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Abstract
We give a global existence theorem to systems of quasilimeamre equations
in three space dimensions, especially for the multipleedpeases. It covers a wide
class of quadratic nonlinearities which may depend on uwkisoas well as their
first and second derivatives. Our proof is achieved throughl tuse of pointwise
and L2-estimates concerning unknowns and their first and secoridatiees.

1. Introduction

Let u = u(r, x) = (u;(r, x))/2, be anR™-valued unknown function, and séi; =

32 — c,?Ax with some positive constants (i = 1,...,m). We consider the following
system of nonlinear wave equations

(1.2) Oiui(t, x) = Fi(u, du, V,du) for t>0 and x eR® (1<i<m)
with initial data
1.2) u; (0, x) = ¢;(x), du;(0,x)=1v;(x) for xe R3 1l=<i<m).

We use the notatiordy = 9, = 9/9r and 9; = 9/dx; for 1 < j < 3 throughout
this paper.du and V,9u are R**-valued andR'?"-valued functions, whose compo-
nents aredu; (1 < i <m, 0 < a < 3)anddjdu; 1 <i <m, 1 < j <
3, 0 < o < 3), respectively.F(u, v, w) = (Fi(u, v, w))i<i<n IS @ given function of
(u, v, w) € R x R¥ x R¥" The components of, v and w are denoted by:;, v;,
and w; j,, respectively, where ¥ i <m, 1< j <3 and 0< « < 3. Herew;, cor-
responds tod,u;, and w; j, t0 9;0,u;. We suppose thap = (¢;)/L, and ¥ = (¥;)/L,
in (1.2) are rapidly decreasing functions.

We assume thaf'(u, v, w) is linear with respect tav and satisfies

(1.3) F(u,v,w)=0 (|u|2 +v)? + |w|2) near {,v,w)=(0,0,0).
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Since F(u, v, w) is linear with respect tav, each equation in (1.1) takes the form

1.4) Ciu; + Z Z yi‘;ﬂ(u, ou) 0, 0pu; = f;(u, du)

j=1 0=a,p=<3

fori=1,...,m. To assure the hyperbolicity of the system, we also assume
(1.5) v, 0) = 7w, v) = v (u, v)

forany 1<i,j<m, 0<a,p <3 and {,v) € R" x R4,

The purpose of this paper is to give a condition and a proofloba existence
for the Cauchy problem (1.1)—(1.2) with small data. The mahdition emerged as a
condition for the existence of global small amplitude siolus in [9] and [3] for the
single-speed case. Its generalization to the multipledpecase has been studied by
several researchers, see [11], [1], [17], [15], [4] and [1&] the case wherg’ de-
pends ondu, 9°u but not onu. The caseF = O(|u|®+ |du|? + |V, du|?) with multiple
speeds was studied first in [12], whose result was genedalaer in [7].

Let us review the null condition for the cage = O(Ju|® + |du|? + |V, du|?) with
multiple speeds. For simplicity, we assume that the wavegmation speeds are dis-
tinct. That is to say,

AssumeF = F@ + H, where F@ = (Fl.(z));”:1 is a quadratic function with respect to
(v, w) and H = (H;)™, = O(lu|® + |[v[® + |w|®) near the origin. We introduce

3
N; = {X = (Xo. X1, X2. X3) e R*; X§ — 2 Y "X3=0
=

fori=1,...,m. Fory = (y;); € R" and X = (X,)3_, € R% we defineV(y, X) €
R* and W(y, X) € R'?" by

V(y, X) = (Via(y, X))1<izm.0ca<3 = (Vi Xa)1<i<m,0<a<3,
W(y, X) = (VVi,ja()” X))15i5171.1§j§3.05a53 = ()’iXan)lsism.15j53.05a§3-

We say thatF satisfies the null condition i’rF,.(Z)(V(M, X), W(v, X)) = 0 holds for
any u,v € R", X € N; andi = 1,...,m. Then it was shown in [7] that there ex-
ists a global smooth solution for (1.1)—(1.2), providedtttize initial data are suffi-
ciently small.

The nonlinear terms which satisfy the null condition are liedty described by
the null forms. For arbitrary smooth functiogs and ¢ on R x R3, we define new
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functions Qo(¢, ¥) and Qp(¢, ), as bilinear forms ob¢ and dy:

3

(.7) Qo(¢. Vici) = 0,y — 2 > 0,0 0,
=1

(1.8) Qup(P, V) = 040 0pY — Ipp V-

We call them the null forms. If the null condition is satisfigden we can rewrite the
nonlinear terms explicitly, as

Fiu, 0w, Vo 0uw) = 3 3 Oolur, 0uise) + Y Quplits, 8%us)

la|=0,1 O<w,B<3

YD Bauj 9“Opuk + Hi(u, du, Vi du),

(k)7 (i.i) O<a,p<3
la|=0.1

(1.9)

where 3¢ = 97°9;95%03° for a multi-indexa = (ao, a1, az, az). Here and in what fol-
lows, the expressiory = Z’MA g, means that there exists a fami{{’; },c» of con-
stants such thaf = >, _, C.g:. We note that only the products éfu; and 3bu; in
F; are involved with the null forms. So we understand that thi foums weaken the
effects of self-interactions and that is enough for the glaéxistence.

Our aim in this paper is to consider the case where the guadratts of the non-
linear terms containe. This case was studied by the first author in [6] and [8]. More
precisely, he gave a global existence theorem for smalkinitata, assuming

3 3
Fi(u, 0u, V, 0u) = Z/ 9y Qolui, uj;ci) + Z, Qupui, u;)

y=0 o,p=0

£33 0 (8%uy 9%ui) + Hilu, du, Vi, u)

(j.k)# (i) O<a<3
la|,|b|=0,1

(1.10)

in [6], while another global existence theorem for smalladatas proved for nonlin-
earity satisfying

m

3
/ /
F;(u, du, V, du) = E E Qo(uj, duj;cj)+ E Qupuj, 3%uj)

(1.11) S ) =0
30 9u 8 9,u + Hi(u, du, V, du)
k#l 0<a<3
lal,1b|=0,1

in [8]. Note that in both cases quadratic terms depend: daiself as well as its deriva-
tives. In this sense, he considered generalized situatldowever, instead of allowing
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such terms, additional restrictions are imposed on quiadtatms depending only on
derivatives. Remember that special forms were requireg & the self-interactions
d%u; - 3%u; (lal,|b| = 1,2) of F; in the previous case (1.9). In contrast to this, we see
that some special forms are assumed also for termsaﬁkgabuj (Jal, Ip| = 1, 2) with

Jj #iin (1.10) and (1.11). Hence the readers may have thoughtbathould aim to
remove these additional restrictions. But this attempt (fod1) will not be achieved,
on account of Ohta’s counterexample [14]. In fact, he showed a solution of the
Cauchy problem for the systems of two wave equations

Oaua(t, x) = uzdug,  Doua(t, x) = (0u1)?

can blow up in finite time ifc; < ¢z, however small the initial data are. Note that
there is no self-interaction in this system. So we cannotagdvcombine nonlinear
terms freely, even if they are favorable in different siioas (observe that the above
nonlinear termsu,d,u1 and @u1)? are included in (1.11) and (1.9), respectively).

Though we should give up a global existence theorem unifyihg) and (1.11),
we can prove global existence for the following nonlinganthich means that (1.10)
and (1.11) can be unified:

3
Fi(u, 9u, Ve 9u) = 80Gj o(u, 0u) + Ni(du, Vy 1)

(1.12) =0
+ R;(u, du, V, du) + H;(u, du, V, ou)

l<i<m),

(1.13)  Gio(u,0u) = Z Z/ 0“u;j 3buj,

Jj#i lal,|b]=0,1

(1.14)  N@u, Ve du)= > Z Qolu;, uj;c;)+ Z/ Qapluj, 0uj) ¢,

0<j<m |a|=0,1 0<a.B=<3

(L15) R, 0w, Voou) =3 3 9%y "0qur,

k#l 0<a<3
lal,1b|=0,1

(1.16)  Hi(u,v,w) = O (Jul®+|v]®+|wl®) near the origin.

As we have observed, we need some assumptions not only fbinteghctions but
also for the terms liked“u; - 8°u; for j = 1,...,m. So we require that they should
take either the null forms or the divergence-type forms.

In order to describe the main result, we introduce some iootabriefly.
' = (Ty, ..., '7) denotes the collection of vector fields €2, and d, where S =79, +
x -V, andQ = (x233 — X302, X307 — X103, X102 — x281). We write

(e, x)Is = Y 1M, x)1,

la|<s
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]

wherel™ =T'¢°---I'y’. Moreover, we set

E(1) = Eg[u](r) = Mulz, - )lsllzz + H0ulz, - )lsllz2 +Z|I(C,’t =1 DIoui (e, - )ls-1llre,

i=1
where (p) = /1 +p2 for p € R. We use this notatiorjp) throughout this paper.

Theorem 1.1. Assume tha{l.5) and (1.6) hold. Suppose that the nonlinear term
F = (F)., is given by(1.12)—(1.16).Let v € (0, 1/2]. Then there exists a positive

constante, such that if

sup{(Ix)2[u(0, x)I13 + (|x[)30u(0, x)|14 + (Ix)**"|8,u(0, x)|17} + E22(0) < e,

xeR3

then the Cauchy problem(1.1)—(1.2) has a unique global solutionu €
C> ([0, 00) x R3; R™).

It should be emphasized that we cannot prove the theorem lmnlgombining the
estimates in [6] and [8]. The method in [6] depends on the |ty of nonlinear
terms (1.10), while the estimates in [8] rely on fairly goodcey of solutions with
nonlinear terms (1.11), which cannot be expected for thetisols of [6]. Since the
estimates which we require fav; and R, have been established already in former
works, the difficulty of considering the unified nonlinegirltes on the treatment of the
divergence-type terms. The missing tools for the estimatdke divergence-type terms
are pointwise estimates of the second derivatives. Seell@yr@®.4 and the proof of
Lemma 6.6 below.

REMARK. (i) We can generalize the theorem above to the case wheBg i€l.
not satisfied. We define

I@)={je{l,....m};c;j=¢} for 1<i<m

and assume that

Giou,du) = Z Z Z/ 9%uy 8wy,

jel1() klel(j) lal.|b|=0.1

/ /
Ni(Ou, Ve du)= Y Y 1 Qolui, uriey)+ Y Qupluns, 0"w) ¢
k,lel(j) lal=0,1 0<a,p<3
O<j<m
Riw.du, V)= 33 0%y ad,u,

1(k)Z1(I) 0<a<3
lal,|b1=0,1
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instead of (1.13)—(1.15). The global existence is provethauit essential modifications
to our proof below.

