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Abstract
We give a global existence theorem to systems of quasilinearwave equations

in three space dimensions, especially for the multiple-speed cases. It covers a wide
class of quadratic nonlinearities which may depend on unknowns as well as their
first and second derivatives. Our proof is achieved through total use of pointwise
andL2-estimates concerning unknowns and their first and second derivatives.

1. Introduction

Let u = u(t; x) = (ui(t; x))mi=1 be anRm-valued unknown function, and set�i =�2t � 2i1x with some positive constantsi (i = 1; : : : ; m). We consider the following
system of nonlinear wave equations

(1.1) �iui(t; x) = Fi(u; �u;rx�u) for t > 0 and x 2 R3 (1� i � m)

with initial data

(1.2) ui(0; x) = 'i(x); �tui(0; x) =  i(x) for x 2 R3 (1� i � m):
We use the notation�0 = �t = �=�t and �j = �=�xj for 1 � j � 3 throughout
this paper.�u and rx�u are R4m-valued andR12m-valued functions, whose compo-
nents are��ui (1 � i � m, 0 � � � 3) and �j��ui (1 � i � m, 1 � j �
3, 0 � � � 3), respectively.F (u; v;w) = (Fi(u; v;w))1�i�m is a given function of
(u; v;w) 2 Rm � R4m � R12m. The components ofu, v andw are denoted byui , vi;�
andwi;j�, respectively, where 1� i � m, 1 � j � 3 and 0� � � 3. Herevi;� cor-
responds to��ui , andwi;j� to �j��ui . We suppose that' = ('i)mi=1 and  = ( i)mi=1

in (1.2) are rapidly decreasing functions.
We assume thatF (u; v;w) is linear with respect tow and satisfies

(1.3) F (u; v;w) = O �juj2 + jvj2 + jwj2� near (u; v;w) = (0;0;0):
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SinceF (u; v;w) is linear with respect tow, each equation in (1.1) takes the form

(1.4) �iui +
mX
j=1

X
0��;��3

 ��ij (u; �u) ����uj = fi(u; �u)

for i = 1; : : : ; m. To assure the hyperbolicity of the system, we also assume

(1.5)  ��ij (u; v) =  ��ij (u; v) =  ��ji (u; v)

for any 1� i; j � m, 0� �; � � 3 and (u; v) 2 Rm � R4m.
The purpose of this paper is to give a condition and a proof of global existence

for the Cauchy problem (1.1)–(1.2) with small data. The nullcondition emerged as a
condition for the existence of global small amplitude solutions in [9] and [3] for the
single-speed case. Its generalization to the multiple-speeds case has been studied by
several researchers, see [11], [1], [17], [15], [4] and [16]for the case whereF de-
pends on�u; �2u but not onu. The caseF = O(juj3 + j�uj2 + jrx�uj2) with multiple
speeds was studied first in [12], whose result was generalized later in [7].

Let us review the null condition for the caseF = O(juj3 + j�uj2 + jrx �uj2) with
multiple speeds. For simplicity, we assume that the wave propagation speeds are dis-
tinct. That is to say,

(1.6) i 6= j if i 6= j:
AssumeF = F (2) + H , whereF (2) =

�F (2)i �mi=1 is a quadratic function with respect to
(v;w) andH = (Hi)mi=1 = O(juj3 + jvj3 + jwj3) near the origin. We introduce

Ni =

8<
:X = (X0; X1; X2; X3) 2 R4 ; X2

0 � 2i
3X
j=1

X2j = 0

9=
;

for i = 1; : : : ; m. For y = (yi)mi=1 2 Rm andX = (X�)3�=0 2 R4, we defineV (y;X) 2
R4m andW (y;X) 2 R12m by

V (y;X) = (Vi;�(y;X))1�i�m;0���3 = (yiX�)1�i�m;0���3;
W (y;X) = (Wi;j�(y;X))1�i�m;1�j�3;0���3 = (yiXjX�)1�i�m;1�j�3;0���3:

We say thatF satisfies the null condition ifF (2)i (V (�;X);W (�;X)) = 0 holds for
any �; � 2 Rm, X 2 Ni and i = 1; : : : ; m. Then it was shown in [7] that there ex-
ists a global smooth solution for (1.1)–(1.2), provided that the initial data are suffi-
ciently small.

The nonlinear terms which satisfy the null condition are explicitly described by
the null forms. For arbitrary smooth functions� and  on R � R3, we define new
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functionsQ0(�; ) andQ��(�; ), as bilinear forms of�� and � :

Q0(�; ; i) = �t� �t � 2i
3X
j=1

�j� �j ;(1.7)

Q��(�; ) = ��� �� � ��� �� :(1.8)

We call them the null forms. If the null condition is satisfied, then we can rewrite the
nonlinear terms explicitly, as

Fi(u; �u;rx �u) =
X0
jaj=0;1

8<
:Q0(ui; �aui ; i) +

X0
0��;��3

Q��(ui; �aui)
9=
;

+
X

(j;k)6= (i;i)
X0

0��;��3jaj=0;1
��uj �a��uk +Hi(u; �u;rx �u);(1.9)

where �a = �a0
0 �a1

1 �a2
2 �a3

3 for a multi-index a = (a0; a1; a2; a3). Here and in what fol-
lows, the expressionf =

P0�23 g� means that there exists a familyfC�g�23 of con-
stants such thatf =

P�23 C�g�. We note that only the products of�aui and �bui inFi are involved with the null forms. So we understand that the null forms weaken the
effects of self-interactions and that is enough for the global existence.

Our aim in this paper is to consider the case where the quadratic parts of the non-
linear terms containu. This case was studied by the first author in [6] and [8]. More
precisely, he gave a global existence theorem for small initial data, assuming

Fi(u; �u;rx �u) =
3X0
=0

�
8<
:Q0(ui; ui ; i) +

3X0
�;�=0

Q�� (ui; ui)
9=
;

+
X

(j;k)6= (i;i)
X0

0���3jaj;jbj=0;1
�� ��auj �buk� +Hi(u; �u;rx �u)

(1.10)

in [6], while another global existence theorem for small data was proved for nonlin-
earity satisfying

Fi(u; �u;rx �u) =
mX
j=1

X0
jaj=0;1

8<
:Q0(uj ; �auj ; j ) +

3X0
�;�=0

Q��(uj ; �auj )
9=
;

+
X
k 6= l

X0
0���3jaj;jbj=0;1

�auk �b��ul +Hi(u; �u;rx �u)
(1.11)

in [8]. Note that in both cases quadratic terms depend onu itself as well as its deriva-
tives. In this sense, he considered generalized situations. However, instead of allowing
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such terms, additional restrictions are imposed on quadratic terms depending only on
derivatives. Remember that special forms were required only for the self-interactions�aui � �bui (jaj; jbj = 1;2) of Fi in the previous case (1.9). In contrast to this, we see
that some special forms are assumed also for terms like�auj ��buj (jaj; jbj = 1;2) withj 6= i in (1.10) and (1.11). Hence the readers may have thought thatwe should aim to
remove these additional restrictions. But this attempt for(1.11) will not be achieved,
on account of Ohta’s counterexample [14]. In fact, he showedthat a solution of the
Cauchy problem for the systems of two wave equations

�1u1(t; x) = u2�tu1; �2u2(t; x) = (�tu1)2

can blow up in finite time if1 < 2, however small the initial data are. Note that
there is no self-interaction in this system. So we cannot always combine nonlinear
terms freely, even if they are favorable in different situations (observe that the above
nonlinear termsu2�tu1 and (�tu1)2 are included in (1.11) and (1.9), respectively).

Though we should give up a global existence theorem unifying(1.9) and (1.11),
we can prove global existence for the following nonlinearity, which means that (1.10)
and (1.11) can be unified:

Fi(u; �u;rx �u) =
3X
�=0

��Gi;�(u; �u) +Ni(�u;rx �u)

+Ri(u; �u;rx �u) +Hi(u; �u;rx �u)

(1� i � m),

(1.12)

Gi;�(u; �u) =
X
j 6= i

X0
jaj;jbj=0;1�

auj �buj ;(1.13)

Ni(�u;rx �u) =
X

0�j�m
X0
jaj=0;1

8<
:Q0(uj ; �auj ; j ) +

X0
0��;��3

Q��(uj ; �auj )
9=
; ;(1.14)

Ri(u; �u;rx �u) =
X
k 6= l

X0
0���3jaj;jbj=0;1

�auk �b��ul;(1.15)

Hi(u; v;w) = O �juj3 + jvj3 + jwj3� near the origin.(1.16)

As we have observed, we need some assumptions not only for self-interactions but
also for the terms like�auj � �buj for j = 1; : : : ; m. So we require that they should
take either the null forms or the divergence-type forms.

In order to describe the main result, we introduce some notation briefly.0 = (00; : : : ; 07) denotes the collection of vector fieldsS, �, and �, whereS = t�t +x � rx and� = (x2�3 � x3�2; x3�1 � x1�3; x1�2 � x2�1). We write

jv(t; x)js =
X
jaj�s j0

av(t; x)j;
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where0a = 0a0
0 � � �0a7

7 . Moreover, we set

Es(t) = Es [u](t) = kju(t; � )jskL2 + kj�u(t; � )jskL2 +
mX
i=1

khi t � j � jij�ui(t; � )js�1kL2;
where h�i =

p
1 +�2 for � 2 R. We use this notationh�i throughout this paper.

Theorem 1.1. Assume that(1.5) and (1.6) hold. Suppose that the nonlinear termF = (Fi)mi=1 is given by(1.12)–(1.16).Let � 2 (0;1=2]. Then there exists a positive
constant", such that if

supx2R3

�hjxji2ju(0; x)j13 + hjxji3j�u(0; x)j14 + hjxji2+� j�tu(0; x)j17
	

+E22(0)� ";
then the Cauchy problem(1.1)–(1.2) has a unique global solutionu 2C1 �[0;1)� R3 ; Rm�.
It should be emphasized that we cannot prove the theorem onlyby combining the
estimates in [6] and [8]. The method in [6] depends on the peculiarity of nonlinear
terms (1.10), while the estimates in [8] rely on fairly good decay of solutions with
nonlinear terms (1.11), which cannot be expected for the solutions of [6]. Since the
estimates which we require forNi and Ri have been established already in former
works, the difficulty of considering the unified nonlinearity lies on the treatment of the
divergence-type terms. The missing tools for the estimatesof the divergence-type terms
are pointwise estimates of the second derivatives. See Corollary 3.4 and the proof of
Lemma 6.6 below.

