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Abstract
In this paper we show that the natural fibrations on 3-Sasakianifolds and on
normal complex contact metric manifolds are minima of therexted energy of the
corresponding distributions.

1. Introduction

In [6], Chadn, Naveira and Weston introduced the enefgy) of a g-dimensional
distribution on a Riemannian manifold4, g). They studied the first and second varia-
tion of the energy and as an application showed that the Hbpition $% < §4*3 -
HP" is an unstable critical point. The corresponding resulthie tase of the energy
of a vector field for the Hopf fibratiors — $%*! — CP”" is due to C.M. Wood
[14]. Wood showed that for > 1, the critical point is unstable; fot = 1 Brito [4]
showed that this Hopf fibration is a minima.

Subsequently in [5], Ch&n and Naveira introduced a corrected enefgfy’) for
a g-dimensional distribution on a Riemannian manifold,(g) and proved thaD(V) is
> the integral of the sum of the mixed sectional curvatures@ated to a compatible
basis. As a single application they showed that the Hopf tilmas® — $4*3 —
HP" is a minimum of D(V). In the present paper we show that this application can
be greatly generalized to the natural fibrations on 3-Sasakianifolds and on normal
complex contact metric manifolds.

2. Geometry of distributions

Let (M", g) be a compact oriented Riemannian manifold with-dimensional dis-
tribution or subbundley and let’H denote the orthogonal complementary distribution
of dimensionp = n — ¢. Let {es,...,e,} be a local orthonormal basis aif” such
that {e1, ..., e,} spanH and {e,+1, ..., e,} Spany and adopt the index conventions:
l<a,b<n 1<i,j<p p+tl<a, B <n The second fundamental form of the
horizontal distribution# in the directione, and that of the vertical distributio® in
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the directione; are given respectively by
hf; = —g(Veiea, ej), h;ﬂ = —g(Vgaei, 6‘/3).

The mean curvature vectors of the horizontal and verticsfridutions are given re-
spectively by

ﬁﬁzi(

a=p+1

1 14 . 14 1 )
;zh%)ea, HV:z 5 hlotot Ci.

i=1

One can regard a distribution, such Hs as a section of the Grassmann bundle,
G(g, M™), of orientedg-planes in the tangent spaces &f’. The geometry of this
bundle was developed in [6]. We also view as a maps: M" — G(gq, M") where
£(x) is a unitg-vector with respect to the induced metric ¢f (M"), in particular

g(x) = e17+l(x) ARRRRAY 6,,(X)-

Note that we have chosen a local orthonormal basis; in [1d]vriations of unit vec-
tor fields are through unit vector fields and the variationsdistributions in [6] are
through unit g-vectors. The norm of the covariant derivatdf £ is given in terms of
the second fundamental forms ®f and V' by

(%) DIV =D () + D (hL).

a i,j,o i,

The energyof a distribution) was defined in [6] as
W) = 1/ Z |v...&|* dvol + = vol(M).
2 Ju e 2

The corrected energyf [5] is defined by

20)= [ (S 1%t17+ 0 2+ v

The main result of [5] is the following.

Theorem A. If V is integrable then

DV 2/ Cig dVol
V) MZ;‘

where ¢;, is the sectional curvature of the plane section spannedeby H and
ey € V.
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3. 3-Sasakian manifolds

By a contact manifoldwe mean a differentiable manifold/?**! together with a
1-form n such thatn A (dn)" # 0. It is well known that giver; there exists a unique
vector fieldg, such thatdn(¢, X) = 0 andn(g) = 1; ¢ is called thecharacteristic vector
field or Reeb vector fieldf the contact formy,.

A Riemannian metricg is an associated metridor a contact formp if, first of
all, n(X) = g(X, &) and secondly, there exists a field of endomorphigimsuch that
¢p?=—I1+n®& anddn(X, Y) = g(X, ¢Y). We refer to ¢, £, n, g) as acontact metric
structureand to M?**1 with such a structure as @ntact metric manifold

An almost contact structure(p, &, n), consists of a field of endomorphisngs a
vector fieldé and a 1-formpn such thatgp? = —I +n ® £ and n(¢) = 1 and analmost
contact metric structuréncludes a Riemannian metric satisfying the compatibition-
dition g(¢X, ¢Y) = g(X, Y) — n(X)n(Y).