(iiy There are some nonlinearities to which we can apply oethod, though they do
not explicitly satisfy the conditions of Theorem 1.1. Forample, consider a system
of two wave equations

(1.17) Dlul = u%, Dzuz = (8au1)(85u2),

wherec; # ¢, and 0< «, 8 < 3. Note that this system does not satisfy the condi-
tions of Theorem 1.1, because there exists a term which daomtin any derivative.
However, by introducing new unknowns = d,u; and v, = up, we can rewrite the
above system as

(1.18) Oivy =3, (v3),  Tova = v1(dpv2),

to which Theorem 1.1 is applicable. Thus the reduced sysfef8) possesses a global
solution for small data. Now it is easy to obtain a global solu for the original
system (1.17).

The plan of this paper is as follows. In Section 2 we introdtiee notation used
throughout this paper. In Sections 3 and 4 we collect somé& h@Esntwise and en-
ergy estimates which we require. Then we obtain energy amutvpiee estimates for
smooth and small solutions in Sections 5 and 6. Finally, tleefpof Theorem 1.1 will
be given in Section 7.

2. Notation

We define the scaling operatdrand the angular-momentum operatétg, by
3
S=10,+Y x;0; and Qj=x;0 —xd; for 1<j<k<3
=1

We also set
Fo=S, T1=Qqp To=Qa T3=Q3, Ti=0ha (A=<k=<T7)

and " = (Ig,...,T'7), so that we can use multi-index notatidrf for a product
reeryt-..ry, wherea = (ao, ..., a7) € (Z+)8 In order to deal with products of the
differential operators above, we frequently use the coratrart relations

[S’ 80{] = _8(?(7 [S’ Q/k] = O’

[ija 80{] = _6aj8k +80t/(8j7

[S2jk Qpgl = 8pS2qk + 8¢ S2p — 0kp g5 — Skg2jp
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forO<a<3,1<j<k=<3and 1< p < g < 3, wheres,, is the Kronecker delta,
and Qj, for j > k is given by Q;; = —€;. From these identities we obtain

’
rrby = 1y + § o,
[c|<lal+]|b] -1

’ /
0, 7% =T 9,0 + Z r dgv, T0,v =0,"v+ Z 851“”1)
0=p=3 0=p=3
|b|<lal-1 |b|<la|—1

for any smooth functiorv. We have alsol]l;, I'o] = 200; and [J;,I';]=0 for 1 < j <
7, which vyield

2.1) () = @)+ Y. rCo).
|b]<a]-1

The followings are used in the subsequent sections, to @ealseveral quantities
by using pointwise and.>-estimates. Let be a non-negative integer. Then for a smooth
function v(z, x), we define

(e, X)ls = Y ITv(, %)

lal<s

and

o, s = v, sl zags) -

Finally, we introduce two linear operators. For eache {1,...,m}, we write
U?[ f, g] for the solution to the Cauchy problem

{DiUi*[f, ¢)(t,x) =0 in (0, 00) x R?,
UF[f. gl(0,x) = f(x), U[f gl(0,x)=g(x) for xeR3

Similarly, U;[®] stands for the solution to the Cauchy problem

O:U;[®@](z, x) = ®(t, x) in (0, 00) x R,
U;[®](0, x) = 3,U;[®](0,x) =0 for x e RS

Since the commutation relationgl], T',] = 28¢,[; imply O, T U;[®] = T, @ + 25¢, @,
we easily get

(2.2) Lo Ui[®] = Ui[To @] + 280, Ui [®] + 84, U;[O, ©(0, -)].

Here we use the representation

(2.3) v(t, x) = U [v(0, -), 3,v(0, -)I(z, x) + U;[D;v](z, x).
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As an immediate consequence of (2.3) and (2.1), we also have

(2.4) Mu(t, x) = UF[T0(0, -), 3Tv(0, It x) + Y U [P’Thv] (2, x).
[b]<lal

3. Pointwise estimates

The aim of this section is to give some pointwise estimatess@dutions of wave
equations. We start with estimates Of [ f, g] and U;[®] together with estimates of
their first derivatives.

Lemma 3.1. Forv>0,andi=1,...,m, we have

(¢ + x[)(cit — %) |UFLS, 81, x))
3.1
G4 <C sup Y IV O+ Iy Iy g0 ¢

IvI=eit+lxl | <1
(1 + x])eit — X)) OUF L £, g)(1. %))
(32) <C sup Y NI TUVEV £+ VIO

Iyl=cit+x] 72y
The above constanf depends only omr; and v.

Proof. See Proposition 3.3 and the subsequent remark intKulgokoyama [12].
In [12], it was actually shown that

(t+ x )it — xD)"IULF. g)(e. x)l < € suplly))2™ {Z V()] + |g(y)|’ :

yeR? la]<1

But (3.1) is obtained by making slight modification to the gfr@f [12]. (3.2) is an
immediate consequence of (3.1), singeU;[f, g] = Uj[d,, f, 3x;¢] and 9, U[f, g] =
Uf[g. c?Af]. See also Asakura [2]. O

To describe the estimates fdr;,[®] which we require, we introduce two kinds
of weights. We set

(3.3) w(t,r) = (r)_1+2(c_,-t —r)t ,
j=1
-1
(3.4) w;(t,r) = (r)_1+2(cjt—r)_1 @=1,...,m).
J7i
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We also set
(3.5) Di(t,r)={(t.y) eRxR% 0=t <t, r+|y| <cit+r}.
Lemma 3.2. For u >0,v>0,i=1...,m,anda=0,...,3, we have

(t +1xD{cit — X" U [Pz, x)]

(3.6) <C sup Iylle+ YD w(r, [y)E (e, y)I,
(z.y)eD;(t.|x])
(IxI){cit — Ix)2 Ui [8 ](2, x)]
8.7 <C sup yl(z+ Iy, ) (T, Yl
(z.y)eDi(t,|x])
(xl) (it — |x])* Ui [0, @]z, x)]
(3.8)

<C sup Iyl + Iy wi Iy DT (T, p)la,
(z.y)eD;j(t.x)

where the constan€ depends or;, i, v.

Note that the weightw;(z, r) is stronger tharw(z, r) along the cone;r = r. Hence
(3.8) forv > 1 is a weaker result than (3.7). However, the inequality)(&&o longer
true for O< v < 1, if we replacew;(z, r) by w(z, r).

Proof. Although we can get (3.6)—(3.8) by making slight nficdtions to the
proofs of Yokoyama [17] or Kubota—Yokoyama [12], we give aqirin Section 8
for completeness. ]

In addition, we need pointwise estimates of the second at&rés. As it was
shown by Klainerman-Sideris [10], we can draw out the dewayactor (c;t —r) like
(3.9)—(3.11) simply by manipulating differential openstd’, and [J;, as far as the
temporal differentiations or the Laplacian are involvede \6an play a similar game
for the spatial second derivatives, but unfortunately aalfactor (r) can be obtained
instead of(c;r—r) (see (3.12) below). We will observe in Section 6 that it isfisigt
for our present purpose.

Lemma 3.3. Let v € C%((0, 00) x R3). Then we have

(3.9) (cit — [x)|Av(r, x)| < C (Z |aTv(z, x)| +t|D,-v(t,x)|) ,

la]<1

la]<1

(3.10) (cit — |x]) |82v(t, x)| < C (Z |aT“v(, x)| + |x| |D,~v(t,x)|) ,
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(3.11) (cit — |x])|Vy 0v(t, x)] < C (Z |81"“v(t,x)| +t|D,~v(t,x)|) ,

lal<1

(3.12) {lxl) [V20(t, x)| < C(IQV,u(t, x| + (Ix))]Av(E, x)]) .

Proof. See Lemma 2.3 of [10] for the proof of (3.9)-(3.11). émder to
prove (3.12) we note that

(3.13) xAQ=x(x-V)— x|V, QAV=—xA+(x V)V,

where Q = (1, Qo, 23) = (R23, 231, 212). Hence we obtain

(3.14) —(x AQ); v+ (A V)0 = [x28;0;0 — x;x; Av

for i, j =1, 2,3, which imply (3.12). ]

Corollary 3.4. Let v € C%((0, o0) x R%). Then we have

LD e, )

(3.15)  [9%u(r,x)| < Cw(r. Ix)t Y [arv(r, x)| + C (it — |x1)

lal<1
fori=1,...,m, whered?v = (3495v)0<a.p<3, and w(z, r) is defined by3.3).

Proof. It follows from Lemma 3.3 that

|[Av(t, x)| + |9, 0v(t, x)]

3.16
(310 < Cle;t =[x~ (Z T w(e, )] + (¢ + x]) |D,-v(r,x)|) ,

lal<1

(3.17) |VZ2u(e, x)| < C(x)™t Z [aT%v(z, x)| + C|Av(t, x)|.

lal<1

Noting that Av on the right-hand side of (3.17) can be controlled by (3.18%
obtain (3.15). O

Lastly, we present the following well-known Sobolev typedualities.

Lemma 3.5. Letv be a smooth functionThen we have

(3.18) M2 ()] < C Y 119,22,
la|<1
(3.19) X[ o(x)] < C Y192l + C Y 112 vl e.

la|<2 la|<1
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Proof. See Lemma 4.2 of Klainerman-Sideris [10] and Lemma 6f
Sideris—Tu [15]. ]

REMARK. By combining the standard Sobolev inequality and Lemma \Bebcan
replace|x| with (|x|) in the above inequality, and we get

(3.20) ()2l <C Y [8:002"] .,
la|+|b]<1

(3.21) (xhlv@) < C Y Q]
la|+|b] <2

4. Energy estimates

In this section, we collect severdl’>-estimates concerning the operatdrs and
UF. We start with the standard energy inequalities.

Lemma 4.1. Let f € HYR®), g € L?[R3) and ® € L'([0, T); L*[R3)). Then
we have

(4.2) [0UFLS 81t )] sy < € (Ve fllzes) + 18l 2es)) -

t
@.2) 010N, e < C [ 106, Mg d
for anyt € [0, T), whereC is a constant independent df.

The following conformal energy was used in Klainerman [9kgsalso [8]).
It plays an important role in our proof, since it is useful nmtly for estimating
the L? norms of u but also for the weighted estimates of the first derivativese (
Lemma 4.3 below).