REMARK . (i) We can generalize the theorem above to the case where (1.6) is
not satisfied. We define

I (i) = fj 2 f1; : : : ; mg ; j = ig for 1� i � m
and assume that

Gi;�(u; �u) =
X
j =2I (i)

X
k;l2I (j )

X0
jaj;jbj=0;1 �

auk �bul;

Ni(�u;rx �u) =
X

k;l2I (j )
0�j�m

X0
jaj=0;1

8<
:Q0(uk; �aul ; j ) +

X0
0��;��3

Q��(uk; �aul)
9=
; ;

Ri(u; �u;rx �u) =
X

I (k)6= I (l)
X0

0���3jaj;jbj=0;1
�auk �b��ul;



288 S. KATAYAMA AND K. YOKOYAMA

instead of (1.13)–(1.15). The global existence is proved without essential modifications
to our proof below.
(ii) There are some nonlinearities to which we can apply our method, though they do
not explicitly satisfy the conditions of Theorem 1.1. For example, consider a system
of two wave equations

(1.17) �1u1 = u2
2; �2u2 = (��u1)(��u2);

where 1 6= 2, and 0� �; � � 3. Note that this system does not satisfy the condi-
tions of Theorem 1.1, because there exists a term which do notcontain any derivative.
However, by introducing new unknownsv1 = ��u1 and v2 = u2, we can rewrite the
above system as

(1.18) �1v1 = �� �v2
2

� ; �2v2 = v1(��v2);
to which Theorem 1.1 is applicable. Thus the reduced system (1.18) possesses a global
solution for small data. Now it is easy to obtain a global solution for the original
system (1.17).

The plan of this paper is as follows. In Section 2 we introducethe notation used
throughout this paper. In Sections 3 and 4 we collect some basic pointwise and en-
ergy estimates which we require. Then we obtain energy and pointwise estimates for
smooth and small solutions in Sections 5 and 6. Finally, the proof of Theorem 1.1 will
be given in Section 7.

2. Notation

We define the scaling operatorS and the angular-momentum operators�jk by

S = t�t +
3X
j=1

xj�j and �jk = xj�k � xk�j for 1� j < k � 3:
We also set

00 = S; 01 = �12; 02 = �13; 03 = �23; 0k = �k�4 (4� k � 7)

and 0 = (00; : : : ; 07), so that we can use multi-index notation0a for a product0a0
0 0a1

1 � � �0a7
7 , wherea = (a0; : : : ; a7) 2 (Z+)8. In order to deal with products of the

differential operators above, we frequently use the commutation relations

[S; ��] = ���; [S;�jk] = 0;
[�jk; ��] = �Æ�j�k + Æ�k�j ;
[�jk; �pq ] = Æjp�qk + Æjq�kp � Ækp�qj � Ækq�jp
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for 0 � � � 3, 1� j < k � 3 and 1� p < q � 3, whereÆab is the Kronecker delta,
and�jk for j > k is given by�jk = ��kj . From these identities we obtain

0a0bv = 0a+bv +
X0

jj�jaj+jbj�1

0v;
��0av = 0a ��v +

X0
0���3jbj�jaj�1

0b ��v; 0a ��v = ��0av +
X0

0���3jbj�jaj�1

��0bv

for any smooth functionv. We have also [�i; 00] = 2�i and [�i; 0j ] = 0 for 1� j �
7, which yield

(2.1) �i(0av) = 0a(�iv) +
X0

jbj�jaj�1

0b(�iv):
The followings are used in the subsequent sections, to evaluate several quantities

by using pointwise andL2-estimates. Lets be a non-negative integer. Then for a smooth
function v(t; x), we define

jv(t; x)js =
X
jaj�s j0

av(t; x)j
and

kv(t; � )ks = kjv(t; � )jskL2(R3) :
Finally, we introduce two linear operators. For eachi 2 f1; : : : ; mg, we writeU�i [f; g] for the solution to the Cauchy problem

(
�iU�i [f; g](t; x) = 0 in (0;1)� R3;
U�i [f; g](0; x) = f (x); �tU�i [f; g](0; x) = g(x) for x 2 R3:

Similarly, Ui [8] stands for the solution to the Cauchy problem

(
�iUi [8](t; x) = 8(t; x) in (0;1)� R3;
Ui [8](0; x) = �tUi [8](0; x) = 0 for x 2 R3:

Since the commutation relations [�i; 0�] = 2Æ0��i imply �i0�Ui [8] = 0�8 + 2Æ0�8,
we easily get

(2.2) 0�Ui [8] = Ui [0�8] + 2Æ0�Ui [8] + Æ4�U�i [0;8(0; � )]:
Here we use the representation

(2.3) v(t; x) = U�i [v(0; � ); �tv(0; � )](t; x) +Ui [�iv](t; x):
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As an immediate consequence of (2.3) and (2.1), we also have

(2.4) 0av(t; x) = U�i [0av(0; � ); �t0av(0; � )](t; x) +
X0
jbj�jajUi

�0b�iv� (t; x):
3. Pointwise estimates

The aim of this section is to give some pointwise estimates for solutions of wave
equations. We start with estimates ofU�i [f; g] and Ui [8] together with estimates of
their first derivatives.

Lemma 3.1. For � > 0, and i = 1; : : : ; m, we have

ht + jxjihi t � jxji� jU�i [f; g](t; x)j
� C supjyj�i t+jxj

8<
:
X
jaj�1

jyjjajhjyji1+� jraf (y)j + jyjhjyji1+� jg(y)j
9=
; ;(3.1)

ht + jxjihi t � jxji� j�U�i [f; g](t; x)j
� C supjyj�i t+jxj

X
jaj�1

jyjjajhjyji1+�fjrarf (y)j + jrag(y)jg:(3.2)

The above constantC depends only oni and �.

Proof. See Proposition 3.3 and the subsequent remark in Kubota–Yokoyama [12].
In [12], it was actually shown that

ht + jxjihi t � jxji� jU�i [f; g](t; x)j � C supy2R3

hjyji2+�
8<
:
X
jaj�1

jraf (y)j + jg(y)j
9=
; :

But (3.1) is obtained by making slight modification to the proof of [12]. (3.2) is an
immediate consequence of (3.1), since�xjU�i [f; g] = U�i [�xjf; �xj g] and �tU�i [f; g] =U�i �g; 2i1f �. See also Asakura [2].

To describe the estimates forUi [8] which we require, we introduce two kinds
of weights. We set

w(t; r) =

8<
:hri�1 +

mX
j=1

hj t � ri�1

9=
;
�1

;(3.3)

wi(t; r) =

8<
:hri�1 +

X
j 6= i hj t � ri

�1

9=
;
�1

(i = 1; : : : ; m):(3.4)
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We also set

(3.5) Di(t; r) =
�
(� ; y) 2 R� R3 ; 0� � � t; i� + jyj � i t + r	 :

Lemma 3.2. For � > 0, � > 0, i = 1; : : : ; m, and � = 0; : : : ;3, we have

ht + jxjihi t � jxji� jUi [8](t; x)j
� C sup

(� ;y)2Di (t;jxj) jyjh� + jyji1+�w(� ; jyj)1+�j8(� ; y)j;(3.6)

hjxjihi t � jxji1+� jUi [��8](t; x)j
� C sup

(� ;y)2Di (t;jxj) jyjh� + jyji1+�w(� ; jyj)1+�j8(� ; y)j1;(3.7)

hjxjihi t � jxji� jUi [��8](t; x)j
� C sup

(� ;y)2Di (t;jxj) jyjh� + jyji�wi(� ; jyj)1+�j8(� ; y)j1;(3.8)

where the constantC depends oni; �; �.

Note that the weightwi(t; r) is stronger thanw(t; r) along the conei t = r. Hence
(3.8) for � > 1 is a weaker result than (3.7). However, the inequality (3.8) is no longer
true for 0< � � 1, if we replacewi(t; r) by w(t; r).

Proof. Although we can get (3.6)–(3.8) by making slight modifications to the
proofs of Yokoyama [17] or Kubota–Yokoyama [12], we give a proof in Section 8
for completeness.

In addition, we need pointwise estimates of the second derivatives. As it was
shown by Klainerman–Sideris [10], we can draw out the decaying factorhi t � ri like
(3.9)–(3.11) simply by manipulating differential operators 0� and �i , as far as the
temporal differentiations or the Laplacian are involved. We can play a similar game
for the spatial second derivatives, but unfortunately onlya factor hri can be obtained
instead ofhi t�ri (see (3.12) below). We will observe in Section 6 that it is sufficient
for our present purpose.

Lemma 3.3. Let v 2 C2
�
(0;1)� R3

�
. Then we have

hi t � jxjij1v(t; x)j � C
0
�Xjaj�1

���0av(t; x)
�� + t j�iv(t; x)j

1
A ;(3.9)

hi t � jxji ���2t v(t; x)
�� � C

0
�Xjaj�1

���0av(t; x)
�� + jxj j�iv(t; x)j

1
A ;(3.10)
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hi t � jxjijrx �tv(t; x)j � C
0
�Xjaj�1

���0av(t; x)
�� + t j�iv(t; x)j

1
A ;(3.11)

hjxji ��r2xv(t; x)
�� � C (j�rxv(t; x)j + hjxjij1v(t; x)j) :(3.12)

Proof. See Lemma 2.3 of [10] for the proof of (3.9)–(3.11). Inorder to
prove (3.12) we note that

(3.13) x ^� = x(x � r)� jxj2r; � ^ r = �x1 + (x � r)r;
where� = (�1; �2; �3) = (�23; �31; �12). Hence we obtain

(3.14) �(x ^�)i �jv + xi(� ^ r)jv = jxj2 �i�jv � xixj1v
for i; j = 1;2;3, which imply (3.12).

Corollary 3.4. Let v 2 C2((0;1)� R3). Then we have

(3.15)
���2v(t; x)

�� � Cw(t; jxj)�1
X
jaj�1

j�0av(t; x)j +C ht + jxjihi t � jxji j�iv(t; x)j
for i = 1; : : : ; m, where�2v = (����v)0��;��3, and w(t; r) is defined by(3.3).

Proof. It follows from Lemma 3.3 that

j1v(t; x)j + j�t�v(t; x)j
� Chi t � jxji�1

0
�Xjaj�1

j�0av(t; x)j + ht + jxji j�iv(t; x)j
1
A ;(3.16)

��r2xv(t; x)
�� � Chjxji�1

X
jaj�1

j�0av(t; x)j +Cj1v(t; x)j:(3.17)

Noting that 1v on the right-hand side of (3.17) can be controlled by (3.16),we
obtain (3.15).

Lastly, we present the following well-known Sobolev type inequalities.

Lemma 3.5. Let v be a smooth function. Then we have

jxj1=2jv(x)j � C X
jaj�1

k�x�avkL2;(3.18)

jxj jv(x)j � C Xjaj�2

k�avkL2 +C X
jaj�1

k�a �xvkL2:(3.19)
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Proof. See Lemma 4.2 of Klainerman–Sideris [10] and Lemma 6.1 of
Sideris–Tu [15].

REMARK . By combining the standard Sobolev inequality and Lemma 3.5, we can
replacejxj with hjxji in the above inequality, and we get

hjxji1=2jv(x)j � C X
jaj+jbj�1

�x�ax�bvL2 ;(3.20)

hjxjijv(x)j � C X
jaj+jbj�2

�a �bx vL2 :(3.21)

4. Energy estimates

In this section, we collect severalL2-estimates concerning the operatorsUi andU�i . We start with the standard energy inequalities.

