1, we need to check thakK is a crosscap number two knot. This is shown
as follows.

BecauseK bounds a once-punctured Klein bottle, it follows that thesscap num-
ber of K is less than or equal to two. If the crosscap numbeiKofs one, then by
definition the of a crosscap number, we find &us bandB ¢ M whose boundary
is K. Taking a regular neighborhood @, we find thatk c aN(B). This shows that
K is a cabled knot, which is a contradiction.

Thus, we only have to consider the cgse- 3.
Proposition 4.3. If g =1 and p > 3, then A(r,s) < 4.

Proof. All edges inG, are partitioned into one of the following families: the
one consisting of parallel positive edg®s and the one consisting of parallel negatives
edgesNi, N2 (possibly P, A; is empty). By Lemma 3.1, we getP < (p +1)/2. By
Lemma 3.2,tN; < p. Therefore the total number of endpoints around the fatexert
of Gy is less than or equal to 24(+ 1)/2 +2- p] = 5p + 1. Hence we obtain an
inequality pA(r, s) < 5p+1. Since we know that(r, s) is a multiple of four, we find
that A(r, s) < 4. ]

In the remainder of this section, we treat the case where podéimd ¢ are larger
than one. Since and g are odd numbers, it follows thas, ¢ > 3. Before analyzing
Gp and G, we examine their “double coverings.”

Let R be the surface)N(P) in M(r) andS be the surfac@N(Q) in M(s). Topo-
Iog|cally R and S are tori, the double coverings gt and Q. As usual, letR be the
surfaceR N M. We can assume tha& and S intersect transversely and that each com-
ponent ofd R meets each component 88 in exactly A(r, s) times. Taking a thin reg-
ular neighborhood if necessary, we can thinkN)ﬁB) as a twisted/-bundle overP.
Thus each boundary component Bfcorresponds to the two boundary components of
R. Let us think of R N Q. Each arc component aP N Q (edge component o p)
corresponds to the two arc components®f Q. Thus if we take a graph of inter-
sectionGrng C R with Q, we can thinkGgno as a double covering ofip. Since
S = 8N(Q) each arc component @8 N Q corresponds to the two arc components of
RNS. Thus each arc component &N Q corresponds to the four arc components of
RN S. Now let us take a graph of intersecti@; C R with S. Similar construction
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gives a graphGg. For a detailed construction, see [1, p.139-141]. We usphgr&
and G5 to examine positive level edges @y and inGy.

Lemma 4.4. There is no trivial loop inG and in Gy.

Proof. Assume that there is a trivial loop in Gg. Using the projection
pr: 9aN(P) — P, we find that the edge corresponding toeprih G must be a trivial
loop. Since there is no trivial loop i p, this is a contradiction. L]

Since’S is a separating surface, we can color A{iQ) black andM(s) — N(Q)
white. Using this coloring, we can divide all faces 6fz into two families: white
faces and black faces. Remark that the boundary of any bk i a length two cy-
cle because black face corresponds to an edg&/AnWe can introduce an orientation
on each component afR from an orientation ord P. Using this orientation on each
boundary component, we can define a Scharlemann cycle ag iprévious section. If
a Scharlemann cycle bounds a white disk irGg, then the cycles is called awhite
Scharlemann cycleSimilarly we can define dlack Scharlemann cycldRemark that
this coloring can be applied to faces 6fs.

We can also give a label on each endpoint of an edge. We nunobgpanents of
OR 17,1%,2~,..., p~, p* in the order in which they appear dhV/. We assume that
this numbering has the following property. If we cut an dtiag solid torusJ along
meridian disks corresponding to land I of Gy, then two 1-handleg; and J, are
obtained. LetJ; be the 1-handle containing no meridian disks correspontbngther
fat vertices ofGg. We give a numbering 0§G so thatJ; contains the meridian disk
corresponding to 1 oG p.

Under this numbering, we note that an edge of a white Scharlentycle inGg
has labels{a*, (@ + 1)} and that an edge of a black Scharlemann cycle has labels
{a~,a*}. By assumptions oG » and G, we can show the following.

Lemma 4.5. There exists no white Scharlemann cycledr and in Gg.

Proof. Assume that there exists a white Scharlemann eydie G. Let «* and
(a + 1) be labels of each edge constructinig By construction ofG; and Gy, if we
take an edge of o, then there exists a black face nextaoRemark that these black
faces consist of two edges. One of the edge has latfelsnd ¢ + 1), the other has
labelsa~ and @ + 1)*. Since black faces correspond to edgesGip, existence ofo
shows that there exists a cyae in Gp. Remark that each edge of has labelsa
anda +1 in Gp. Sinceo bounds a disk inGg, o also bounds a disk ifGp. By
construction ofGg, each edge of’ is a positive edge. Thus we find that this is
in fact a Scharlemann cycle i@ p. See Fig. 4. Since we are assumipg- 3, we can
apply Lemma 3.1 (1). Therefore we find a contradiction. L]
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(a+ D) a
Fig. 4. A white Scharlemann cycle iGr yields a Scharlemann cycle i@ p.
Proposition 4.6. If p,q > 3, then A(r, s) < 4.

Proof. Assume thatA(r,s) > 8 seeking a contradiction. Applying Lemma 4.4
and the inequality [11, Lemma 2.1], we get
A(r,s) <2+ (O_ZX (k) + (0-x(5)) + RS

2q 2p 2q

m m
:2+_R+_S

2p  2q°

Here my stands for the number of Scharlemann cyclesGig, andmg the number of
Scharlemann cycles i6's. Since there are no white Scharlemann cycles by Lemma 4.5,
all Scharlemann cycles iz and in Gg are black Scharlemann cycles. Thus we can
assume that there are at leastZp black Scharlemann cycles iG. Since a black
Scharlemann cycle corresponds to a positive level edgee the at least 3 positive
level edges inGp. By the parity rule, this shows that there are at legstri2gative
loops inGy.