Lemma 4.2. Let v be a smooth solution of
(4.3) (8,2 — c,.ZAx) o(t,x) = ®(t,x) in (0,T)x R3.

Then we have

3

D oAr(, e + YLy, <)l
(4.4) lal<1 Jj=1

t
= C(KI - Dov(O, )iz + 11v(0, -)ll2) +Cf0 {z +1- (. )2 d,

WhereL,'j = (.X'j/C,')a; +Cit8j (l =1, ...,m; Jj= 12, 3)
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Proof. Using a certain change of variables, we may assymel. For simplicity
of exposition, we writeL; for L;; with ¢; =1, i.e.,L; = x;9, +td;. We introduce

3
(e, )%, 1= Y IT(E x)2+ Y Lo, x)?

lal<1 J=1

3 3
=02+ @)+ Y @)+ (v’ + Y (Quv)+ ) (Ljv)?
=1

j=1 1<j<k<3 j

and
_1 2 3 2
(4.5) Ev](t, x) = §|v(t, X)IF 1+ 2t0(t, x)0,v(t, x) — EU(I’ x)°.

We can rewriteE[v] as

Efv](, x) =

NI =

3 3
@+ +[xP) { @)+ (@0)7 t + D 2tx(3;v)(B,v)
j=1 j=1
+ 2rv(9,v) — v
Set
Kv = (1 +12+ |x|2) o, v+2tx - Vv + 2tv.

Multiplying (4.3) by Kv and integrating by parts, Klainerman showed that

(4.6) %/}Ra Ev](z, x)dx = /R3(Kv)(t,x)d>(t,x)dx

(see Klainerman [9], Section 3). He also showed that theristeexa constantC
such that

1
4.7 E/ v(t, x)I2  dx 5/ E[v](, x)dx < c/ v(t, x)2 | dx
R3 R3 R3

(see Klainerman [9], Lemma 3.1). Now, we defitie(s)|5 = [ E[v](z, x)dx. Since
Kv=3v+1(S+2w+|x|Lv with L, = Y 5., (x;/Ix|)L;, we have

[Kv(t, x)| < C(L+t+ |x|)|v(t, x)Ir.L.1-
Therefore it follows from (4.6) and (4.7) that

d
d—llv(l)llfg < Cf (¢ + x|, x)| [v(t, X)|r.L.1dx
t R3

= Cle+1-No@, lzellv@)le-

(4.8)
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Gronwall's lemma applied to (4.8) implies

lv@lle < lv(O)lle +C/O Iz +1-DNe(z, - )lzdr.

In view of (4.7), this completes the proof (see alsdéridander [5], Section 6.3, or
Katayama [8], Section 3). ]

Corollary 4.3. Leti € {1,...,m}. Then we have

4.9) ). )l < c/o e+ (e, )l dr.
(4.10) | USLf gl(t, )|y = CUSlzz + 1K DVe fllze + 14T Dgllz2) .
(4.11) et — |- DAUL®@(t, -2 < c/o Iz +1]-D(r, -)ll dr,

4.12) (et = 1-DOUFLL glrs )| o = CUFMzz + 1K DV fllzz + 1K - Dgllzz) -

Proof. (4.9) and (4.10) are apparent consequences of LemrBa (4.11)
and (4.12) follow immediately from Lemma 4.2 and the follagiiinequality which
is essentially due to Lindblad [13]:

lal=1 =1

3
(4.13) (it = lxD)[dv(r, x)| < € (Z ITv(t, )1+ |L,-,-v(r,x)|) :

In order to prove (4.13), we just need the following ideesti which can be verified
easily by direct calculations:

3
(4.14) (ci2t2— |x|2) v =cit(Sv)—c,-ijL,-jv,
j=1
(4.15) (ciztz— |x|2) djv = cit(L;jv) —xj(Sv)+Zxk(ijv) (j=1223). U
k#j

REMARK. By substitutings = 0 to the identity (4.15), we have
X[ [Vxv(x)] < |x - Vev(x)] +[S20(x)].
We will use this inequality for functions o x R? in the following form:
(4.16) Ix[1Vyv(0, x)| < [Sv(0, x)| +1Qu(0, x)I,  (Ix[}|V (0, x)| < [v(0, x)l1.

To conclude this section, we stafé-estimates for second derivatives.
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Lemma 4.4. Let v be a smooth function decaying sufficiently fast at apati
infinity. Then we have

(417) et =1 DVedv(e, e < C (Z I8 o(r, )lize + el 5:0(r, -)||Lz) ,

lal<1

(4.18)  |(cir —1- D97, )|, =C (Z 19T (r, iz + 111 - 15, -)||Lz) :

la]<1

Proof. Estimates of(c;t —|-)Avllz, [|{cit—|-]) 92v| 2 and ||(cit — |-} V. ,v] .2
follow immediately from Lemma 3.3. Performing integratibg parts in the right-hand
side of

3 3
D et =11 a0z =) /(c,-r — [ 1)(3;0v)(3; 9v) dix,
jk=1 jk=1

we obtain (4.17). See the proof of Lemma 3.1 in [10] for theadet ]

Corollary 4.5. The following estimate holds far=1, ..., m:

(et = 1- 1) 22U [w1(t, )],
(4.19) '
< c/o IW(z, )y dr+ClI{E+]-DW(t, )z +CII- WO, - )7z

Proof. Setv = U;[¥]. Lemma 4.4 yields

(4.20) it =1 1) 8%vllz2 < € D 0] g2 + CINE + |- Wz, - )iz

lal<1

Now, using (2.2), (4.10) and (4.2) to estimaél'“v|;2 in (4.20), we obtain
the result. [

5. Energy estimates for small solutions

First of all, we recall the estimates for the null forms. S&g [15] or [17] for
the proof.

Lemma 5.1. Let ¢1(t,x) and ¢(t,x) be smooth functions Let c¢p =
min{cy, ..., c,}/2 and |x| > cot. Then we have

(5.1)  (r+1xDIQo(@1, d2; ¢i)l = C ((cit — x)|0¢pa] 02| +[0a] |p2l1 + |pal1|0¢p2l) ,
(5.2) (1 +1xD1Qup(d1, $2)| = C (191 P2l + I¢1]1]10¢2])
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fori=12...,mand0 < «, B < 3. Here Qo(¢, ¥ ; ¢;) and Qups(¢, ¥) are defined
by (1.7) and (1.8), respectively

The aim in this section is to derive ab’-estimate for a small solution of (1.1).
We define Exx (1) = Exx[u](t) by

(5:3)  Eax(r) = llulr, - )k +10u(t, -)lok + Z [{cit — 1 - DNoui(t, - )ax-1llz2-
i=1

A bound of Exx(r) is given in the following proposition.

Proposition 5.2. Let u € C*([0, T] x R®) be a solution of the Cauchy problem
(1.1)—(1.2)for someT > 0. Assumg1.5), (1.6)and (1.12)—(1.16).Then there are pos-
itive constantsA; <« 1 and Cy, both independent of and 7', such that the following
holds: If the solutionu satisfies

(5.4) Y (xhet = kDlui. kw2 <A for 0<r<7 and xeR’
i=1

with someA € (0, A4], then we have

(5.5) Epk (1) < C1Epx (0)(1) .

REMARK. An estimate essentially similar to (5.5) can be found in, [BJit its
condition was) i~ (r + |x|)(c;t — |x[)|u; (7, x)|xk+2 < A, which is stronger than (5.4).
This is one of our modified points.

Proposition 5.2 follows from Lemmas 5.4 and 5.5 below. Thenntaols required
in this section are the results in Section 4 and the followstendard energy estimate
for hyperbolic systems.

Lemma 5.3. Letv =(v1,...,v,) be a smooth solution to

(5.6) Dt x)+ > v (6 x) dadpvi(t.x) = filt.x) (L <i<m)
QFmﬁES
<jsm

for (t,x) € [0, T] x R®, where y,.‘;ﬁ = yg"‘ = yj‘.’;ﬂ. If v(z, x) vanishes sufficiently fast at
spatial infinity and

NI
|
|

e = Y e ] <
0<a,B=3
1<i,j<m
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then
t
1ov(t, iz < ClIavO, -)||Lz+C/ T
(5.7) ) 0
+Cf 1oy (e, )lle=lldv(r, -z dr
0
forO<tr<T.

We begin with this standard energy inequality to get theofelhg Lemma 5.4.
Here we do not take advantage of the special structures ofntminearities. If
we take them into consideration for the lower energy, then cem show that
lou(z, - )ll2xk—2 remains small as gets large. But this estimate will not be discussed
here, because it will not be used later in our proof.

Lemma 5.4. Let u € C>([0,T] x R®) be a solution of the Cauchy problem
(1.1)—(1.2)for someT > 0. Assumg1.3), (1.5)and (5.4). Then we have

t
(5.8) l19u(r, -)ll2x < Cllou(0, ‘)||2K+CA/ @ Hllulz, ek + 19u(r, -)llx}dt
0
forO<r<T.
Proof. We applyl'” to

Do+ > v (w. ) d,0pu; = fi(u, du)
O0<w,f<3

l=j=m

for all a with |a| < 2K. Then we have

O:T%u; + Z yuﬂ(u 3u) 8,05Tu; = fia,

O<wa,B<3
1<j<m
where
Fra = T fioe, 0u) =1, O = 3 [T,y 805w
O<w,f<3
1<j<m
/ / )
=3y Y (rbyi‘;ﬁ) T dudpu; — 3 v [T, 0,9 ;.
1bl<lal .. B 1bl+cl<lal Jj.a.p
lel<lal-1

Therefore it follows that

| Fialt. )] < Clu(t, x) gs2 (u(t, x)l2x +|u(t, x)|2x)
< CA{) ™ (Jult, x)|og + 10u(t, x)l2k)
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which implies
| Fialt, )|,z < CAWY T {llue, - lak + 0u(t, -)llax} -

Besides this we also have

2

O<w,B<3
1<i,j<m

075 . du)(e. x)| = Clutr, ¥)lo = CAW™,

1
yi‘;ﬁ(u, ou)(t, x)‘ < Clu(t, x)l1 < >

if we take A sufficiently small. So the energy inequality (5.7) leads ais t

r
0T “u(t, -2 < ClloT“u(0, ')||L2+CA/ (O Hllu(r, llax + 9u(r, -)llx}dz.
0
This completes the proof. [l
We next derive estimates dft; (¢, - )llox and |[(c;t — | - [)|9u;(t, - )l2gx—1ll12.