Lemma 4.1. Let f 2 H 1(R3), g 2 L2(R3) and 8 2 L1
�
[0; T ) ; L2(R3)

�
. Then

we have �U�i [f; g](t; � )L2(R3) � C �krxf kL2(R3) + kgkL2(R3)

� ;(4.1)

k�Ui [8](t; � )kL2(R3) � C
Z t

0
k8(� ; � )kL2(R3) d�(4.2)

for any t 2 [0; T ), whereC is a constant independent ofT .

The following conformal energy was used in Klainerman [9] (see also [8]).
It plays an important role in our proof, since it is useful notonly for estimating
the L2 norms of u but also for the weighted estimates of the first derivatives (see
Lemma 4.3 below).

Lemma 4.2. Let v be a smooth solution of

(4.3)
��2t � 2i1x� v(t; x) = 8(t; x) in (0; T )� R3:

Then we have

X
jaj�1

k0av(t; � )kL2 +
3X
j=1

kLijv(t; � )kL2

� C (khj � ji�v(0; � )kL2 + kv(0; � )kL2) +C Z t
0
kh� + j � ji8(� ; � )kL2 d� ;

(4.4)

whereLij = (xj=i)�t + i t�j (i = 1; : : : ; m; j = 1;2;3).
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Proof. Using a certain change of variables, we may assumei = 1. For simplicity
of exposition, we writeLj for Lij with i = 1, i.e.,Lj = xj�t + t�j . We introduce

jv(t; x)j20;L;1 =
X
jaj�1

j0av(t; x)j2 +
3X
j=1

jLjv(t; x)j2

= v2 + (�tv)2 +
3X
j=1

(�jv)2 + (Sv)2 +
X

1�j<k�3

(�jkv)2 +
3X
j=1

(Ljv)2

and

(4.5) E[v](t; x) =
1

2
jv(t; x)j20;L;1 + 2tv(t; x)�tv(t; x)� 3

2
v(t; x)2:

We can rewriteE[v] as

E[v](t; x) =
1

2

�
1 + t2 + jxj2�

8<
:(�tv)2 +

3X
j=1

(�jv)2

9=
; +

3X
j=1

2txj (�jv)(�tv)

+ 2tv(�tv)� v2:
Set

Kv :=
�
1 + t2 + jxj2� �tv + 2tx � rxv + 2tv:

Multiplying (4.3) by Kv and integrating by parts, Klainerman showed that

(4.6)
ddt
Z

R3
E[v](t; x) dx =

Z
R3

(Kv)(t; x)8(t; x) dx
(see Klainerman [9], Section 3). He also showed that there exists a constantC
such that

(4.7)
1C
Z

R3
jv(t; x)j20;L;1 dx �

Z
R3
E[v](t; x) dx � C Z

R3
jv(t; x)j20;L;1 dx

(see Klainerman [9], Lemma 3.1). Now, we definekv(t)k2E =
R E[v](t; x) dx. SinceKv = �tv + t(S + 2)v + jxjLrv with Lr =

P3j=1(xj=jxj)Lj , we have

jKv(t; x)j � C(1 + t + jxj)jv(t; x)j0;L;1:
Therefore it follows from (4.6) and (4.7) that

ddt kv(t)k2E � C
Z

R3
ht + jxjij8(t; x)j jv(t; x)j0;L;1 dx

� Ckht + j � ji8(t; � )kL2kv(t)kE :(4.8)
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Gronwall’s lemma applied to (4.8) implies

kv(t)kE � kv(0)kE +C Z t
0
kh� + j � ji8(� ; � )kL2 d� :

In view of (4.7), this completes the proof (see also Hörmander [5], Section 6.3, or
Katayama [8], Section 3).

Corollary 4.3. Let i 2 f1; : : : ; mg. Then we have

kUi [8](t; � )k1 � C
Z t

0
kh� + j � ji8(� ; � )kL2 d� ;(4.9) U�i [f; g](t; � )1 � C (kf kL2 + khj � jirxf kL2 + khj � jigkL2) ;(4.10)

khi t � j � ji�Ui [8](t; � )kL2 � C Z t
0
kh� + j � ji8(� ; � )kL2 d� ;(4.11) hi t � j � ji�U�i [f; g](t; � )L2 � C (kf kL2 + khj � jirxf kL2 + khj � jigkL2) :(4.12)

Proof. (4.9) and (4.10) are apparent consequences of Lemma 4.2. (4.11)
and (4.12) follow immediately from Lemma 4.2 and the following inequality which
is essentially due to Lindblad [13]:

(4.13) hi t � jxjij�v(t; x)j � C
0
�Xjaj=1

j0av(t; x)j + 3X
j=1

jLijv(t; x)j
1
A :

In order to prove (4.13), we just need the following identities, which can be verified
easily by direct calculations:

�2i t2 � jxj2� �tv = 2i t(Sv)� i 3X
j=1

xjLijv;(4.14)

�2i t2 � jxj2� �jv = i t(Lijv)� xj (Sv) +
X
k 6= j xk(�jkv) (j = 1;2;3):(4.15)

REMARK . By substitutingt = 0 to the identity (4.15), we have

jxj jrxv(x)j � jx � rxv(x)j + j�v(x)j:
We will use this inequality for functions onR� R3 in the following form:

(4.16) jxj jrxv(0; x)j � jSv(0; x)j + j�v(0; x)j; hjxjijrxv(0; x)j � jv(0; x)j1:
To conclude this section, we stateL2-estimates for second derivatives.



296 S. KATAYAMA AND K. YOKOYAMA

Lemma 4.4. Let v be a smooth function decaying sufficiently fast at spatial
infinity. Then we have

khi t � j � jirx �v(t; � )kL2 � C
0
�Xjaj�1

k�0av(t; � )kL2 + tk�iv(t; � )kL2

1
A ;(4.17)

hi t � j � ji �2t v(t; � )L2 � C
0
�Xjaj�1

k�0av(t; � )kL2 + kj � j�iv(t; � )kL2

1
A :(4.18)

Proof. Estimates ofkhi t�j�ji1vkL2, khi t�j�ji �2t vkL2 andkhi t�j�jirx �tvkL2

follow immediately from Lemma 3.3. Performing integrationby parts in the right-hand
side of

3X
j;k=1

khi t � j � ji �j�kvk2L2 =
3X

j;k=1

Z hi t � j � ji2(�j�kv)(�j�kv) dx;
we obtain (4.17). See the proof of Lemma 3.1 in [10] for the details.

Corollary 4.5. The following estimate holds fori = 1; : : : ; m:hi t � j � ji �2Ui [9](t; � )L2

� C Z t
0
k9(� ; � )k1 d� +Ckht + j � ji9(t; � )kL2 +Ckhj � ji9(0; � )kL2:(4.19)

Proof. Setv = Ui [9]. Lemma 4.4 yields

(4.20) khi t � j � ji �2vkL2 � C X
jaj�1

k�0avkL2 +Ckht + j � ji9(t; � )kL2:
Now, using (2.2), (4.10) and (4.2) to estimatek�0avkL2 in (4.20), we obtain

the result.

5. Energy estimates for small solutions

First of all, we recall the estimates for the null forms. See [7], [15] or [17] for
the proof.

Lemma 5.1. Let �1(t; x) and �2(t; x) be smooth functions. Let 0 =
minf1; : : : ; mg=2 and jxj � 0t . Then we have

ht + jxjijQ0(�1; �2; i)j � C (hi t � jxjij��1j j��2j + j��1j j�2j1 + j�1j1j��2j) ;(5.1)

ht + jxjijQ��(�1; �2)j � C (j��1j j�2j1 + j�1j1j��2j)(5.2)
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for i = 1;2; : : : ; m and 0 � �; � � 3. Here Q0(�; ; i) and Q��(�; ) are defined
by (1.7) and (1.8), respectively.

The aim in this section is to derive anL2-estimate for a small solution of (1.1).
We defineE2K (t) = E2K [u](t) by

(5.3) E2K (t) = ku(t; � )k2K + k�u(t; � )k2K +
mX
i=1

khi t � j � jij�ui(t; � )j2K�1kL2 :
A bound ofE2K (t) is given in the following proposition.

Proposition 5.2. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2)for someT > 0. Assume(1.5), (1.6)and (1.12)–(1.16).Then there are pos-
itive constantsA1 � 1 and C1, both independent ofu and T , such that the following
holds: If the solutionu satisfies

(5.4)
mX
i=1

hjxjihi t � jxjijui(t; x)jK+2 � A for 0� t � T and x 2 R3

with someA 2 (0; A1], then we have

(5.5) E2K (t) � C1E2K (0)htiC1A:
REMARK . An estimate essentially similar to (5.5) can be found in [8], but its

condition was
Pmi=1ht + jxjihi t � jxjijui(t; x)jK+2 � A, which is stronger than (5.4).

This is one of our modified points.

Proposition 5.2 follows from Lemmas 5.4 and 5.5 below. The main tools required
in this section are the results in Section 4 and the followingstandard energy estimate
for hyperbolic systems.

Lemma 5.3. Let v = (v1; : : : ; vm) be a smooth solution to

(5.6) �ivi(t; x) +
X

0��;��3
1�j�m

 ��ij (t; x) ����vj (t; x) = fi(t; x) (1� i � m)

for (t; x) 2 [0; T ] � R3, where ��ij =  ��ij =  ��ji . If v(t; x) vanishes sufficiently fast at
spatial infinity and

k (t; � )kL1 =
X

0��;��3
1�i;j�m

 ��ij (t; � )L1 < 1

2
for 0� t � T ;
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then

k�v(t; � )kL2 � Ck�v(0; � )kL2 +C Z t
0
kf (� ; � )kL2

+C Z t
0
k� (� ; � )kL1k�v(� ; � )kL2 d�(5.7)

for 0� t � T .

We begin with this standard energy inequality to get the following Lemma 5.4.
Here we do not take advantage of the special structures of thenonlinearities. If
we take them into consideration for the lower energy, then wecan show thatk�u(t; � )k2K�2 remains small ast gets large. But this estimate will not be discussed
here, because it will not be used later in our proof.

Lemma 5.4. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2)for someT > 0. Assume(1.3), (1.5)and (5.4). Then we have

(5.8) k�u(t; � )k2K � Ck�u(0; � )k2K +CA Z t
0
h� i�1 fku(� ; � )k2K + k�u(� ; � )k2Kg d�

for 0� t � T .