The productM?* x R carries a natural almost complex structure defined by

d d

and the underlying almost contact structure is said tovdsenal if J is integrable. The
normality condition can be expressed &s= 0 whereN is defined by

N(X.Y) =[¢.o](X,Y) +2dn(X, Y)§,

[¢, ¢] being the Nijenhuis tensor af.

A Sasakian manifolds a normal contact metric manifold. In terms of the co-
variant derivative of¢ with respect to the Levi-Civita connection, the Sasakiandco
tion is

(Vx@)Y = g(X, Y)§ —n(Y)X.

As is well known, from this it is easily seen that
Vx§ = —¢X

and in turn that is a Killing vector field, i.e. the contact metric structusski-contact
It is also well known that on a K-contact manifold the sectibourvature of all plane
sections containing are equal to +1 (see e.g. [1], p.92).
A manifold admitting three almost contact structures,, €., n.), @ =1, 2, 3, sat-
isfying
¢y = ¢a¢ﬂ — N ® éa = _¢ﬂ¢o¢ + Ny ® é—ﬂ-
&y = Pubp = —@pEus My =Ne0Pp=—Np 0Py
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is said to have amlmost contacB-structure Kuo [13] showed that given such a struc-
ture there exists a Riemannian metgiacompatible with each of the three almost con-
tact structures giving us aalmost contact metri-structure (¢, &y, 174, £)- If €ach
of the three structures is Sasakian we have-%a8akian structuteA remarkable re-
sult of Kashiwada [11] is that if each of the three almost aohtmetric structures
(da> x» ma» €) IS @ contact metric structure, then the structure is a 28as structure.
There are many 3-Sasakian manifolds aside from the sph&fé including sever-
al homogeneous spaces; see e.g. [1] pp.218-220 or the swufveBoyer and
Galicki [3].

Using Vx&, = —¢. X one readily obtains on a 3-Sasakian manifold tiat §5] =
2¢,. Thus the distributior)’ determined by the tri-vectdf = &, A &g A&, is integrable
with totally geodesic leaves. The horizontal distributibhis defined byn, = 0, o =
1,23

We now state and prove the following theorem.

Theorem 1. The vertical distribution) on a compact3-Sasakian manifold is a
minima of the corrected enerd®()).

Proof. The proof will be the direct computations of both sid# the inequal-
ity in Theorem A showing that they are equal. We first show that mean curvature
vectors Hy, and Hy, vanish. This will follow immediately from the following copu-
tations:

hys = —8(Ve,ei, §5) = glei, Ve, 5p) = 8lei, —dpéa) = glei §,) =0,
h?i = _g(ve,-éfaa ei) = g((prxei’ ei) =0.

Thus by equation«) we have for the norm of the covariant derivative of the gttor
& defining V,

S IVeEl? =207 = > (Ve y)?
a i,j,a i,j,a

= Zg(_(baeia —Pue;) = Z4n =12.

On the other hand we have noted that on a Sasakian manifolbetional curva-
tures of plane sections containg the characteristic vefegt are equal to +1. Noting
this for each of the three Sasakian structures and the mbazeectorse;, we have
that eache;, = +1. Therefore

ZC,'O, =1

and we see that both sides of the inequality are equal totih?es the volume of the
manifold. O
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4. Complex contact manifolds

A complex contact manifold is a complex manifold of odd coexpdimension
2n + 1 together with an open coverin@(} by coordinate neighborhoods such that
1. On eachit, there is a holomorphic 1-forrd with 6 A (d6)" # 0.

2. OnUNU" # @ there is a non-vanishing holomorphic functighsuch thatt’ = f6.

The complex contact structure determines a non-integrdisigibution H by the
equationd = 0. A complex contact structure is given by a global 1-fornauifd only if
its first Chern class vanishes [2].

On the other hand leM be a Hermitian manifold with almost complex structure
J, Hermitian metricg and an open covering by coordinate neighborhof@ds M is
called acomplex almost contact metric manifoifdit satisfies the following two con-
ditions:

1. In eachl/ there exist 1-forms: and v = u o J, with dual vector fieldsU and
V =—JU and (11) tensor fieldsG and H = GJ such that

H?>=G’=—-I+u@U+vQV
GJ=-JG, GU=0, g(X,GY)=—-g(GX,Y).