Lemma 5.5. Let u € C>([0,T] x R®) be a solution of the Cauchy problem
(1.1)—(2.2) for someT > 0. Suppose that the assumptions Mroposition 5.2are
fulfilled. Then we have

Nui(t, ok + eit — |- Dou;(t, - )log-1llr2

(5.9) C
< CEx(0)+CA /0 (v) LEgg (v)dr + CA (lu(t, )z + 10, -)l2k) -

Proof. We first represent?u; by using the formula (2.4). Then we have

(5.10) Mu; = UF[Tui(0, -), 0,Tu, 0, )+ Y U [I*F].

|b|<lal

We provedL?-estimates concerning [ f, g] and U;[®] in Corollary 4.3, so the esti-
mate proceeds as follows.

it )llax + it = |- DIdui(r, -lox—allze
<C Y (I, )l Heir — - DO us(r. )z}
la|<2K—1
G <c 3 {10 DaT w0, )l + 1T 0, -)ll.z)
la|<2K—1

+C Y {IGITFIE la+ et — |- DOULTFI(t, )2} -
la]<2K -1
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Note that ||(| - [)aT%u; (0, - )llz2 + IT%;(0, - )ll;2 < CEa(0) for |a|] < 2K — 1.
So it remains to estimate the second term on the right-hattel i (5.11). We should
not use Corollary 4.3 for them right now, because it cannal déth the divergence-
type terms.

Let |a| < 2K — 1. We rewrite the terms (9,05 “uy) and @, u;)(3,9T%ux) as
(97u;) (0udpT i) = B {(8%u;) (3T ui) } = (390"u;) (9T wi) -~ (1] < 1),

so that we can avoid loss of derivatives. We also use a sintilek to handle
(CPu ;) (T0qu) (j # k), which may appear iT“R;, when |b| > |c| (see Lemma 5.4
in [8] for the details). Then we obtain decompositions of fhkowing type:

3
(5.12) TFi(u, 9u, Vi 0u) = Y g +q +7+h,

a=0

where

(5.13) g = i Z Z, FbquC a%uy,

J-k=1ld|=1 |b|=K+1

lc|<2K -1
mn i /
(5.14) q :Z Z Qo (Fbuj,r”uj;cj)+ Z Z Oup (Fbuj,FCuj),
Jj=1 |b|=K l<j<m  |b|<K
lc|<2K —1 0<¢.B<3 |c|<2K—1

615 r= > 3 rurou,

1<j.,k<m |b|<K+1
JFk  Je|=2K -1

(5.16) h=T“H;(u, du, V, ou).
We continue the estimate to obtain
MU TFI(, o+ l{cit — |- NOU; [T F](¢, - )ll.2

3
(5.17) < Z {IUi[0a8al(t, M1+ 1{cit — |- 1)0Ui[0a8al(t, - )llL2}
a=0

+|Uilg +r +h](z, )lls+ {eit = |- DOUi[g +r +h](2, - )12

We begin with the estimates concernigg. In order to apply Lemma 4.1 and
Corollary 4.5, we interchange the order of the operatdgrsand o, by the commu-
tation relations (2.2), as follows:

3
D AU 0agal(t )2+ l{cit =1+ 1) OUi[Bagal(t, -)ll22}

a=0
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3
< Z{Ilaan[ga](h D+ et — 1+ 1) 00, Ui[gal(2, )22}
a=0

+1U;[0, go(0, - )lllx + {cit — |- 1) 9U;[0, go(O, -)]ll 12

< > {18sUTPgal(t. )llee + et = |- 1) 00, U[ga)(2. )22}
0<a.B=3
[b]<1
+CI|1UF10, g0(0, )llx + ll{eit = | - 1) 8UF[0, go(0, -)]llz2.

Hence Lemma 4.1 and Corollary 4.5 yield

3
> (U3 gal(t, I+ et — |- 1) BUi[3ugal(t, - )llz2)

a=0

3 '
<cy (/0 lgalz. Madz + 11 +1- Dgalts ez + 111 - &a O -)||Lz> .
a=0

Recalling (5.13), we have
|8a(t, X)|1 < CA(r + |x]) 7 (Jue, x)|2x + |0u(t, x)|2x) -

Thus we conclude
3
Z(IIU;[%ga]IIl + it = |- )OU;[0x8alll 12)
a=0

G.18) < CA{/O () (llu, ok + 10u(r, - )lak)dr
+llut, - llak + 19u(, ag + 4, -)llz + 19 (0, -)||2K} .

The rest of the proof is aimed at the estimates concerging and 4. By Corol-
lary 4.3, we get

\Uilq +r + R, Ya+ it — |- DOULg +r + ke, -Ylla
(5.19) r
< c/o Iz +1-Dg +r+ k)T, )2 dr.

In view of Lemma 5.1, we divide the region,[0] x R3 into {|x| < cot} and {|x| >
cot} for the estimate ofy + r, wherecop = min{cy, ..., c,}/2. So we decompose the
integrand||(z + | - |Y(¢ + r + h)(z, -)||;2 and obtain

(5.20) I +1-1g +r+h)(, )z <1 +1+1I,
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where

(5.21) L=+ 1= 1(g + 7)) ez <cons
(522) = ”(t + | ° |)(LI +r)(t’ . )”LZ(IX\Zco/)a
(5.23) =+ |- DA, ).

Since (¢t + |x]) < C{cet — |x]|) for |x| < cof, we have

m

(5.24) | < CAT™ Y ert — |- Ddu(t, )k -1l 2.
k=1

recalling (5.14) and (5.15). On the other hand, Lemma 5.Idyie

m

{t+1xDlg(t, x)| < CZ((C,-I — 1), x)|g+2|0u (2, x) |2k -1
j=1

+|uj(t, x)| ge2lu (2, x)|2k )

m

< CAM™ Y (10u(t, X)lak -1+ Juj(t, )|k )
j=1

for |x| > cot. Moreover, since(r + |x|) < C(cjt — |x]){ckt — |x]) if j Zk, we have

(¢ + XDt 0] < C Y (e + ) (t, %) k2l it x) |2k 1
J7k

< CA(t) M) et — Ix])duilox 1
k=1
for |x| > cot. Therefore it follows that
(5.25) I < CA@)y ™ { ut, )k +Z|I(ckt— |- Douk(t, - ox—1llr2
k=1

Finally, since

(t + xD)h(t, x)| < C(t + |x)ult, x)|% o (Jult, x) ok +19u(t, x)|2x)
< CA* (1)~ (Ju(t, x)lok + 9u(t, x)|2x) ,

we have

(5.26) < CA%() ™ {llu(r, - Ylok + 10ult, - )llog} -
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Therefore it follows from (5.19), (5.20) and (5.24)—(5.265t

IUilg +r +h](t, )L+ Il{cit = |- NoUilg +r +h](z, - )12

5.27 t
(:27) < CA/ (t) YExx (1) dr.
0

Now (5.11), (5.17), (5.18) and (5.27) imply (5.9). O

Proof of Proposition 5.2. By Lemmas 5.4 and 5.5, we have

t

Eax(t) < CEsx(0)+CA / (v) L Epk (v) de
0

for sufficiently smallA. Hence Gronwall’s inequality yields

Eax(t) < CExx(0) exp[CA / '<r>—1dr}
0

< CEx¢ (0)(1)“. O

6. Pointwise estimates for small solutions

We first show a refinement of Lemma 3.1, to weaken the weighbgag on the
initial data.

Lemma 6.1. Let u € C*>([0,T] x R®) be a solution of the Cauchy problem
(1.1)-(2.2)for someT > 0. Assume0 < A < 1, u > 0, and |a] < «. Then
we have

(t + x)*(cit — x| |UF[Tu; (0, - ), 8,Tu; (0, -)](t, x)|

o = CI ‘sup‘ |{(|y|)““lui(0, Pl + 1Y #1810, )i} »
y|=citt|x
(t+ [x)* (it — x| |dUF[Tui (0, -), 3, Tu; (0, -)](z, x)|
(6.2)

<C sup (Iy)*"9u; (0, y)les1

Iyl <cir+x]
for0<r < T and x € R

Proof. We setu}, = U[I"u;(0, -), 3,I"u;(0, -)] for simplicity. By Lemma 3.1,
it follows that

(t + x| (cit — x| |uf (2, x)|
<C sup {{yDMITu:(0, y) + Iy lIy D 18T u; (0, y)I}

[y|=cit+|x]|

< Cl+ D™ sup {(IyD" 0%, (0, y)l + [y (180 u; (0, y)I} .

[yl=cit+|x|
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Thus we obtain (6.1). To estimate the first derivative (6vi8}, begin with the estimate
of Lemma 3.1, and use (4.16). Then we have

(t +1x et — |x)*[oug (¢, x)]

<C sup {{yD™ 80 u; (0, y) + [y [y Var“u; (0, y)l}

[yl=cit+|x|

<C sup (Jyh*™aTu; (0, y)l1.

[yI=cit+|x|

Thus we obtain (6.2) by a similar argument as above. ]

As a first step, we derive a pointwise decay estimate of thdl samgplitude solu-
tion from Sobolev’s inequality and the2-estimate (5.5).

Lemma 6.2. Let u € C>([0,T] x R®) be a solution of the Cauchy problem
(1.1)-(1.2)for someT > 0. Assume(1.5), (1.6)and (1.12)—(1.16).L.et0 < § < 1/2
and 0 < v < 1—25. Then there exist two positive constants and C such that

m

(6.3) > sup (Ixl) (et — xDui(t, x)|gs2 < A
i=1 O<r<T
xeR3
implies

(t+ 1) (eit — |x1)°|ui (2, %) |2k -3

6.4
©4 +(t + x]) " Hx]) (eit — 1x)10ui (¢, x) 2k —a < C E2x (0)

for 0<t < T and x € R3, provided A € (0, A,]. Here the above constant, and C
may depend o and v, but are independent of and u.

Proof. Using the representation (2.4) and Lemma 6.1, we have

(t +1xD)"(cit — |x)°ui (t, x)|2x -3

<C Y (el et — [xD)

la|<2K -3
(6.5) x {|UF[Tu; (0, -), 9,T“u; (0, -)I(t, x)| + |U:[T* F](z, x)|}
< C sup{{IyD1ui (0. y)l2k-3 + (Iy*10u; (0, y) 2k -3}
yeR3

+C Y ) (et — UM B (e x)l.
la|<2K -3



SYSTEMS OF NONLINEAR WAVE EQUATIONS 305

To estimate the sup norm above, we apply (3.21). Then we inatedyl see that

sup {(IyD1ui(0, y)l2k 3+ (|y)?|9u: (0, y)lox 3}

yeR3
6.6) <C > {IveQreu 0, )l + IVQ( - NI 0u; 0, )l 12}

la|+|b|<2
le|<2K—3

< CEx(0).