Proof. We apply0a to

�iui +
X

0��;��3
1�j�m

 ��ij (u; �u) ����uj = fi(u; �u)

for all a with jaj � 2K. Then we have

�i0aui +
X

0��;��3
1�j�m

 ��ij (u; �u) ����0auj = f̃ i;a;

where

f̃ i;a = 0afi(u; �u)� [0a;�i ]ui � X
0��;��3
1�j�m

h0a;  ��ij ����i uj
=
X0
jbj�jaj0

bfi +
X
j;�;�

X0
jbj+jj�jajjj�jaj�1

�0b ��ij �0 ����uj � X
j;�;� 

��ij �0a; ����� uj :

Therefore it follows that��f̃ i;a(t; x)
�� � Cju(t; x)jK+2 (ju(t; x)j2K + j�u(t; x)j2K )

� CAhti�1 (ju(t; x)j2K + j�u(t; x)j2K ) ;
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which implies

f̃ i;a(t; � )L2 � CAhti�1 fku(t; � )k2K + k�u(t; � )k2Kg :
Besides this we also have

X
0��;��3
1�i;j�m

��� ��ij (u; �u)(t; x)
��� � Cju(t; x)j1 < 1

2
;

���� ��ij (u; �u)(t; x)
��� � Cju(t; x)j2 � CAhti�1;

if we takeA sufficiently small. So the energy inequality (5.7) leads us to

k�0au(t; � )kL2 � Ck�0au(0; � )kL2 +CA Z t
0
h� i�1 fku(� ; � )k2K + k�u(� ; � )k2Kg d� :

This completes the proof.

We next derive estimates ofkui(t; � )k2K and khi t � j � jij�ui(t; � )j2K�1kL2.

Lemma 5.5. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2) for someT > 0. Suppose that the assumptions inProposition 5.2are
fulfilled. Then we have

kui(t; � )k2K + khi t � j � jij�ui(t; � )j2K�1kL2

� CE2K (0) +CA Z t
0
h� i�1E2K (� ) d� +CA (ku(t; � )k2K + k�u(t; � )k2K ) :(5.9)

Proof. We first represent0aui by using the formula (2.4). Then we have

(5.10) 0aui = U�i [0aui(0; � ); �t0aui(0; � )] +
X0
jbj�jajUi

�0bFi� :
We provedL2-estimates concerningU�i [f; g] and Ui [8] in Corollary 4.3, so the esti-
mate proceeds as follows.

kui(t; � )k2K + khi t � j � jij�ui(t; � )j2K�1kL2

� C X
jaj�2K�1

�k0aui(t; � )k1 + khi t � j � ji�0aui(t; � )kL2

	
� C X

jaj�2K�1

�khj � ji�0aui(0; � )kL2 + k0aui(0; � )kL2

	
+C X

jaj�2K�1

�kUi [0aFi ](t; � )k1 + khi t � j � ji�Ui [0aFi ](t; � )kL2

	 :
(5.11)
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Note that khj � ji�0aui(0; � )kL2 + k0aui(0; � )kL2 � CE2K (0) for jaj � 2K � 1.
So it remains to estimate the second term on the right-hand side of (5.11). We should
not use Corollary 4.3 for them right now, because it cannot deal with the divergence-
type terms.

Let jaj � 2K � 1. We rewrite the termsuj (����0auk) and (�uj )(����0auk) as

��buj � �����0auk� = �� ���buj � ���0auk�	� ����buj � ���0auk� (jbj � 1);
so that we can avoid loss of derivatives. We also use a similartrick to handle
(0buj )(0��uk) (j 6= k), which may appear in0aRi , when jbj > jj (see Lemma 5.4
in [8] for the details). Then we obtain decompositions of thefollowing type:

(5.12) 0aFi(u; �u;rx �u) =
3X
�=0

��g� + q + r + h;
where

g� =
mX

j;k=1

X
jdj�1

X0
jbj�K+1jj�2K�1

0buj0 �duk;(5.13)

q =
mX
j=1

X0
jbj�Kjj�2K�1

Q0
�0buj ; 0uj ; j � +

X
1�j�m

0��;��3

X0
jbj�Kjj�2K�1

Q�� �0buj ; 0uj � ;(5.14)

r =
X

1�j;k�mj 6= k
X0

jbj�K+1jj�2K�1

0buj0 �uk;(5.15)

h = 0aHi(u; �u;rx �u):(5.16)

We continue the estimate to obtain

kUi [0aFi ](t; � )k1 + khi t � j � ji�Ui [0aFi ](t; � )kL2

� 3X
�=0

fkUi [��g�](t; � )k1 + khi t � j � ji�Ui [��g�](t; � )kL2g
+ kUi [q + r + h](t; � )k1 + khi t � j � ji�Ui [q + r + h](t; � )kL2:

(5.17)

We begin with the estimates concerningg�. In order to apply Lemma 4.1 and
Corollary 4.5, we interchange the order of the operatorsUi and �� by the commu-
tation relations (2.2), as follows:

3X
�=0

fkUi [��g�](t; � )k1 + khi t � j � ji �Ui [��g�](t; � )kL2g
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� 3X
�=0

fk��Ui [g�](t; � )k1 + khi t � j � ji ���Ui [g�](t; � )kL2g
+ kU�i [0; g0(0; � )]k1 + khi t � j � ji �U�i [0; g0(0; � )]kL2

� X
0��;��3jbj�1

�k��Ui [0bg�](t; � )kL2 + khi t � j � ji ���Ui [g�](t; � )kL2

	

+CkU�i [0; g0(0; � )]k1 + khi t � j � ji �U�i [0; g0(0; � )]kL2:
Hence Lemma 4.1 and Corollary 4.5 yield

3X
�=0

(kUi [��g�](t; � )k1 + khi t � j � ji �Ui [��g�](t; � )kL2)

� C 3X
�=0

�Z t
0
kg�(� ; � )k1 d� + kht + j � jig�(t; � )kL2 + khj � jig�(0; � )kL2

� :
Recalling (5.13), we have

jg�(t; x)j1 � CAht + jxji�1 (ju(t; x)j2K + j�u(t; x)j2K ) :
Thus we conclude

3X
�=0

(kUi [��g�]k1 + khi t � j � ji�Ui [��g�]kL2)

� CA�Z t
0
h� i�1 (ku(� ; � )k2K + k�u(� ; � )k2K ) d�

+ ku(t; � )k2K + k�u(t; � )k2K + ku(0; � )k2K + k�u(0; � )k2K
� :

(5.18)

The rest of the proof is aimed at the estimates concerningq, r and h. By Corol-
lary 4.3, we get

kUi [q + r + h](t; � )k1 + khi t � j � ji�Ui [q + r + h](t; � )kL2

� C Z t
0
kh� + j � ji(q + r + h)(� ; � )kL2 d� :(5.19)

In view of Lemma 5.1, we divide the region [0; T ] � R3 into fjxj � 0tg and fjxj �0tg for the estimate ofq + r, where 0 = minf1; : : : ; mg=2. So we decompose the
integrandkht + j � ji(q + r + h)(t; � )kL2 and obtain

(5.20) kht + j � ji(q + r + h)(t; � )kL2 � I + II + III ;
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where

I = kht + j � ji(q + r)(t; � )kL2(jxj�0t);(5.21)

II = kht + j � ji(q + r)(t; � )kL2(jxj�0t);(5.22)

III = kht + j � jih(t; � )kL2:(5.23)

Since ht + jxji � Chkt � jxji for jxj � 0t , we have

(5.24) I � CAhti�1
mX
k=1

khkt � j � jij�uk(t; � )j2K�1kL2;
recalling (5.14) and (5.15). On the other hand, Lemma 5.1 yields

ht + jxjijq(t; x)j � C mX
j=1

�hj t � jxjijuj (t; x)jK+2j�uj (t; x)j2K�1

+ juj (t; x)jK+2juj (t; x)j2K�
� CAhti�1

mX
j=1

�j�uj (t; x)j2K�1 + juj (t; x)j2K�

for jxj � 0t . Moreover, sinceht + jxji � Chj t � jxjihkt � jxji if j 6= k, we have

ht + jxjijr(t; x)j � CXj 6= kht + jxjijuj (t; x)jK+2j�uk(t; x)j2K�1

� CAhti�1
mX
k=1

hkt � jxjij�ukj2K�1

for jxj � 0t . Therefore it follows that

(5.25) II � CAhti�1

(
ku(t; � )k2K +

mX
k=1

khkt � j � jij�uk(t; � )j2K�1kL2

)
:

Finally, since

ht + jxjijh(t; x)j � Cht + jxjiju(t; x)j2K+2 (ju(t; x)j2K + j�u(t; x)j2K )

� CA2hti�1 (ju(t; x)j2K + j�u(t; x)j2K ) ;
we have

(5.26) III � CA2hti�1 fku(t; � )k2K + k�u(t; � )k2Kg :
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Therefore it follows from (5.19), (5.20) and (5.24)–(5.26)that

kUi [q + r + h](t; � )k1 + khi t � j � ji�Ui [q + r + h](t; � )kL2

� CA Z t
0
h� i�1E2K (� ) d� :(5.27)

Now (5.11), (5.17), (5.18) and (5.27) imply (5.9).

Proof of Proposition 5.2. By Lemmas 5.4 and 5.5, we have

E2K (t) � CE2K (0) +CA Z t
0
h� i�1E2K (� ) d�

for sufficiently smallA. Hence Gronwall’s inequality yields

E2K (t) � CE2K (0) exp

�CA Z t
0
h� i�1 d��

� CE2K (0)htiCA:
6. Pointwise estimates for small solutions

We first show a refinement of Lemma 3.1, to weaken the weight imposed on the
initial data.

Lemma 6.1. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2) for someT > 0. Assume0 � � � 1, � > 0, and jaj � �. Then
we have

ht + jxji�hi t � jxji� ��U�i [0aui(0; � ); �t0aui(0; � )](t; x)
��

� C supjyj�i t+jxj
�hjyji�+�jui(0; y)j� + jyjhjyji�+�j�ui(0; y)j�	 ;(6.1)

ht + jxji�hi t � jxji� ���U�i [0aui(0; � ); �t0aui(0; � )](t; x)
��

� C supjyj�i t+jxjhjyji�+�j�ui(0; y)j�+1
(6.2)

for 0� t � T and x 2 R3.

Proof. We setu�i;a = U�i [0aui(0; � ); �t0aui(0; � )] for simplicity. By Lemma 3.1,
it follows that

ht + jxjihi t � jxji�ju�i;a(t; x)j
� C supjyj�i t+jxj

�hjyji1+�j0aui(0; y)j + jyjhjyji1+�j�0aui(0; y)j	
� Cht + jxji1�� supjyj�i t+jxj

�hjyji�+�j0aui(0; y)j + jyjhjyji�+�j�0aui(0; y)j	 :
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Thus we obtain (6.1). To estimate the first derivative (6.2),we begin with the estimate
of Lemma 3.1, and use (4.16). Then we have

ht + jxjihi t � jxji�j�u�i;a(t; x)j
� C supjyj�i t+jxj

�hjyji1+�j�0aui(0; y)j + jyjhjyji1+�jr�0aui(0; y)j	
� C supjyj�i t+jxjhjyji1+�j�0aui(0; y)j1:

Thus we obtain (6.2) by a similar argument as above.

As a first step, we derive a pointwise decay estimate of the small amplitude solu-
tion from Sobolev’s inequality and theL2-estimate (5.5).