Since 0 has at most two parallel families of negative loops, we finat thne of
those families has at leasip2 + 1/2 (p is odd) negative loops joining the same fat
vertexv. Letey, ..., ex(k > 3p/2+1/2) be such edges i, andI" the subgraph of
G consisting these edges and the fat veriexn this subgraph, edges and e;41
are parallel by construction. LaD; be the disk representing the parallelismepfand
Ci+1 in T,

If none of the disksD4, ..., D,_1 contain fat vertices o7y, then edges;, ..., ¢
are parallel inG,. By applying Lemma 3.2, we find that this contradicts our agsu
tion on K.

Thus we have to consider the case where these efges., ¢, are not parallel in
Gy. Let D := D; be the disk containing at least one fat vertex@®@j. By examining
the Euler characteristic ab, we will find a contradiction.
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Fig. 5. Reduced graph
Let v1,..., vy be the fat vertices o&;, contained in intD. Let us define the sub-
graph A of Gy on D as follows: vertices ofA are two corners ob facing atD and
the fat verticesvy, ..., vy, edges ofA are edges oGy in intD ande;, e;+1. Instead

of A, we consider its reduced graph, that is, parallel edges of are amalgamated
(see Fig. 5). Remark that©@, the 0-skeleton ofA, is the same as(© by definition
so that we gettA©@ = tA©@ = V + 2. Let E be the number of the edges of such
that at least one of their endpoints belongs to same(l < m < V). Because the
endpoints ofe; and e¢;+1 lie in the fat vertexv, we find thatA hasE + 2 edges. Let
F be the faces oD separated byK and F the number of components of. We re-
mark that sinceA is a reduced graph an@, has no trivial loops, the boundary of
each face ofF is a cycle having length at least three. Thus we halile+2 > 3F.
Calculating the Euler characteristjg D), we find that

1=x(D)=(V+2)—(E+2)+ Y x(f).

feF
2E +2
1-V+E=) x(f)<F=< :
feF
Then we get the inequality
(®) E <3V -1

Now let us evaluate the numbef. By Lemmas 3.1, 3.2, we find that eacel
has at leastA(r, s)p/p = A(r, s) endpoints of A®. Let I be the number of edges of
A which connectv and somev,,. ThenE is greater than or equal ta\(r, s)V +1)/2.
Substituting this inequality into the previous inequalfty, we get

(A(r,s) —6)V+1+2=<0.
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Since we are assuming(r, s) > 8, this is a contradiction.

Therefore we obtain the desired inequalifr, s) < 4. U
Now Theorem 1.1 follows from Lemma 4.1, Propositions 4.8, 4.

ACKNOWLEDGEMENT. The author would like to thank Professor Kazuhiro Ichi-

hara and Professor Masakazu Teragaito for encouraging eadwid pointing out er-
rors in the old version. He would like to thank Professor Kehmi’ Ohshika, Professor
Makoto Sakuma and Professor Takashi Tsuboi for helpful contsnédie would like to
express his gratitude to the referee for detailed comments.

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]
(10]
[11]
[12]
[13]
[14]

(18]

References

M. Domerque and D. MatignorDehn surgeries and?-reducible3-manifolds Topology Appl.
72 (1996), 135-148.

C.McA. Gordon: Boundary slopes of punctured tori Brmanifolds Trans. Amer. Math. Soc.
350(1998), 1713-1790.

C.McA. Gordon and R.A. Litherlandincompressible planar surface @&manifolds Topology
Appl. 18 (1984), 121-144.

C.McA. Gordon and J. Lueckdehn surgeries on knots creating essential t4riComm. Anal.
Geom.3 (1995), 597-644.

C.McA. Gordon and J. LueckeDehn surgeries on knots creating essential .tdlji Comm.
Anal. Geom.8 (2000), 671-725.

K. Ichihara, M. Ohtouge and M. TeragaitBoundary slopes of non-orientable Seifert surfaces
for knots Topology Appl.122 (2002), 467—-478.

K. Ichihara and M. TeragaitoKlein bottle surgery and genera of knptBacific J. Math.210
(2003), 317-333.

K. Ichihara and M. TeragaitoKlein bottle surgery and genera of knols Topology Appl.
146147 (2005), 195-199.

S. Lee: Exceptional Dehn fillings on hyperbol@manifolds with at least two boundary com-
ponents preprint.

E. Ranirez-Losada and L.G. ValdezaSchez:Once-punctured Klein bottles in knot comple-
ments Topology Appl.146147 (2005), 159-188.

D. Matignon and N. SayariNon-orientable surfaces and Dehn surgeyi€anad. J. Math56
(2004), 1022-1033.

D. Matignon and N. SayarDehn fillings producing Klein bottlesn preparation.

D. Rolfsen: Knots and Links, Math. Lec. Sét. Publish or Perish, Berkeley, California, 1976.
M. Teragaito: Creating Klein bottles by surgery on knpt3. Knot Theory Ramification40
(2001), 781-794.

M. Teragaito:Dehn surgery on crosscap number two knots and projectiveeglal. Knot The-
ory Ramificationsl1 (2002), 869-886.



412 K. Kuwako

Graduate School of Mathematical Sciences

The University of Tokyo

3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan
e-mail: kkuwa@ms.u-tokyo.ac.jp

Current address:

Department of Mathematics

Graduate School of Science

Osaka University

Machikaneyama 1-16, Toyonaka

Osaka, 560-0043, Japan

e-mail: kuwako@gaia.math.wani.osaka-u.ac.jp