To estimate the force terms, we only have to notice that they cquadratic near
the origin. Then it follows from Lemma 3.5 and the smallnessuaption (6.3) of
lu(t, x)|g+2 that

Iy Fi(T, y)I = Clyllu(t, y)lk+2(lu(T, y)lk -2 + 10u(T, y)l2x-2)

m

< CA(ly)™ (chr — D7 | G )k + 19u(z. )ll2k)

j=1
for |a] < 2K —3 and O0< r < T. Thus we obtain
Iyl{z +1yhw(z, [yDITFi(z, y)| < CAE2k(7),

where the weightw(z, r) is defined by (3.3). Moreover, in view of Proposition 5.2,
we get

(6.7) Iyl T + Iy P w(e, Iy )20 Fi(z, y)| < CAEx ()t + |x)?

for lal < 2K —3,0< 7t <t and¢;t +|y| < ¢t +|x|, provided thatA is so small to
satisfy A < A; and C1A < §/2. Here A; and C; are the constants in Proposition 5.2.
Thus Lemma 3.2 yields

(6.8) (t +|xD) (et — x| U T F](, x)| < CAE2x(0)t + |x|)?
for |a] < 2K — 3. Hence (6.5)—(6.8) imply

(6.9) (t +1x1)"(cit — [x1)°ui (t, x)|2k—5 < CE2x(0).
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We next estimatédu;(z, x)|2x—4. By (2.4) and Lemma 6.1, we have

(t+ 1D Hix D (et — [P 19u(t, x) 2k —a

<C D0 (i) Hix) et — XD

la|<2K -4
(6.10) x (10U M0, -), ;Tu; (0, -)I(r, x)| + [8U; [T F](1, x)1}
< C sup(|y1)?[9u;(0, y)l2x -3
yeR3
+C Y (eI M) e — k)T [T F(t, x).
la|<2K—4

Observing that, by (6.7) and Lemma 3.2, we obtain
(6.11) (lx)(eit — X)) 1OU [T Fil(t, x)| < CAE2 (0)(r + |x)?
for |a| < 2K — 4, we conclude from (6.10) and (6.6) that

(¢ +1x )" H(x )it — [x1) 7 |9ui(t, x)|ax 4 < CE2(0).

This completes the proof. [

Now we set

(612) @) = arful(r) = supd (lxl)(eit = [x])ui(r, X)lxs2

xeR3 -9

(6.13)  a(r) = ag[u](r) = sup ) (Ixl){cit — lxDw(t, 1x[)"19u;(t, x)| 3,

xeR3 2

(6.14)  as(r) = as[u](r) = sup ) _(Ix|){cir — 1x1)"|u; (1, x) |2k s,

xeR® 27
and

(6.15) A(T) = A[ul(T) = sup {aa(r) +az(r) +as(t)}

0<r<T

wherew(t, r) is defined by (3.3). Our aim in this section is to give a bouhdif:](7T)
for a small amplitude solution of (1.1).

Proposition 6.3. Letu € C*([0, T] x R®) be a solution of the Cauchy problem
(1.1)—(1.2)for someT > 0. Assume(1.5), (1.6)and (1.12)—(1.16).Assume moreover
K+6 <2K —5and0 < v < 1/2 in the definition of A(T) above Then there exist



SYSTEMS OF NONLINEAR WAVE EQUATIONS 307

positive humbersdy, and Cp, both independent ofi and 7', such that the following
holds If A(T) < Ao, then we have

A(T) < Co sup{{Iy?1u(0, y)lxs2 + (Iy))30u(0, y) x+2
(6.16) yeR?
+(Iy 2" 18,u(0, y)l2k—s} + CoE2k (0).

The proof of this proposition will be given at the end of thisc8on, after we prove
three lemmas below.

Lemma 6.4. Let u € C>([0,T] x R®) be a solution of the Cauchy problem
(1.1)—(2.2)for someT > 0. Assume(1.5), (1.6)and (1.12)—(1.16).If 0 < v < 1 and
A(T) < A, then we have

(IxD{cit — Ix)"ui(t, x)|2k -5

(6.17) < C sup {1y ;0. y)l2x—5 + {[y)*" 1314, (O, ¥) |2k -5}

yeR3
+ CA(T)E2 (0) + CA(T)?

for 0<t < T and x € R®, provided thatA is sufficiently small

Proof. By (2.4) and Lemma 6.1, we have

(IxD{cit = |x)"ui(t, x)|2k -5

< C sup{(lyD*"1ui (0, y)l2x -5 + {|¥1)** |9u; (0, y)|2x 5}
(6.18) yeR3

+C Y (IxIMeit — x) [ULT F](2, X))

la|<2K -5

In order to estimate the effects of the force terms, we use dbeomposi-
tion (1.12). That is,

T[T F(1, x)|
3
< DU 3,Gio)(2, X)| + |U[TNi(2, x)]
a=0

(6.19) +|U[TRi](¢, x)| + U [T Hi](t, x)|

3
=C Z Z |U; [05T G ] (2, x)| + |U [T N](2. x)|

o,p=01|b|<|al
U Rz, x)| + [U[T“ Hi](2, x)].

We estimate the each term above in the following. Firstly,clieose sufficiently small
8 > 0 so that we havé < v < 1—25. Then, by the pointwise estimate of Lemma 6.2
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and the definition (6.15), we get

IT?Gia(t, M|, < C Y luj(z, ylksaluj(T, y)lax—s
(6.20) J#i

< CA(T)E2x O)(Iyl) Mz + Iy wi(z, Iy~

for |b| < 2K — 5, wherew;(¢,r) (i =1,...,m) are defined by (3.4). Hence it follows
from (3.8) in Lemma 3.2 that

(6.21) (el it = D" |Ui[9pT" Gial(2, x)| < CA(T)E2x(0)

for |b| < 2K —5. Likewise, we compute pointwise bounds for the force tebysising
Lemma 6.2 and (6.15), and apply Lemma 3.2 in the following.eBtimate the null
forms, we divide [07] x R3 into {|y| < cor} and {|y| > cot}. If |y| < cot, Simply
becauseV; are quadratic, we obtain

ITNi(t, )| < C Y luj(x, ¥)lk+2ldu;(z, y)lox—a
Jj=1

< CA(T)E2x(0) ) {1yl 2(x +1yh* " (ejz — [yl) >
j=1

< CA(T)Eax O)(Iy1) H(z + Iy Ty 7,

provided |a| < 2K — 5. If |y| > ¢ot to the contrary, we employ Lemma 5.1. Since
(Iyh~t < C(x +|y|) L, we easily have

PNz, )l < € Y (e +1y )Ml = IyDlu (. Ylgealdue (2. y)lok—s
j=1

+luj(t, y)lgelu;(t, y)lox -3}

< CA(T)E2 (O)(Iy) M + 1y ) fejr — Iy
Jj=1
To sum up, we have proved
(6.22) IT“Ni(t, y)| < CA(T)Eax (O)|yl) "z + [y) ™ w(z, [y) ™
for |a| < 2K — 5. Therefore, (3.7) in Lemma 3.2 implies

(6.23) (t +IxD{cit = IxD"IU[TN;](z, x)| < CA(T)E2¢(0)

for Ja] < 2K —5. In the estimates of the nonresonant telfi%;, we note that at least
two of three decaying factorgy|)=1, (c;z — |y|)~! and (c,T — |y])~! are equivalent
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to (r +]y|)~t everywhere, by virtue of the difference of the wave propagaspeeds.
Remember also that we have chosgesatisfying O< § < v < 1—28. Then Lemma 6.2
and (6.15) lead to

IT“Ri(z, y)I
<C Z (luj(T, Y)|x+2l0ur(t, y)lok—a+ lu;(t, y)|2x -s|0ui(z, y)|k+3)
7k
(6.24) = CA(T)EzK(O)Z(lyl)_Z(T +yD e — Iy Hear — Iy
J#k
+CA(T)? Z(M)_Z(ij — Iy ert = Iy w(e, [y

J#k
C (A(T)E2x (0) + A(TY?) (Iy1) "Mz + Iy )Y w(z, [y)) ™+

for |a| < 2K — 5. Therefore, it follows that
(6.25)  (t+Ix|){(c;it — [x)"|U[TRi](t, x)| < C (A(T)E2x (0) + A(T)?)
for |a] < 2K — 5. Lastly,

IT*Hi(t, y)| < Clu(t, y)1%.2 (10u(T, y)l2x-a + lu(t, ¥)|2x—3)

m

(6.26) < CA(T)?Eax (O)(Iy)) *(x +IyD* " ) (et — Iy 2
Jj=1

< CA(TY E2x (0)(Iy)) Mz + 1y w(, [y) >
for |a| < 2K — 5, so we obtain

(6.27)  {t+|xD(eit =[x IU[T Hi(1, x)| < CA(T)?E2(0)  (lal < 2K —5).

Thus we have proved the lemma, by (6.21), (6.23), (6.25) &niry. ]

Lemma 6.5. Let u € C([0,T] x R3) be a solution of the Cauchy problem
(1.1)—(1.2)for someT > 0. Assume(1.5), (1.6)and (1.12)—(1.16).If K +6 <2K —5
and A(T) < 1, then we have

(IxD){eit = IxDlui(r, x)|k+2

< C sup{{lyD?|u(0, y)lx+2 + (|y)30u(0, y)|x+2} + CA(T)?
yeR3

(6.28)

for0<t < T and x € R3.
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Proof. By (2.4) and Lemma 6.1, we have

(Ix){eit = xDui(z, x)|k+2

< € sup{{Iy)?|u(0, y)lx+2 + (|y)310u(0, y)|x+2}
(6.29) yeR3

+C Y (lx et = XDIUTF](z, x)1-

la|<K+2

Then we use the decomposition (6.19) faf < K + 2, and make the estimates by
similar arguments as in the previous lemma. That is, we céenpointwise bounds
for the force terms by using (6.15), and apply Lemma 3.2.

We start with an estimate df;,. SinceK +6 < 2K — 5, we get

|FbGi,a(tv y)| = CZ |I/tj(T, y)|[(+2|l/lj(t, y)|2K75
J7i
(6.30) < CA(T(yl) 2 et — Iy
J7i
< CAT*(Iyl) M + Iy wilr, [y)

for |b] < K +5. Note that what we actually need here is the estimatgifox K + 3.
The estimate foib| < K +5 will be used to prove the next lemma.