Lemma 6.2. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2) for someT > 0. Assume(1.5), (1.6) and (1.12)–(1.16).Let 0 < Æ < 1=2
and 0< � < 1� 2Æ. Then there exist two positive constantsA2 and C such that

(6.3)
mX
i=1

sup
0�t�Tx2R3

hjxjihi t � jxjijui(t; x)jK+2 � A
implies

ht + jxji�hi t � jxjiÆjui(t; x)j2K�3

+ ht + jxji��1hjxjihi t � jxji1+Æj�ui(t; x)j2K�4 � CE2K (0)
(6.4)

for 0� t � T and x 2 R3, providedA 2 (0; A2]. Here the above constantsA2 and C
may depend onÆ and �, but are independent ofT and u.

Proof. Using the representation (2.4) and Lemma 6.1, we have

ht + jxji�hi t � jxjiÆjui(t; x)j2K�3

� C X
jaj�2K�3

ht + jxji�hi t � jxjiÆ
� �jU�i [0aui(0; � ); �t0aui(0; � )](t; x)j + jUi [0aFi ](t; x)j	

� C supy2R3

�hjyjijui(0; y)j2K�3 + hjyji2j�ui(0; y)j2K�3
	

+C X
jaj�2K�3

ht + jxji�hi t � jxjiÆjUi [0aFi ](t; x)j:

(6.5)
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To estimate the sup norm above, we apply (3.21). Then we immediately see that

supy2R3

�hjyjijui(0; y)j2K�3 + hjyji2j�ui(0; y)j2K�3
	

� C X
jaj+jbj�2jj�2K�3

�kra�b0ui(0; � )kL2 + kra�bhj � ji0�ui(0; � )kL2

	

� CE2K (0):
(6.6)

To estimate the force terms, we only have to notice that they are quadratic near
the origin. Then it follows from Lemma 3.5 and the smallness assumption (6.3) ofju(t; x)jK+2 that

jyj j0aFi(� ; y)j � Cjyj ju(� ; y)jK+2(ju(� ; y)j2K�2 + j�u(� ; y)j2K�2)

� CAhjyji�1

0
� mX
j=1

hj� � jyji�1

1
A (ku(� ; � )k2K + k�u(� ; � )k2K )

for jaj � 2K � 3 and 0� � � T . Thus we obtain

jyjh� + jyjiw(� ; jyj)j0aFi(� ; y)j � CAE2K (� );
where the weightw(t; r) is defined by (3.3). Moreover, in view of Proposition 5.2,
we get

(6.7) jyjh� + jyji1+Æw(� ; jyj)1+Æ=2j0aFi(� ; y)j � CAE2K (0)ht + jxji2Æ
for jaj � 2K � 3, 0� � � t and i� + jyj � i t + jxj, provided thatA is so small to
satisfyA � A1 andC1A � Æ=2. HereA1 andC1 are the constants in Proposition 5.2.
Thus Lemma 3.2 yields

(6.8) ht + jxjihi t � jxjiÆjUi [0aFi ](t; x)j � CAE2K (0)ht + jxji2Æ
for jaj � 2K � 3. Hence (6.5)–(6.8) imply

(6.9) ht + jxji�hi t � jxjiÆjui(t; x)j2K�3 � CE2K (0):
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We next estimatej�ui(t; x)j2K�4. By (2.4) and Lemma 6.1, we have

ht + jxji��1hjxjihi t � jxji1+Æj�ui(t; x)j2K�4

� C X
jaj�2K�4

ht + jxji��1hjxjihi t � jxji1+Æ
� �j�U�i [0aui(0; � ); �t0aui(0; � )](t; x)j + j�Ui [0aFi ](t; x)j	

� C supy2R3

hjyji2j�ui(0; y)j2K�3

+C X
jaj�2K�4

ht + jxji��1hjxjihi t � jxji1+Æj�Ui [0aFi ](t; x)j:

(6.10)

Observing that, by (6.7) and Lemma 3.2, we obtain

(6.11) hjxjihi t � jxji1+Æj�Ui [0aFi ](t; x)j � CAE2K (0)ht + jxji2Æ
for jaj � 2K � 4, we conclude from (6.10) and (6.6) that

ht + jxji��1hjxjihi t � jxji1+Æj�ui(t; x)j2K�4 � CE2K (0):
This completes the proof.

Now we set

a1(t) = a1[u](t) = supx2R3

mX
i=1

hjxjihi t � jxjijui(t; x)jK+2;(6.12)

a2(t) = a2[u](t) = supx2R3

mX
i=1

hjxjihi t � jxjiw(t; jxj)� j�ui(t; x)jK+3;(6.13)

a3(t) = a3[u](t) = supx2R3

mX
i=1

hjxjihi t � jxji� jui(t; x)j2K�5;(6.14)

and

(6.15) A(T ) = A[u](T ) = sup
0�t�T fa1(t) + a2(t) + a3(t)g ;

wherew(t; r) is defined by (3.3). Our aim in this section is to give a bound of A[u](T )
for a small amplitude solution of (1.1).

Proposition 6.3. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2) for someT > 0. Assume(1.5), (1.6) and (1.12)–(1.16).Assume moreoverK + 6 � 2K � 5 and 0 < � � 1=2 in the definition ofA(T ) above. Then there exist
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positive numbersA0 and C0, both independent ofu and T , such that the following
holds: If A(T ) � A0, then we have

A(T ) � C0 supy2R3

�hjyji2ju(0; y)jK+2 + hjyji3j�u(0; y)jK+2

+ hjyji2+� j�tu(0; y)j2K�5
	

+C0E2K (0):(6.16)

The proof of this proposition will be given at the end of this section, after we prove
three lemmas below.

Lemma 6.4. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2) for someT > 0. Assume(1.5), (1.6)and (1.12)–(1.16).If 0 < � < 1 andA(T ) � A, then we have

hjxjihi t � jxji� jui(t; x)j2K�5

� C supy2R3

�hjyji1+� jui(0; y)j2K�5 + hjyji2+� j�ui(0; y)j2K�5
	

+CA(T )E2K (0) +CA(T )2

(6.17)

for 0� t � T and x 2 R3, provided thatA is sufficiently small.

Proof. By (2.4) and Lemma 6.1, we have

hjxjihi t � jxji� jui(t; x)j2K�5

� C supy2R3

�hjyji1+� jui(0; y)j2K�5 + hjyji2+� j�ui(0; y)j2K�5
	

+C X
jaj�2K�5

hjxjihi t � jxji� jUi [0aFi ](t; x)j:
(6.18)

In order to estimate the effects of the force terms, we use thedecomposi-
tion (1.12). That is,

jUi [0aFi ](t; x)j
� 3X

�=0

jUi [0a��Gi;�](t; x)j + jUi [0aNi ](t; x)j
+ jUi [0aRi ](t; x)j + jUi [0aHi ](t; x)j

� C 3X
�;�=0

X
jbj�jaj

��Ui ���0bGi;�� (t; x)
�� + jUi [0aNi ](t; x)j

+ jUi [0aRi ](t; x)j + jUi [0aHi ](t; x)j:

(6.19)

We estimate the each term above in the following. Firstly, wechoose sufficiently smallÆ > 0 so that we haveÆ � � < 1� 2Æ. Then, by the pointwise estimate of Lemma 6.2
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and the definition (6.15), we get��0bGi;�(� ; y)
��
1 � CXj 6= i juj (� ; y)jK+2juj (� ; y)j2K�3

� CA(T )E2K (0)hjyji�1h� + jyji��wi(� ; jyj)�1�Æ(6.20)

for jbj � 2K � 5, wherewi(t; r) (i = 1; : : : ; m) are defined by (3.4). Hence it follows
from (3.8) in Lemma 3.2 that

(6.21) hjxjihi t � jxji� jUi [��0bGi;�](t; x)j � CA(T )E2K (0)

for jbj � 2K�5. Likewise, we compute pointwise bounds for the force termsby using
Lemma 6.2 and (6.15), and apply Lemma 3.2 in the following. Toestimate the null
forms, we divide [0; T ] � R3 into fjyj � 0� g and fjyj � 0� g. If jyj � 0� , simply
becauseNi are quadratic, we obtain

j0aNi(� ; y)j � C mX
j=1

juj (� ; y)jK+2j�uj (� ; y)j2K�4

� CA(T )E2K (0)
mX
j=1

hjyji�2h� + jyji1��hj� � jyji�2�Æ
� CA(T )E2K (0)hjyji�1h� + jyji�1��hjyji�1�Æ;

provided jaj � 2K � 5. If jyj � 0� to the contrary, we employ Lemma 5.1. Sincehjyji�1 � Ch� + jyji�1, we easily have

j0aNi(� ; y)j � C mX
j=1

h� + jyji�1fhj � � jyjijuj (� ; y)jK+2j�uj (� ; y)j2K�4

+ juj (� ; y)jK+2juj (� ; y)j2K�3g
� CA(T )E2K (0)hjyji�1h� + jyji�1�� mX

j=1

hj � � jyji�1�Æ:
To sum up, we have proved

(6.22) j0aNi(� ; y)j � CA(T )E2K (0)hjyji�1h� + jyji�1��w(� ; jyj)�1�Æ
for jaj � 2K � 5. Therefore, (3.7) in Lemma 3.2 implies

(6.23) ht + jxjihi t � jxji� jUi [0aNi ](t; x)j � CA(T )E2K (0)

for jaj � 2K�5. In the estimates of the nonresonant terms0aRi , we note that at least
two of three decaying factorshjyji�1; hj � � jyji�1 and hk� � jyji�1 are equivalent
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to h� + jyji�1 everywhere, by virtue of the difference of the wave propagation speeds.
Remember also that we have chosenÆ satisfying 0< Æ � � < 1�2Æ. Then Lemma 6.2
and (6.15) lead to

j0aRi(� ; y)j
� CXj 6= k

�juj (� ; y)jK+2j�uk(� ; y)j2K�4 + juj (� ; y)j2K�5j�uk(� ; y)jK+3
�

� CA(T )E2K (0)
X
j 6= khjyji

�2h� + jyji1��hj � � jyji�1hk� � jyji�1�Æ
+CA(T )2

X
j 6= khjyji

�2hj� � jyji��hk� � jyji�1w(� ; jyj)��
� C �A(T )E2K (0) +A(T )2� hjyji�1h� + jyji�1��w(� ; jyj)�1�Æ

(6.24)

for jaj � 2K � 5. Therefore, it follows that

(6.25) ht + jxjihi t � jxji� jUi [0aRi ](t; x)j � C �A(T )E2K (0) +A(T )2�
for jaj � 2K � 5. Lastly,

j0aHi(� ; y)j � Cju(� ; y)j2K+2 (j�u(� ; y)j2K�4 + ju(� ; y)j2K�3)

� CA(T )2E2K (0)hjyji�3h� + jyji1�� mX
j=1

hj t � jyji�2�Æ
� CA(T )2E2K (0)hjyji�1h� + jyji�1��w(� ; jyj)�2�Æ

(6.26)

for jaj � 2K � 5, so we obtain

(6.27) ht + jxjihi t � jxji� jUi [0aHi ](t; x)j � CA(T )2E2K (0) (jaj � 2K � 5):
Thus we have proved the lemma, by (6.21), (6.23), (6.25) and (6.27).