2. OnUNnU #0@, we have

u =au —bv, VvV =bu+av

G'=aG —bH, H' =bG+aH

wherea and b are functions orid NU’ with a? +b? = 1.

Sinceu andv are dual to the vector feild&’ and V, we easily see from the sec-
ond condition that o/ NU’, U’ =alU —bV and V' = bU +aV. Also sincea®+b% =1,
U'AV' =UAV. ThusU andV determine a global vertical distribution by &€ = UAV
which is typically assumed to be integrable.

A complex contact manifold admits a complex almost contaetrim structure for
which the local contact forn® is u — iv to within a non-vanishing complex-valued
function multiple and the local tensor fields and H are related talu and dv by

du(X,Y)=g(X,GY)+ (o Av)(X,Y), dv(X,Y)=g(X,HY)— (o Au)(X,Y)

where o(X) = g(VxU, V), V being the Levi-Civita connection of (Ishihara and
Konishi [10], Foreman [7]). We refer to a complex contact rieemanifold with a
complex almost contact metric structure satisfying theseditions as acomplex con-
tact metric manifold

Ishihara and Konishi [8], [9] introduced a notion of normalfor complex contact
structures. Their notion is the vanishing of the two tenseld§ S and T given by

S(X,Y) =[G, GI(X, Y) +2g(X, GY)U — 2g(X, HY)V + 2w(Y)HX — v(X)HY)
+0(GY)HX — o(GX)HY +o(X)GHY — o(Y)GHX,
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T(X,Y)=[H, H(X,Y) — 2g(X, GY)U + 2g(X, HY)V +2u(Y)GX — u(X)GY)
+0(HX)GY — o(HY)GX +o(X)GHY — o(Y)GHX.

However this notion is too strong; among its implications tiet the underlying
Hermitian manifold (4, g) is Kahler. Thus while indeed one of the canonical exam-
ples of a complex contact manifold, the odd-dimensional gem projective space, is
normal in this sense, the complex Heisenberg group, is nofl2] B. Korkmaz gen-
eralized the notion of normality and we adopt her definitiamreh A complex contact
metric structure is said to beormal if

S(X,Y)=T(X,Y)=0, forevery X,Y eH,
S(U,X)=T(V,X)=0, forevery X.

Even though the definition appears to depend on the speciatenaf U and V, it
respects the change in overlagé,n /', and is therefore a global notion. With this
notion of normality both odd-dimensional complex projeetispace and the complex
Heisenberg group with their standard complex contact metructures are normal.

One important consequence of normality for us is that théisea curvature of a
plane section spanned by a vectorMinand a vector irf{ is equal to +1 (cf. Korkmaz
[12]). Another consequence of normality is that

(%%) VxU =—GX +o(X)V, VyV=—HX—o(X)U.

Theorem 2. If M is a compact normal complex contact metric manifaiden
the vertical distribution is a minima of the corrected engrge.

D) = /M > ciadvol

where ¢;, is the sectional curvature of the plane section spannedeby H and
ey € V.

Proof. As with Theorem 1, the proof will be the direct compiatas of both
sides of the inequality in Theorem A showing that they areaéqwe first note that
the integral submanifolds o¥ are totally geodesic. This follows readily from:«
and the factG and H annihilateU and V. Therefore all, vanish and in particu-

lar Ay = 0. Similarly
hi; =—g (Ve U,e;) =—g(—Gei +o(e;)V,e;) =0

and

hlz, =—g (Ve,. v, e,-) =—g(—He; —o(e))U,e;)=0
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which shows that the mean curvature veckby; vanishes.
Again by equation £) we have for the norm of the covariant derivative of the bi-
vector§ =U AV,

DAVaEl® =D ()7 = D [a(Va U e+ 8(Ve Vi e))]
a i,j.o i,j
= [2(Ger. e))* + g(Hei, e))?] = > [2(Gei, Ge;) + g(He;, He;)]
ij i

= 228(61', e;) = 8n.

On the other hand we have noted that on a normal complex d¢omteiric man-
ifold all sectional curvatures of plane sections spannedabyector in) and a vector
in H are equal to +1. Noting this for each 6f, V € V and the horizontal vectors;,
we have that each,, = +1. Therefore

ZC,'O[ =8n

and we see that both sides of the inequality in Theorem A aualelp 8 times the
volume of the manifold. U
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