Now, assumela| < K +2 in what follows. We estimate the null forms for
[y] < cot as

m

IT“Ni(z, y)| < CZ luj(z, Y)g+2l0u;(t, y)lk+s
j=1
< C Y ATy e — Iy 2wz, Iy
j=1

< CAT(Iyly Hr + 1yl 2w(z, Iy,

while for |y| > cot, Lemma 5.1 implies

m

PNz, )] < € (T +1yD) eyt = 1yDluj (T, y)lks2ldu;(z, ¥ k+s
J=1

+uji(t, y)lk+2lu;(t, y)k+a)
m

< CA(TY? Y (x+ Iy Iy 2wz, [y) (e — [y~
j=1

< CA(T)A(Iyl) "Mz + 1yl 2w(z, Iy~
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Hence it follows that
(6.31) IT“N;(z, )| < CAT)(Iyl) Mz +1y]) 2w(z, Iy) "

As for the nonresonant terms, noting thagr — |y|)(ckt —|y|) is bounded from below
by C(t +|yl)w(z, |y]) for ¢; # cx, we obtain

TRy, )l < C Y luj(x, y)lksaldua(z, y)lk+3
Jj7k
(6.32) < CA(T)? Y {IyD2e;T — Iy Hexr — Iy Mw(, [y)™
j#k
< CAT(Iy) e +IyD) 2wl Iy) .

Finally, the higher order terms are handled as

IT“Hi(t, y)| < Clu(t, y) 5o (10u(t, Y) ks + lu(r, ) k+2)
(6.33) < CAMM(y) 2 ejT — Iy 73
Jj=1
< CA(T*y))~He + |y 2w(z, Iy)~2

Now, combining the estimates (6.31)—(6.33) fat < K + 2 with (3.6) of Lemma 3.2,
and (6.30) for|p| < K + 3 with (3.8) of Lemma 3.2, we obtain (6.28). Ll

It remains to show the estimate o$(¢). Here we need the extra decaying factor
w(t, r)”, which has played an important role in the proof of Lemma 64, it will not
be difficult to obtain this factor from the terms other thar ttiivergence-type terms.
To handle the effects of the divergence terms, we notice tthey are written as the
second derivatives plus harmless terms.

Lemma 6.6. Let u € C>([0,T] x R®) be a solution of the Cauchy problem
(2.1)—(1.2)for someT > 0. Assume(1.5), (1.6)and (1.12)—(1.16).Suppose thad <
v<land K+6<2K —5.If A(T) < A, then we have

(xl)(eit — Lxlyw(r. 1x])”|0us (r. %) | k3
(6.34) < C sup(|y)2"19u(0, y) | +a + CA(T) Ezx (0) + CA(T)?

yeR3

for 0<t < T and x € R3, provided thatA is sufficiently small
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Proof. We begin with (2.4) and Lemma 6.1 as before. Sim€e r) < (c;t —r),
we get
(Ix[}eit = lxDw(t, [x[)"10u;(t, x)|k+3

< C sup(ly[)**19u(0, y)lk+a
(6.35) yeR?

+C Y7 (xheir — [xDw(e, x))' 0TI F(t, ).

la]<K+3

Let |a] < K +3. We splitU;[T“F;] by using (1.12). We first deal with the terms con-
cerning N;, R; and H;. By the commutation relations (2.2), we get

[OU; [T N;](¢, x)| + [0U; [T R;](t, x)| + [oU; [T H;](t, x)|
< U[OTNi](z, x)| + |U:[0T“ Ri](z, x)| + |U; [0T H; (2, x)|
+|U[0,T*N; (0, -)](t, )| + [US[0, T R; (O, -)](z, x)|
+|U[0, T H; (0, -)I(¢, x)!.
We have already computed the estimateIdiN;, [“R; and ' H; in (6.22), (6.24)

and (6.26) for|a| < 2K —5. Therefore, it follows from Lemma 3.1 and (3.7) of
Lemma 3.2 that

(Ix])(cit — [P {10U [T N;)(2, x)| + [0U; [T R)(¢, x)| + [0U; [T H; (2, x)|}
< C{|x){cit — |x)*™ {JU;[0T“ N;(z, x)| + |U:[9T“ R;](z, x))|
+|U;[8T Hi](z, x)| + |U/[0, T*N; (0, -)](z, x)|
+|UF[0, TR (0, -)(r, x)| + |UF[0, T H; (0, -)](z, x)I}

(6.30) < C { A(T)Ezx (0) + A(T)?

+ SUE(|y|)3+”(|F“Ni(0, W+ ITR; (0, y)I + T H; (0, y)I)
yeR

< C (A(T)E2k (0) + A(T)?).

Now it remains to estimatéU;[dsI"*G; ] for |a| < K + 3. We employ (2.2) to form
second derivatives:

(6.37) AU;[0pT“ G o] = 30U [T G o] — 80 dU[0, TG, (0, -)].
Applying Lemma 3.1 to the second term on the right-hand sllav@, we have

(IxI){(cit — |xDw(z, |x])"[0UF[0, TG (0, -)I(t, x)]
(6.38) < C sup(|y)**1G; (0, y)lk+a

yeR3

< CEx(0)A(T) + CA(T)?,
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where we used Lemma 6.2 and (6.15). As for the second dewrvatie use Corol-
lary 3.4 to obtain

(Ix)cit — Ixw(t, 1x[)"100p Ui [T G o)(2, x)]
(6.39) = C{lxD{cit — [xDOU [T Gial(z, X)Ia
+ C(Ix )t + IxDw (@, 1x)' T Gialr, x)|.

Note that we have disposed af(z, |x|)"~* in the first term on the right-hand side. In
order to estimate it further, we utilize the commutatioratieins repeatedly and get

MUIMGial= Y U, TGill+ Y U0.TG (0, )]

lc|<K+4 le|<K+4
O0<y=3
’
+3 8,070, 1G;4(0, )]
0<y=<3

for |a] < K +3 and|d| < 1. Therefore we obtain
(Ix){cit = [xDIOU [T G o](2, x) |2
<C > (IxDet = xDIUsTGi)(t, x)|
lc|<K+4
0=p<3

+C sup(|y )G (0, y)|k+a
yeR3

Now, in view of (6.30) for|p| < K +5, from (3.8) of Lemma 3.2 and (6.38) we get
(6.40) (IxI)(cit — [XD)OUIT* G )(t, x) 11 < CEax (0)A(T) + CA(T)>.

As for the second term on the right-hand side of (6.39), weeses#ly from (6.30) for
|b| < K + 3 that it is bounded byCA(T)?, becausew(r, |x|) < Cw;(t, |x|). Finally, it
follows from (6.37)—(6.40) that

(6.41)  (IxI){eit — [xDw(t, 1x)' 10U [9sTGia](2, x)| < CE2x(0)A(T) + CA(T)?
for |a] < K + 3. This completes the proof. ]

Proof of Proposition 6.3. Summing up the estimates of Lem&d4s6.5 and 6.6,
we get

A(T) < C sup{{|y)?u(0, y)lk+2 + (Iy1)%|0u(0, y)|x+2}
yeR3

+C sup {(Iy) ™ 1ui (0, ¥)lak—s + (Iy)**|8u; (0, ¥) |2k -5}

yeR3

+ CA(T)E2x(0) + CA(T)?.
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Sincev < 1/2, Lemma 3.5 and (4.16) imply
(6.42) (D™ 1w (0, y)l2x -5 + (|ly)*" [V (0, y) |2k -5 < C1E24(0).

Thus we obtain (6.16), provided that(7) is sufficiently small. ]

7. Proof of the main theorem

In this section we give a proof of Theorem 1.1. Suppose thiathal assump-
tions of Theorem 1.1 are fulfilled. Because we are only cagig small solutions,
changing the definition ofyi‘jﬂ(u,v) in (1.4) outside some large ball ofi,(v) does
not affect solutions. Hence we may assuﬁg_ﬂ_w. y,.‘;ﬂ(u, v) < 1/2 for any {,v) €
R™ x R*". Then, by the standard argument for classical local existeheorems, we
can see that the Cauchy problem (1.1)—(1.2) admits a (upnidoeal solution
u € C* ([0, T) x R®; R™) for someT > 0. More precisely, we have

(7.2) ue C®([0,T);, H*"(R%R")) forany s>0 and p=>0,

where H*? is given by H*? = {f e L?; > _ (- P3¢ flle < oo} with 8, =
(01, 92, 33). Moreover, the above solution can be extended beyond the above time
T, unless

(7.2) sup Y [8%u(t, )| = oo
(t.2)€l0.T)xR3 | 125

holds (see ldrmander [5], Theorem 6.4.11 and its remarks; see also Bitapo4.1 in
[7]). Therefore, if we can show thdt}, ., [[0°u(t, -)llL~rs stays small as far as the
solution exists, we can extend the solution globally in time

Our task is to show the following:

Proposition 7.1. Suppose that the assumptionsTheorem 1.1are fulfilled. As-
sume thatv € (0,1/2] and K + 6 < 2K — 5 in the definition(6.15) of A[u](z). Set
M = max1l, Co, C1}, where Cp and C; are the constants given i(6.16) and (6.42),
respectively If

M SUe{(IyI)ZIM(O, W2+ (1¥1)319u(0, y)|k+3
(7.3) Ve

A
+ Iy 19,u(0, y)lak 5} + M E2¢(0) < 70

then for the local solutionu € C* ([0, T) x R3; R™), we havesup,,_r A[u](t) <
Ag. Here A is the constant appeared iRroposition 6.3.
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Proposition 7.1 implies Theorem 1.1 immediately, becausehawve

D o l%ult, )lp=@s < Alul(r) for any ¢ e[0,T).

la|=2

Proof of Proposition 7.1. Thanks to (7.1) and the Sobolev eztding theorem,
A(t) = Alu](z) is continuous with respect toe [0, T).
SetTy:=supd0<r < T;A(t) < Ag}. (7.3) impliesA(0) < Ap/2, because we have

A(0) < sup({ly1)2[u(0, y)lx+2 + (Iy*19u(0, y)|x+3) + M E2x(0)
yeR3

by the definition ofA(T) and (6.42). Hence, by the continuity df(¢), we find thatTy

is well-defined andly > 0. Now assumey < 7. Then (7.3) and Proposition 6.3 yield
A(Tp) < Ag/2, and thus we see that(7y +38) < Ag for somes > 0. This contradicts
the definition of7y, and we conclude thdfy = 7. This completes the proof. O

8. Appendix

In this section, we give a proof of Lemma 3.2.