Lemma 6.5. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2)for someT > 0. Assume(1.5), (1.6)and (1.12)–(1.16).If K + 6� 2K � 5
and A(T ) � 1, then we have

hjxjihi t � jxjijui(t; x)jK+2

� C supy2R3

�hjyji2ju(0; y)jK+2 + hjyji3j�u(0; y)jK+2
	

+CA(T )2(6.28)

for 0� t � T and x 2 R3.
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Proof. By (2.4) and Lemma 6.1, we have

hjxjihi t � jxjijui(t; x)jK+2

� C supy2R3

�hjyji2ju(0; y)jK+2 + hjyji3j�u(0; y)jK+2
	

+C X
jaj�K+2

hjxjihi t � jxjijUi [0aFi ](t; x)j:
(6.29)

Then we use the decomposition (6.19) forjaj � K + 2, and make the estimates by
similar arguments as in the previous lemma. That is, we compute pointwise bounds
for the force terms by using (6.15), and apply Lemma 3.2.

We start with an estimate ofGi;�. SinceK + 6� 2K � 5, we get

��0bGi;�(� ; y)
�� � CXj 6= i juj (� ; y)jK+2juj (� ; y)j2K�5

� CA(T )2hjyji�2
X
j 6= i hj� � jyji

�1��
� CA(T )2hjyji�1h� + jyji�1wi(� ; jyj)�1��

(6.30)

for jbj � K + 5. Note that what we actually need here is the estimate forjbj � K + 3.
The estimate forjbj � K + 5 will be used to prove the next lemma.

Now, assumejaj � K + 2 in what follows. We estimate the null forms forjyj � 0� as

j0aNi(� ; y)j � C mX
j=1

juj (� ; y)jK+2j�uj (� ; y)jK+3

� C mX
j=1

A(T )2hjyji�2hj� � jyji�2w(� ; jyj)��
� CA(T )2hjyji�1h� + jyji�2w(� ; jyj)�1��;

while for jyj � 0� , Lemma 5.1 implies

j0aNi(� ; y)j � C mX
j=1

h� + jyji�1fhj� � jyjijuj (� ; y)jK+2j�uj (� ; y)jK+3

+ juj (� ; y)jK+2juj (� ; y)jK+4g
� CA(T )2

mX
j=1

h� + jyji�1hjyji�2w(� ; jyj)��hj � � jyji�1

� CA(T )2hjyji�1h� + jyji�2w(� ; jyj)�1�� :
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Hence it follows that

(6.31) j0aNi(� ; y)j � CA(T )2hjyji�1h� + jyji�2w(� ; jyj)�1�� :
As for the nonresonant terms, noting thathj� �jyjihk� �jyji is bounded from below
by Ch� + jyjiw(� ; jyj) for j 6= k, we obtain

j0aRi(� ; y)j � CXj 6= k juj (� ; y)jK+2j�uk(� ; y)jK+3

� CA(T )2
X
j 6= khjyji

�2hj � � jyji�1hk� � jyji�1w(� ; jyj)��
� CA(T )2hjyji�1h� + jyji�2w(� ; jyj)�1�� :

(6.32)

Finally, the higher order terms are handled as

j0aHi(� ; y)j � Cju(� ; y)j2K+2 (j�u(� ; y)jK+3 + ju(� ; y)jK+2)

� CA(T )3hjyji�3
mX
j=1

hj � � jyji�3

� CA(T )3hjyji�1h� + jyji�2w(� ; jyj)�3:
(6.33)

Now, combining the estimates (6.31)–(6.33) forjaj � K + 2 with (3.6) of Lemma 3.2,
and (6.30) forjbj � K + 3 with (3.8) of Lemma 3.2, we obtain (6.28).

It remains to show the estimate ofa2(t). Here we need the extra decaying factorw(t; r)� , which has played an important role in the proof of Lemma 6.5,but it will not
be difficult to obtain this factor from the terms other than the divergence-type terms.
To handle the effects of the divergence terms, we notice thatthey are written as the
second derivatives plus harmless terms.

Lemma 6.6. Let u 2 C1([0; T ] � R3) be a solution of the Cauchy problem
(1.1)–(1.2) for someT > 0. Assume(1.5), (1.6)and (1.12)–(1.16).Suppose that0 <� < 1 and K + 6� 2K � 5. If A(T ) � A, then we have

hjxjihi t � jxjiw(t; jxj)� j�ui(t; x)jK+3

� C supy2R3

hjyji2+� j�u(0; y)jK+4 +CA(T )E2K (0) +CA(T )2(6.34)

for 0� t � T and x 2 R3, provided thatA is sufficiently small.
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Proof. We begin with (2.4) and Lemma 6.1 as before. Sincew(t; r) � hi t � ri,
we get

hjxjihi t � jxjiw(t; jxj)� j�ui(t; x)jK+3

� C supy2R3

hjyji2+� j�u(0; y)jK+4

+C X
jaj�K+3

hjxjihi t � jxjiw(t; jxj)� j�Ui [0aFi ](t; x)j:
(6.35)

Let jaj � K + 3. We splitUi [0aFi ] by using (1.12). We first deal with the terms con-
cerningNi; Ri andHi . By the commutation relations (2.2), we get

j�Ui [0aNi ](t; x)j + j�Ui [0aRi ](t; x)j + j�Ui [0aHi ](t; x)j
� jUi [�0aNi ](t; x)j + jUi [�0aRi ](t; x)j + jUi [�0aHi ](t; x)j

+ jU�i [0; 0aNi(0; � )](t; x)j + jU�i [0; 0aRi(0; � )](t; x)j
+ jU�i [0; 0aHi(0; � )](t; x)j:

We have already computed the estimate of0aNi; 0aRi and 0aHi in (6.22), (6.24)
and (6.26) for jaj � 2K � 5. Therefore, it follows from Lemma 3.1 and (3.7) of
Lemma 3.2 that

hjxjihi t � jxji1+� �j�Ui [0aNi ](t; x)j + j�Ui [0aRi ](t; x)j + j�Ui [0aHi ](t; x)j	
� Chjxjihi t � jxji1+��jUi [�0aNi ](t; x)j + jUi [�0aRi ](t; x)j

+ jUi [�0aHi ](t; x)j + jU�i [0; 0aNi(0; � )](t; x)j
+ jU�i [0; 0aRi(0; � )](t; x)j + jU�i [0; 0aHi(0; � )](t; x)j	

� C
(
A(T )E2K (0) +A(T )2

+ supy2R3

hjyji3+�(j0aNi(0; y)j + j0aRi(0; y)j + j0aHi(0; y)j)
)

� C �A(T )E2K (0) +A(T )2� :

(6.36)

Now it remains to estimate�Ui [��0aGi;�] for jaj � K + 3. We employ (2.2) to form
second derivatives:

(6.37) �Ui [��0aGi;�] = ���Ui [0aGi;�] � Æ0� �U�i [0; 0aGi;�(0; � )]:
Applying Lemma 3.1 to the second term on the right-hand side above, we have

hjxjihi t � jxjiw(t; jxj)� j�U�i [0; 0aGi;�(0; � )](t; x)j
� C supy2R3

hjyji3+� jGi;�(0; y)jK+4

� CE2K (0)A(T ) +CA(T )2;
(6.38)
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where we used Lemma 6.2 and (6.15). As for the second derivative, we use Corol-
lary 3.4 to obtain

hjxjihi t � jxjiw(t; jxj)� j���Ui [0aGi;�](t; x)j
� Chjxjihi t � jxjij�Ui [0aGi;�](t; x)j1

+Chjxjiht + jxjiw(t; jxj)� j0aGi;�(t; x)j:
(6.39)

Note that we have disposed ofw(t; jxj)��1 in the first term on the right-hand side. In
order to estimate it further, we utilize the commutation relations repeatedly and get

0d��Ui [0aGi;�] =
X0

jj�K+4
0��3

Ui [�0Gi;�] +
X0

jj�K+4

U�i [0; 0Gi;�(0; � )]
+
X0

0��3

�U�i [0; 0aGi;�(0; � )]
for jaj � K + 3 and jdj � 1. Therefore we obtain

hjxjihi t � jxjij�Ui [0aGi;�](t; x)j1
� C X

jj�K+4
0���3

hjxjihi t � jxjijUi [��0Gi;�](t; x)j
+C supy2R3

hjyji3jGi;�(0; y)jK+4:
Now, in view of (6.30) forjbj � K + 5, from (3.8) of Lemma 3.2 and (6.38) we get

(6.40) hjxjihi t � jxjij�Ui [0aGi;�](t; x)j1 � CE2K (0)A(T ) +CA(T )2:
As for the second term on the right-hand side of (6.39), we seeeasily from (6.30) forjbj � K + 3 that it is bounded byCA(T )2, becausew(t; jxj) � Cwi(t; jxj). Finally, it
follows from (6.37)–(6.40) that

(6.41) hjxjihi t � jxjiw(t; jxj)� j�Ui [��0aGi;�](t; x)j � CE2K (0)A(T ) +CA(T )2

for jaj � K + 3. This completes the proof.

Proof of Proposition 6.3. Summing up the estimates of Lemmas6.4, 6.5 and 6.6,
we get

A(T ) � C supy2R3

�hjyji2ju(0; y)jK+2 + hjyji3j�u(0; y)jK+2
	

+C supy2R3

�hjyji1+� jui(0; y)j2K�5 + hjyji2+� j�ui(0; y)j2K�5
	

+CA(T )E2K (0) +CA(T )2:
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Since� � 1=2, Lemma 3.5 and (4.16) imply

(6.42) hjyji1+� jui(0; y)j2K�5 + hjyji2+� jrxui(0; y)j2K�5 � C1E2K (0):
Thus we obtain (6.16), provided thatA(T ) is sufficiently small.

7. Proof of the main theorem

In this section we give a proof of Theorem 1.1. Suppose that all the assump-
tions of Theorem 1.1 are fulfilled. Because we are only considering small solutions,
changing the definition of ��ij (u; v) in (1.4) outside some large ball of (u; v) does

not affect solutions. Hence we may assume
P�;�;i;j  ��ij (u; v) � 1=2 for any (u; v) 2

Rm � R4m. Then, by the standard argument for classical local existence theorems, we
can see that the Cauchy problem (1.1)–(1.2) admits a (unique) local solutionu 2 C1 �[0; T )� R3 ; Rm� for someT > 0. More precisely, we have

(7.1) u 2 C1 �[0; T );H s;p(R3; Rm)
�

for any s � 0 and p � 0;
whereH s;p is given byH s;p =

�f 2 L2 ;
Pjaj�s khj � jip�ax f kL2 < 1	 with �x =

(�1; �2; �3). Moreover, the above solutionu can be extended beyond the above timeT , unless

(7.2) sup
(t;x)2[0;T )�R3

X
jaj�2

j�au(t; x)j = 1
holds (see Ḧormander [5], Theorem 6.4.11 and its remarks; see also Proposition 4.1 in
[7]). Therefore, if we can show that

Pjaj�2 k�au(t; � )kL1(R3) stays small as far as the
solution exists, we can extend the solution globally in time.