Lemma 8.1. Leta >0, u > 0, and v > 0. Then we have

(t +1x[){eit — xD" U [®](z, x)]

<C sup (lyh{x+Iy)*(ar — [y)H (e, )l
(r.y)eDi(t,|x])

(8.1)

fori=1,...,m, where D;(t, r) are defined by3.5).

Proof. It suffices to prove Lemma 8.1 for the case where 1. So in the fol-
lowing we always assume = 1.
Set

(8.2) 20(t, p) = (L+7 +p)™ (L +|at — p[).
Then we have

(83) \Ui[®](z, x)| < Cl[zo](z, Ix[) ~ sup  Iylzo(, lyDI®(z, y)I,
(r)eDi(e.lx)

where

(8.4) Izol(t,r) =r~t //D.( . zo(t, p)tdtdp
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(see p.613 of Yokoyama [17]). Therefore, it suffices to prove
(8.5) Izol(t,r) < Clt +r) X —r)7.
If we set
a=p+tr, B=p-—ar,

the integral (8.4) can be written as

1 t+r . o 1
©8) e =g [ e trae [ g,
where
(8.7) B= 1 (1= a)a + (L +a)(r —1)}.

2

Hence, noting that (1 #8])~** is integrable orR for u > 0, we get

1+

Izol(r.r) < Cr / "(1+a) " da

|t=r]|

(8.8)
<CrH{@+t—r) =@+ +r)7"

Thus if t +1 < 2r, we obtain (8.5) immediately. If + 1 > 2r to the contrary,
(Ll —r) " =@ He+r) " < CQA+IE—r)) " e +r =1 —r)
< C{t+r)y"" min{t, r}.

Therefore (8.8) implies (8.5). This completes the proof efrima 8.1. [

We next consider estimates for derivatives.
Lemma 8.2. Leta >0, u > 0, and v > 0. We further assume > 1 if a = ¢;.
Then we have
(Ix)(cit — |x )" |Ui[9@](z, x)

89) <=C_ sup  (yD(x+Iy)"(ar — ) {0, )
(z.y)eDi(t.1xl)
+190(r, y)| + 120(x, Y1)

fori=1,...,m, where D;(z, r) are defined by3.5).

As before, it suffices to prove Lemma 8.2 for the case where 1, which is
always assumed in what follows. Set

(8.10) 2(z. p) = (L+1+p)’ (1 +|aT — p|)*".
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We begin with the following estimate, which is an immediatengequence of
(3.25)—(3.29) and (3.39)—(3.40) of Yokoyama [17]:

(8.11)

|U;i[0@](t, x)| < CJ[z](z, le)( ,)SS.‘()| Dlylz(r, [yD{I®(z, y)I

+[0D(T, y)| +1Qd(T, y)I},

where
sl =t [[ steotavaps [ ateip)tao
(8.12) P e
+// {p1+$(t,r,r,p)}Z(f,p)1dfdp],
Dy
1 1
+ (p- = 0),
\/pz —p2 N =p)p—p-)
(8'13) g(tv rvrv p): 1 1
+ (0- <0),
\/pz—pg \/PE_PZ
(8.14) p_=t—T—r, pr=t—71+r,
D, ={(z, O<t<t, |p_l<p<lpo_|+1 p<ps
(8.15) 1 ={(z, 0) | lo-1 < p <lp-| P < p+}
U{(r,p)10<t<t, pr =1 < p < ps, |p-| <p},
(8.16) Dy ={(t,p)|0<t <1, |p_|+1<p < ps—1}

Now we find that all we have to do is to estimatgz](z,r). For this pur-
pose, we prove a series of lemmas. The proof of Lemma 8.2 & dlem Lem-
mas 8.3-8.5 below.

Lemma 8.3. Leta >0, u > 0, and v > 0. Supposemin{¢, r} < 1. Then
(8.17) J[Z)(t,r) < Clry™He — ).

Proof. The assumption minr} < 1 implies D, =@, because

o+ =D —(o_|+D)=t—t+r—|t—7t—r|—2=2(minlt — 7,7} — 1) < 0.

Hence we have

J[z](¢, r) = r’l/ (L+1+p) " +lat —p|) Y *drdp.

D,
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Therefore, going the same way as in the proof of Lemma 8.1 withl replaced by
v, we reach at

t+r
J[Z](z,r) < Cr_1/ Q1+a)Vda

[t=r|

t t+r
<Cr i@+ — r|)’”/ da

[t—r|
<C@+t—r)Vr tminft,ry < Clr)y e —r)V.

This completes the proof. U

It remains to prove the case where> 1 and: > 1. In view of (8.12), we see
that it suffices to prove

(8.18) // z2(t, p) tdrdp +/ 2(t,p) Ydo < C(t —r)7",
D Dy

(8.19) / (p 1+ )2z, p) Ldrdp < Clt—r) .
Dy

Lemma 8.4. Leta > 0, u > 0, and v > 0. Furthermore we assume > 1 when
a = 1. Then we have

(8.20) // 2(z, p) tdrdp +/ 2(t,p) Ydo < C(t —r)™".
D| BD”
Proof. We first note that

(8.21) / / o(z, p) drdp + / oz, p)do < C / oz, p)tdo,
D| 3D|| BD([J')

because if €, p) € Dy, z(t,p)~t is dominated byCz(t, |p_|)~* for p < r, and by
Cz(z, p+) for p > r. In order to estimate the right-hand side of (8.21), we divid
aD(t,r) into {p = |p_|}, {p = p+} and {r = 0}. Here we show the estimate of the
integral on{p = |p_|} in particular, and omit the estimates of integrals on theeoth
two regions, since they are easy to handle. The integral{@n= |p_|} is split
as follows:

t (t—r)+ t
/ z2(z, p-) tdt :/ z(t, lp=|) tdr +/ z(t, lp=|) tdr,
0 0 (t=r)+

where ¢ — r). = max{t — r, 0}.
(i) Letz>r,and O<t <t—r. Sincelp_|=p_=t—1t—r, we have

(t—r)+ t—r
f (e, lp_l) Ydr = / L+r+p ) (L+lar —p ) dr
0 0
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t—r
= / (1+|t—r|)’”(1+|(a+1)t—t+r|)’1"‘dr
0

<C{t—r)".
(i) Let (t —r)s <t <t next. Sincelp_|=—p_ =1t —1t+r, we have
1
/ 2z, |p-|)tdt
(t—r)+

t
:/ (L—t+r+20)"(A+|(a— Do+t —r))y Hde

(t=r)+

= jo(l, I‘).

We observe that we can calculaig(z, ) directly for a = 1. Sincev > 1 in this case,
it holds

t
Jo(t,r) = (L +|¢ —r|)_1_”/ Q—t+r+2t)7"dr
(r—r)+

<SC@A+[t=—r)) A+ =)t
<C{t—r)".

If @« #1 to the contrary, we get

t

jo(f,r)f(l‘*lf—rl)_”/ A+|(a—1)r+t—r]) T rde
(t_")+
<C{t—r)".

This completes the proof. Ll

Now we turn our attention to (8.19) whose proof is rather clicaped. Firstly,
(8.13) and (8.16) yield

(8.22) f [ (o7t e)a(e ) e dp = Clste )+ 0.,

where

0= [[ woiaro—p
x {X+p) 2+ (L +ps — p) 2} dr dp,
ien)= [[ aeo i)

x {L+p+p_) Y2+ (L+ps — p) Y2} drdp.

(8.23)

(8.24)
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Here we set
(8.25) Di =Dy N{p_=>0}, Df=DynN{p_ <0}

To evaluate the integrals (8.23) and (8.24), we introducs wariables of integration
(@, B) by

(8.26) p+rTt=a, p—at=p.

We can easily check the following relations:

t_oz—,B p_aa+,8
@20 - o 2(8-B)
p—p_=r—tta, pr—p=ttr—a, ptp.=——F,
l+a

where B = {(l—a)a+ (@A +a)(r —1)} /2 as in (8.7). Applying the transformation (8.26)
to (8.23) and (8.24), we obtain the estimates

(8.28) Jat,r) < Cljualt, r) + jio(t, 1)},
(8.29) Jo(t, 1) < C{jaalt, r) + j2ot, 1)},
where

t+r
= [ @ra @ —rre) M da
I

t—r|

(8.30) )
X /A A +8) Y *A +aa +p) Y24ap,
B
Jalt, r) = / (L+a) (L +r—t+a) 2141 +r —a) M da
(8.31) =l
1+|B) Y H*dp,
« [ @iy trap
Jaalt,r) = (1+a)"da
(8.32) =rl
) ﬁ (L+1B) (A +aw + By 2 (1+p —B) 2 ap,
B
Jalt. ) = N A+a) (A +t+r —a) Y2 da
(8.33) =]

x /a(l +1B8)) YA +aa + B) Y24ap.
B

Lemma 8.5. Leta > 0,u > 0 and v > 0. Moreover we assume > 1 if a = 1.
Then(8.19)is true
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Proof. As we have observed in the above, it suffices to prove
(8.34) Jut,r) <C{t—r)y" (k,1=12).

Before we proceed to estimates for eggh we give two basic inequalities which will
be used repeatedly. ]

Lemma 8.6. (i) Let|p|<gq, and vy, v, > 1/2. Then we have
q
(8.35) K= / A+p+a)™(A+g —a) 2da < 4.
Ipl

(i) LetO < |A| < |ul, and v > 0. Then we have

o0

(8.36) Ly, = @+a)™2 L+ e+ ppl) 2da < C(p)™",
|

P
Ip
where C is a constant independent qf.

Proof. (i) We havek}:" < [ (1—|p|+a)~/?(1+g—a) ™2 da for vi,v; > 1/2.

2

Since 1+ —a > 1+(q —|pl)/2 for |p| < a < (Ipl +4q)/2, we get

(Ipl+q)/2
/ L= 1pl+a) Y21 +q —a) Y2 da
Ir

p|

g —|pl -Y2 r(lpl+q)/2
< <l+T> / 1—|pl+a) Y2da < 2.
:

p|

On the other hand, since we have-1p|+a > 1+(g — |p|)/2 for (Ip|+q)/2 < a <q,
we can estimate the integral onz(+¢q)/2, ¢q] similarly.
(i) For @ = 2|upl/|r|, we have|ra + up| > |1|la/2. Therefore we get

o0 o0
/ (L+a)y Y2 @+ ha + ppl) Y2da < C f (L+a)™tda < C(p)™".
2

lwpl/12] 2lupl/Irl

On the other hand, we have

2lupl/I]
/ (1 +a) Y2 (L +[ha + upl) Y2 da
Ipl
2lupl/Ix]
< C(p)y W2 / (L+ P + upl) 2 dar
|pl

<C(p)™".