Our task is to show the following:

Proposition 7.1. Suppose that the assumptions inTheorem 1.1are fulfilled. As-
sume that� 2 (0;1=2] and K + 6 � 2K � 5 in the definition(6.15) of A[u](t). SetM = maxf1; C0; C1g, whereC0 and C1 are the constants given in(6.16) and (6.42),
respectively. If

M supy2R3

�hjyji2ju(0; y)jK+2 + hjyji3j�u(0; y)jK+3

+ hjyji2+� j�tu(0; y)j2K�5
	

+ME2K (0)� A0

2
;(7.3)

then, for the local solutionu 2 C1 �[0; T )� R3 ; Rm�, we havesup0�t<T A[u](t) �A0. Here A0 is the constant appeared inProposition 6.3.
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Proposition 7.1 implies Theorem 1.1 immediately, because we have

X
jaj�2

k�au(t; � )kL1(R3) � A[u](t) for any t 2 [0; T ):
Proof of Proposition 7.1. Thanks to (7.1) and the Sobolev embedding theorem,A(t) = A[u](t) is continuous with respect tot 2 [0; T ).
Set T0 := supf0� t < T ;A(t) � A0g. (7.3) impliesA(0)� A0=2, because we have

A(0)� supy2R3

�hjyji2ju(0; y)jK+2 + hjyji3j�u(0; y)jK+3
�

+ME2K (0)

by the definition ofA(T ) and (6.42). Hence, by the continuity ofA(t), we find thatT0

is well-defined andT0 > 0. Now assumeT0 < T . Then (7.3) and Proposition 6.3 yieldA(T0) � A0=2, and thus we see thatA(T0 + Æ) � A0 for someÆ > 0. This contradicts
the definition ofT0, and we conclude thatT0 = T . This completes the proof.

8. Appendix

In this section, we give a proof of Lemma 3.2.

Lemma 8.1. Let a � 0, � > 0, and � > 0. Then we have

ht + jxjihi t � jxji� jUi [8](t; x)j
� C sup

(� ;y)2Di (t;jxj)hjyjih� + jyji1+�ha� � jyji1+�j8(� ; y)j(8.1)

for i = 1; : : : ; m, whereDi(t; r) are defined by(3.5).

Proof. It suffices to prove Lemma 8.1 for the case wherei = 1. So in the fol-
lowing we always assumei = 1.

Set

(8.2) z0(� ; �) = (1 +� + �)1+�(1 + ja� � �j)1+�:
Then we have

(8.3) jUi [8](t; x)j � CI [z0](t; jxj) sup
(� ;y)2Di (t;jxj) jyjz0(� ; jyj)j8(� ; y)j;

where

(8.4) I [z0](t; r) = r�1
ZZ

Di (t;jxj) z0(� ; �)�1 d� d�
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(see p.613 of Yokoyama [17]). Therefore, it suffices to prove

(8.5) I [z0](t; r) � Cht + ri�1ht � ri�� :
If we set

� = � + � ; � = � � a� ;
the integral (8.4) can be written as

(8.6) I [z0](t; r) =
1

(a + 1)r
Z t+r
jt�rj(1 +�)�1�� d� Z �

b� (1 + j�j)�1�� d�;
where

(8.7) b� =
1

2
f(1� a)� + (1 +a)(r � t)g :

Hence, noting that (1 +j�j)�1�� is integrable onR for � > 0, we get

I [z0](t; r) � Cr�1
Z t+r
jt�rj(1 +�)�1�� d�

� Cr�1 �(1 + jt � rj)�� � (1 + t + r)��	 :(8.8)

Thus if t + 1� 2r, we obtain (8.5) immediately. Ift + 1> 2r to the contrary,��(1 + jt � rj)�� � (1 + t + r)���� � C(1 + jt � rj)���1(t + r � jt � rj)
� Cht + ri���1 minft; rg:

Therefore (8.8) implies (8.5). This completes the proof of Lemma 8.1.

We next consider estimates for derivatives.

Lemma 8.2. Let a � 0, � > 0, and � > 0. We further assume� > 1 if a = i .
Then we have

hjxjihi t � jxji� jUi [�8](t; x)j
� C sup

(� ;y)2Di (t;jxj)hjyjih� + jyji�ha� � jyji1+�fj8(� ; y)j
+ j�8(� ; y)j + j�8(� ; y)jg

(8.9)

for i = 1; : : : ; m, whereDi(t; r) are defined by(3.5).

As before, it suffices to prove Lemma 8.2 for the case wherei = 1, which is
always assumed in what follows. Set

(8.10) z(� ; �) = (1 +� + �)�(1 + ja� � �j)1+�:
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We begin with the following estimate, which is an immediate consequence of
(3.25)–(3.29) and (3.39)–(3.40) of Yokoyama [17]:

jUi [�8](t; x)j � CJ [z](t; jxj) sup
(� ;y)2Di (t;jxj) jyjz(� ; jyj)fj8(� ; y)j

+ j�8(� ; y)j + j�8(� ; y)jg;

(8.11)

where

J [z](t; r) = r�1

�ZZ
DI

z(� ; �)�1 d� d� +
Z
�DII

z(� ; �)�1 d�
+
ZZ

DII

���1 + � (t; r; � ; �)
	 z(� ; �)�1 d� d�� ;(8.12)

� (t; r; � ; �) =

8>>>>><
>>>>>:

1q�2 � �2� +
1p

(�+ � �)(� � ��)
(�� � 0);

1q�2 � �2� +
1p�2

+ � �2
(�� < 0);(8.13)

�� = t � � � r; �+ = t � � + r;(8.14)

DI = f(� ; �) j 0< � < t; j��j < � < j��j + 1; � < �+g
[ f(� ; �) j 0< � < t; �+ � 1< � < �+; j��j < �g;(8.15)

DII = f(� ; �) j 0< � < t; j��j + 1< � < �+ � 1g:(8.16)

Now we find that all we have to do is to estimateJ [z](t; r). For this pur-
pose, we prove a series of lemmas. The proof of Lemma 8.2 is clear from Lem-
mas 8.3–8.5 below.

Lemma 8.3. Let a � 0; � > 0, and � > 0. Supposeminft; rg � 1. Then

(8.17) J [z](t; r) � Chri�1ht � ri�� :
Proof. The assumption minft; rg � 1 impliesDII = ;, because

(�+ � 1)� (j��j + 1) = t � � + r � jt � � � rj � 2 = 2(minft � � ; rg � 1)� 0:
Hence we have

J [z](t; r) = r�1
ZZ

DI

(1 + � + �)��(1 + ja� � �j)�1�� d� d�:
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Therefore, going the same way as in the proof of Lemma 8.1 with� + 1 replaced by�, we reach at

J [z](t; r) � Cr�1
Z t+r
jt�rj(1 +�)�� d�

� Cr�1(1 + jt � rj)�� Z t+r
jt�rj d�� C(1 + jt � rj)��r�1 minft; rg � Chri�1ht � ri�� :

This completes the proof.

It remains to prove the case wherer > 1 and t > 1. In view of (8.12), we see
that it suffices to proveZZ

DI

z(� ; �)�1 d� d� +
Z
�DII

z(� ; �)�1 d� � Cht � ri��;(8.18) ZZ
DII

(��1 + � )z(� ; �)�1 d� d� � Cht � ri�� :(8.19)

Lemma 8.4. Let a � 0; � > 0, and � > 0. Furthermore we assume� > 1 whena = 1. Then we have

(8.20)
ZZ

DI

z(� ; �)�1 d� d� +
Z
�DII

z(� ; �)�1 d� � Cht � ri�� :
Proof. We first note that

(8.21)
ZZ

DI

z(� ; �)�1 d� d� +
Z
�DII

z(� ; �)�1 d� � C Z�D(t;r) z(� ; �)�1 d� ;
because if (� ; �) 2 DI , z(� ; �)�1 is dominated byCz(� ; j��j)�1 for � � r, and byCz(� ; �+) for � � r. In order to estimate the right-hand side of (8.21), we divide�D(t; r) into f� = j��jg, f� = �+g and f� = 0g. Here we show the estimate of the
integral on f� = j��jg in particular, and omit the estimates of integrals on the other
two regions, since they are easy to handle. The integral onf� = j��jg is split
as follows:Z t

0
z(� ; j��j)�1 d� =

Z (t�r)+

0
z(� ; j��j)�1 d� +

Z t
(t�r)+

z(� ; j��j)�1 d� ;
where (t � r)+ = maxft � r;0g.

(i) Let t > r, and 0< � < t � r. Since j��j = �� = t � � � r, we have

Z (t�r)+

0
z(� ; j��j)�1 d� =

Z t�r
0

(1 + � + ��)��(1 + ja� � ��j)�1�� d�
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=
Z t�r

0
(1 + jt � rj)��(1 + j(a + 1)� � t + rj)�1�� d�

� Cht � ri�� :
(ii) Let (t � r)+ < � < t next. Sincej��j = ��� = � � t + r, we haveZ t

(t�r)+

z(� ; j��j)�1 d�
=
Z t

(t�r)+

(1� t + r + 2� )��(1 + j(a � 1)� + t � rj)�1�� d�
=: j0(t; r):

We observe that we can calculatej0(t; r) directly for a = 1. Since� > 1 in this case,
it holds

j0(t; r) = (1 + jt � rj)�1�� Z t
(t�r)+

(1� t + r + 2� )�� d�
� C(1 + jt � rj)�1��(1 + jt � rj)1��
� Cht � ri�� :

If a 6= 1 to the contrary, we get

j0(t; r) � (1 + jt � rj)�� Z t
(t�r)+

(1 + j(a � 1)� + t � rj)�1�� d�
� Cht � ri�� :

This completes the proof.

Now we turn our attention to (8.19) whose proof is rather complicated. Firstly,
(8.13) and (8.16) yield

(8.22)
ZZ

DII

(��1 + � )z(� ; �)�1 d� d� � Cfj1(t; r) + j2(t; r)g;
where

j1(t; r) =
ZZ

D1
II

z(� ; �)�1(1 +� � ��)�1=2
� �(1 +�)�1=2 + (1 +�+ � �)�1=2	 d� d�;(8.23)

j2(t; r) =
ZZ

D2
II

z(� ; �)�1(1 +�)�1=2
� �(1 +� + ��)�1=2 + (1 +�+ � �)�1=2	 d� d�:(8.24)
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Here we set

(8.25) D1
II = DII \ f�� � 0g; D2

II = DII \ f�� < 0g:
To evaluate the integrals (8.23) and (8.24), we introduce new variables of integration
(�; �) by

(8.26) � + � = �; � � a� = �:
We can easily check the following relations:

(8.27)
� =

� � �
1 +a ; � =

a� + �
1 +a ;

� � �� = r � t + �; �+ � � = t + r � �; � + �� =
2
�� �b� �
1 +a ;

whereb� = f(1� a)� + (1 +a)(r � t)g =2 as in (8.7). Applying the transformation (8.26)
to (8.23) and (8.24), we obtain the estimates

j1(t; r) � Cfj11(t; r) + j12(t; r)g;(8.28)

j2(t; r) � Cfj21(t; r) + j22(t; r)g;(8.29)

where

j11(t; r) =
Z t+r
jt�rj(1 +�)��(1 + r � t + �)�1=2 d�
� Z �

b� (1 + j�j)�1��(1 +a� + �)�1=2 d�;(8.30)

j12(t; r) =
Z t+r
jt�rj(1 +�)��(1 + r � t + �)�1=2(1 + t + r � �)�1=2 d�
� Z �

b� (1 + j�j)�1�� d�;(8.31)

j21(t; r) =
Z t+r
jt�rj(1 +�)�� d�
� Z �

b� (1 + j�j)�1��(1 +a� + �)�1=2 �1 +� �b� ��1=2 d�;(8.32)

j22(t; r) =
Z t+r
jt�rj(1 +�)��(1 + t + r � �)�1=2 d�
� Z �

b� (1 + j�j)�1��(1 +a� + �)�1=2 d�:(8.33)

Lemma 8.5. Let a � 0; � > 0 and � > 0. Moreover we assume� > 1 if a = 1.
Then (8.19) is true.



SYSTEMS OF NONLINEAR WAVE EQUATIONS 321

Proof. As we have observed in the above, it suffices to prove

(8.34) jkl(t; r) � Cht � ri�� (k; l = 1;2):
Before we proceed to estimates for eachjkl , we give two basic inequalities which will
be used repeatedly.

Lemma 8.6. (i) Let jpj � q, and �1, �2 � 1=2. Then we have

(8.35) K�1;�2p;q :=
Z q
jpj(1 +p + �)��1(1 +q � �)��2 d� � 4:

(ii) Let 0< j�j � j�j, and � > 0. Then we have

(8.36) L�p;�;� :=
Z 1
jpj (1 +�)�1=2��(1 + j�� +�pj)�1=2 d� � Chpi��;

whereC is a constant independent ofp.

Proof. (i) We haveK�1;�2p;q � R qjpj(1�jpj+�)�1=2(1+q��)�1=2 d� for �1; �2 � 1=2.
Since 1 +q � � � 1 + (q � jpj)=2 for jpj � � � (jpj + q)=2, we get

Z (jpj+q)=2
jpj (1� jpj + �)�1=2(1 +q � �)�1=2 d�
� �1 +

q � jpj
2

��1=2 Z (jpj+q)=2
jpj (1� jpj + �)�1=2 d� � 2:

On the other hand, since we have 1�jpj+� � 1 + (q�jpj)=2 for (jpj+q)=2� � � q,
we can estimate the integral on [(jpj + q)=2; q] similarly.

(ii) For � � 2j�pj=j�j, we havej�� +�pj � j�j�=2. Therefore we get

Z 1
2j�pj=j�j(1 +�)�1=2��(1 + j�� +�pj)�1=2 d� � C Z 1

2j�pj=j�j(1 +�)���1 d� � Chpi�� :
On the other hand, we haveZ 2j�pj=j�j

jpj (1 +�)�1=2��(1 + j�� +�pj)�1=2 d�
� Chpi�(1=2)�� Z 2j�pj=j�j

jpj (1 + j�� +�pj)�1=2 d�
� Chpi�� :

This completes the proof of Lemma 8.6.
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Now we resume the proof of Lemma 8.5.
1. Estimate ofj12(t; r)
By Lemma 8.6 (i), we obtain

j12(t; r) � C Z t+r
jt�rj(1 +�)��(1 + r � t + �)�1=2(1 + t + r � �)�1=2 d�

� C(1 + jt � rj)��K1=2;1=2r�t;t+r � Cht � ri�� :
2. Estimates ofj11(t; r) and j22(t; r)
We next consider the estimates ofj11(t; r) and j22(t; r). We use the fol-

lowing lemma.

Lemma 8.7. Z �
b� (1 + j�j)�1��(1 +a� + �)�1=2 d�
�
(C(1 + r � t + �)�1=2�� (a = 0);
C(1 +�)�1=2 (a > 0):

(8.37)

Proof. Let us first consider the casea = 0. Sinceb� = (� + r � t)=2 � 0 if a = 0,
the integrand is equal to (1+�)�3=2��. Therefore, we can calculate the integral directly.

Let us assumea > 0 next. Sinceb� � �a�, the left-hand side of (8.37) is
bounded by

Z �a�=2
�a� (1 + j�j)�1��(1 +a� + �)�1=2 d� +

Z �
�a�=2(1 + j�j)�1��(1 +a� + �)�1=2 d�:

Since 1 +a� + � � C(1 +�) for �a�=2� � � �, we obtain

Z �
�a�=2(1 + j�j)�1��(1 +a� + �)�1=2 d� � C(1 +�)�1=2 Z �

�a�=2(1 + j�j)�1�� d�
� C(1 +�)�1=2:

On the other hand, we obtainZ �a�=2
�a� (1 + j�j)�1��(1 +a� + �)�1=2 d� � C(1 +�)�1�� Z �a�=2

�a� (1 +a� + �)�1=2 d�
� C(1 +�)�1=2��:

This completes the proof.
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Let us begin the estimates ofj11(t; r) and j22(t; r). Supposea = 0 first. Then
Lemmas 8.7 and 8.6 (i), together with 1 +� � 1 + jt � rj, yield

ht � ri� (j11(t; r) + j22(t; r)) � C Z t+r
jt�rj(1 + r � t + �)�1�� d� +CK1=2+�;1=2r�t;t+r � C:

Thus we obtain (8.34) for (k; l) = (1;1) and (2;2) whena = 0.
Assumea > 0 next. Then, using Lemma 8.7, we obtain

j11(t; r) + j22(t; r) � CL�r�t;1;1 +C Z t+r
jt�rj(1 +�)�1=2��(1 + t + r � �)�1=2 d�:

We can estimate the first term on the right-hand side by using Lemma 8.6 (ii). Since
(1 + �)�� � Cht � ri�� , the second term is bounded byCht � ri��K1=2;1=2

0;t+r . Thus we
get (8.34) for (k; l) = (1;1) and (2;2) also whena > 0.

3. Estimate ofj21(t; r)
Lemma 8.8. For � � jr � t j, we haveZ �

b� (1 + j�j)�1��(1 +a� + �)�1=2 �1 +� �b� ��1=2 d�
� C n�1 +

��b�����1��=2
+ (1 +�)�1=2 �1 +

��b�����1=2o :(8.38)

Proof. Assumeb� � 0 first. Then we estimate (1 +j�j)�1�� in the integrand as
(1 + j�j)�1�� � �1 +

��b�����1��=2
(1 + j�j)��=2. We also have 1 +a� +� � 1 +� �b� from

the definition ofb� (even ifb� < 0). Hence the left-hand side of (8.38) is bounded by

C �1 +
��b�����1��=2 Z 1

b� (1 + j�j)��=2 �1 +� �b� ��1 d� � C �1 +
��b�����1��=2 :

Supposeb� < 0 next. Note thata > 0 in this case. We divide the interval
�b�; ��

as
�b�; �� = I1 [ I2, where I1 =

�b�;b�=2�, and I2 =
�b�=2; ��. The estimate on the

interval I1 proceeds as above, because we still have (1 +j�j)�1�� � �1 +
��b�����1��=2

(1 +j�j)��=2 and 1 +a� + � � 1 + � �b�. Thus we see that the integral onI1 is bounded
by C�1 +b� ��1��=2

. As for the integral onI2, we note that�a�=2 � b�=2. Since (1 +a� + �)�1=2�1 +� �b� ��1=2 � C(1 +�)�1=2�1 +
��b�����1=2

, we getZ
I2(1 + j�j)�1��(1 +a� + �)�1=2 �1 +� �b� ��1=2 d�
� C(1 +�)�1=2 �1 +

��b�����1=2 :(8.39)

This completes the proof.
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Now we begin the estimate ofj21(t; r). By Lemma 8.8, we have

j21(t; r) � C Z t+r
jt�rj(1 +�)�� �1 +

��b�����1��=2 d�
+C Z t+r

jt�rj(1 +�)�1=2�� �1 +
��b�����1=2 d�

=: k1(t; r) + k2(t; r):
(8.40)

Supposea 6= 1 first. It is easy to see

k1(t; r) � C(1 + jt � rj)�� Z t+r
jt�rj

�
1 +

��b�����1��=2 d� � Cht � ri�� :
On the other hand, by the definition ofb�, Lemma 8.6 (ii) leads to

k2(t; r) � L�r�t;(1�a)=2;(1+a)=2 � Cht � ri�� :
We next assumea = 1. Remember that� > 1 by the assumption. Sinceb� = jt � rj

in this case, we can calculatek1(t; r); k2(t; r) directly. Thus we obtain (8.34). This
completes the proof of Lemma 8.5.

Finally we are in a position to prove Lemma 3.2.

Proof of Lemma 3.2. We may assume1 < 2 < � � � < m. Set 0 = 0 and

dj = j � j � j�1

3
; edj = j � 2(j � j�1)

3
(j = 1; : : : ; m);

ej = j +
j+1� j

3
; eej = j +

2(j+1 � j )
3

(j = 0; : : : ; m� 1):
We put Ij = [(ej )�1; (dj )�1] andeIj =

��eej ��1; �edj ��1�
for 1� j � m� 1. We also setI0 = [(e0)�1;1), eI0 =

��ee0
��1;1�, Im = [0; (dm)�1], andeIm =

�
0; �edm��1�

.
We take a smooth cut-off function� on [0;1) such that� = 0 on [0;1], and� = 1 on [2;1). We also take smooth functions�j (j = 0; : : : ; m) so that each�j is

supported oneIj , �j = 1 on Ij , and
Pmj=0�j = 1 on [0;1). We define

�0(t; x) = f1� �(jxj)g + �(jxj)�0

� tjxj
� ;

�j (t; x) = �(jxj)�j
� tjxj

�
(j = 1; : : : ; m)

for (t; x) 2 [0;1)� R3. Then, noting that
Pmj=0 �j (t; x) = 1 for [0;1)� R3, we have

ht + jxjihi t � jxji� jUi [8](t; x)j � mX
j=0

ht + jxjihi t � jxji� jUi [�j8](t; x)j:
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Since hj t � jxji � Cw(t; jxj) in supp�j , Lemma 8.1 implies

ht + jxjihi t � jxji� jUi [�j8]j � C supy2Di (t;jxj)hjyjih� + jyji1+�w(� ; jyj)1+�j8(� ; y)j
for � > 0. This proves (3.6). The proof of (3.7) is similar. We can also prove (3.8)
similarly, becauseht + ri � Cwi(t; r) in supp�i and hj t � ri � Cwi(t; r) in supp�j
for j 6= i.
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