This completes the proof of Lemma 8.6. ]
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Now we resume the proof of Lemma 8.5.
1. Estimate ofjio(t, r)
By Lemma 8.6 (i), we obtain

t+r
Jaat,r) < C/ (L+a) A +r —t+a) A+t +r —a) V2 da

lt—r]
SC@A+—r) K < Cie—n)
2. Estimates ofji1(¢, r) and juo(t, r)
We next consider the estimates gfii(z,7) and jxo(f,r). We use the fol-
lowing lemma.

Lemma 8.7.
/Aa(l +B) (L +aw + B) Y2 dp
B
(8.37) ) Cl+r—t+a) Y21 (a=0),
~lec@ +a)v2 (a > 0).

Proof. Let us first consider the case= 0. Sincef = (@ +r —)/2> 0 if a = 0,
the integrand is equal to (B)~%/?>*. Therefore, we can calculate the integral directly.

Let us assume: > O next. Sincef > —aa, the left-hand side of (8.37) is
bounded by

o

—aa /2
| syt raa ey 2ap s [ @elp) L rao ) 2ap,

ao —aa /2

Since 1+ua +p > C(l+a) for —aa/2 < B < a, we obtain

o

/ @B Faa+ B P < CLra) / (L+]B) " dp

aa/2 —aa/2
<C(l+a) V2

On the other hand, we obtain

—aa/2

—aa /2
/ (L+[B) (L +aa +p) 2 dp < C(L+a) " f (1 +aa+p)2dp

ao —aao

< C(l+a) V2",

This completes the proof. L]
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Let us begin the estimates gfii(¢, ) and jxo(z, r). Supposea = 0 first. Then
Lemmas 8.7 and 8.6 (i), together with v+ 1 +|r — r|, yield
t+r
(6 = )" (ualt, r) + jolt, 7)) < € / (Wtr—i+a)y ™ da CKI < .
t—r
Thus we obtain (8.34) fork(!) = (1, 1) and (22) whena = 0.
Assumea > 0 next. Then, using Lemma 8.7, we obtain
t+r
Jult, r) + joo(t, r) <CL) ;11 + C/ L+a)y V2 "L+t +r —a) Y da.
li—r]
We can estimate the first term on the right-hand side by usigrha 8.6 (ii). Since
(L+a)™ < C{t —r)™", the second term is bounded Iay( — r)="K,/%"?. Thus we
get (8.34) for k,/) =(1,1) and (22) also whena > 0.

3. Estimate ofjp(z, r)

Lemma 8.8. For « > |r —¢|, we have

~\—1/2

ff(l FB) T HAraa+ ) Y2 (L+p —B) VP dp
B

(8.38) S\ -1n/2 12 (4 4 12\ -L/2
<@+ @) 2 e [B) ).

Proof. AssumeB > O first. Then we estimate (1)1 * in the integrand as
L+8) "+ < (1+|,§\)7lf“/2(1+|ﬁ|)*“/2. We also have 1#o+8 > 1+8— B from
the definition of 8 (even if g < 0). Hence the left-hand side of (8.38) is bounded by

c(1+[g]) "2 /;(1 +1BI) M2 (1+p—B) tap<c(1+|B|) t 2.

Supposeﬁ < 0 next. Note thata > 0 in this case. We divide the interveﬁlﬁ, a]
as (ﬁ a| = L U I, wherel; = (3 E/Z], and I, = (E/Z, a]. The estimate on the
interval I, proceeds as above, because we still have|gl)¥1—* < (1+|ﬁ|)_1_"/2(1+
IB)™™?% and 1+aa +p > 1+ 8 — E Thus we see that the integral dn is bounded
by C(1+B)™""%. As for the integral onl, we note that—ax/2 < B/2. Since (1 +
aa +p) Y21+ —B) 7 < C(1+a) H2(1+[B]) %, we get

(8.39) | @eip)trraa gy (e p = B) g

< C(l +a)71/2 (1 + |B‘|)—1/2 )

This completes the proof. ]
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Now we begin the estimate gbi(z, r). By Lemma 8.8, we have

t+r

=€ [ @r @+ [F) o

lt—r]

@40 ve [ @rar i @e ) o
\

t—r|

=0 ka(t, r) + ko(z, r).

Supposer # 1 first. It is easy to see

t+r

ki(t,r) < C(L+]t — r|)*“/ (1+[B) " Pda < Clt—r) .

[r—r]

On the other hand, by the definition ¢t Lemma 8.6 (ii) leads to
ka(t,r) < L) (1-ayj2.(eaye < €l —1)7"

We next assume = 1. Remember that > 1 by the assumption. Singg = |t — |
in this case, we can calculatg(z, r), ko(¢,r) directly. Thus we obtain (8.34). This
completes the proof of Lemma 8.5. O

Finally we are in a position to prove Lemma 3.2.

Proof of Lemma 3.2. We may assume< ¢ < -+ < ¢,,. Setcg=0 and

e - 2 —ci

dj:Cj_Cfi;/l, dj:c,—% G=1....,m),
= Ci 2ciin —

ej:cj+¥, ej:cj+w (j=0,....,m—=1).

We put/; =[(e;)"%, (d;)"1] and T; = [(Ej)*l, (2,-)*1] for 1< j <m—1. We also set
IO = [(60)71’ OO), 70 = [(50)71, oo)l Im = [O, (dl71)7l]l and 7171 = [0, (:{m)il]

We take a smooth cut-off functio on [0, oo) such thaty = 0 on [Q 1], and
x=1on|[2 03). We also take smooth functiong; (j =0,...,m) so that eacty; is
supported or/;, x; =1 onl;, and 3 ", x; =1 on [Q c0). We define

(e, x) = (1 x (X} + x ()0 (L) ,

|x]
t .
¢t x) = x(IxNx; <m> (=1....m)
for (¢, x) € [0, 00) x R®. Then, noting thad 7, ¢;(r, x) = 1 for [0, 00) x R®, we have

(¢ +1xl)(cit — x| UL@I(t, )| < Y (¢ + |xI)(est — 1) | U [ @](2, X))

Jj=0



SYSTEMS OF NONLINEAR WAVE EQUATIONS 325

Since (c;t — |x|) < Cw(t, |x|) in supp¢;, Lemma 8.1 implies

(¢ + bl est = 1x)"|Uig; @11 < € sup (Iyl)(z + yD ™ w(z, [y |D(z, y)]

yeD;(t,|x])

for v > 0. This proves (3.6). The proof of (3.7) is similar. We canoajgove (3.8)
similarly, becausdr +r) < Cw;(t,r) in supp¢; and (c;t —r) < Cw;(t,r) in suppg;
for j #i. Ul

(1]

(2]

(3]
(4]
(5]
(6]
(7]
(8]
&)
(10]
[11]
(12]
(13]
[14]
[15]

(16]

[17]

References

R. Agemi and K. YokoyamaThe null condition and global existence of solutions to eyst
of wave equations with different spegds Advances in Nonlinear Partial Differential Equations
and Stochastics, S. Kawashima and T. Yanagisawa (EdsigsSmr Adv. Math. for Appl. Sci.
48, World Scientific, 1998, 43-86.

F. Asakura:Existence of a global solution to a semi-linear wave equmtigth slowly decreas-
ing initial data in three space dimensign€@omm. in Partial Differential Equationkl (1986),
1459-1487.

D. Christodoulou:Global solutions of nonlinear hyperbolic equations for dimaitial data,
Comm. Pure Appl. Math39 (1986), 267-282.

K. Hidano: The global existence theorem for quasi-linear wave equatioith multiple speeds
Hokkaido Math. J.33 (2004), 607-636.

L. Hormander: Lectures on Nonlinear Hyperbolic Differentiajutions, Springer-Verlag,
Berlin, 1997.

S. Katayama:Global existence for a class of systems of nonlinear wavetamns in three
space dimensionghinese Ann. Math25B (2004), 463—-482.

S. KatayamaGlobal and almost-global existence for systems of nontinesave equations with
different propagation speed®iff. Integral Egs.17 (2004), 1043—-1078.

S. Katayama:Global existence for systems of wave equations with noneganonlinearities
and null forms J. Differential Equation209 (2005), 140-171.

S. Klainerman:The null condition and global existence to nonlinear waveatipns Lectures
in Appl. Math. 23 (1986), 293-326.

S. Klainerman and T.C. Sideri©n almost global existence for nonrelativistic wave equai
in 3D, Comm. Pure Appl. Math49 (1996), 307-321.

M. Kovalyov: Resonance-type behaviour in a system of nonlinear wavetieqgal. Differen-
tial Equations77 (1989), 73-83.

K. Kubota and K. YokoyamaGlobal existence of classical solutions to systems of neati
wave equations with different speeds of propagatitapanese J. Matl27 (2001), 113-202.
H. Lindblad: On the lifespan of solutions of nonlinear wave equation$ winall initial data
Comm. Pure Appl. Math43 (1990), 445-472.

M. Ohta: Counterexample to global existence for system of nonlimeare equations with dif-
ferent propagation speed&unkcialaj Ekvacioj46 (2003), 471-477.

T.C. Sideris and Shun-Yi TuGlobal existence for systems of nonlinear wave equatiorDin
with multiple speedsSIAM J. Math. Anal.33 (2001), 477-488.

C.D. SoggeGlobal existence for nonlinear wave equations with mudtipbeedsin Harmonic
Analysis at Mount Holyoke, W. Beckner et al. (Eds.), Conteiath. 320, Amer. Math. Soc.,
Providence, RI, 2003, 353-366.

K. Yokoyama:Global existence of classical solutions to systems of wguatens with critical
nonlinearity in three space dimensignk Math. Soc. Japab2 (2000), 609-632.



326 S. KATAYAMA AND K. YOKOYAMA

Soichiro Katayama

Department of Mathematics

Wakayama University

930 Sakaedani, Wakayama 640-8510, Japan
e-mail: katayama@center.wakayama-u.ac.jp

Kazuyoshi Yokoyama

Hokkaido Institute of Technology

4-1, 7-15, Maeda, Teine-ku, Sapporo 006-8585, Japan
e-mail: yokoyama@bhit.ac.jp



