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Abstract
We find some examples iR°(C) of surfaces satisfying Laplace equations. In par-
ticular, we study rational surfaces ®°(C) whose hyperplane sections have genus
one that satisfy a Laplace equation. Then we study mononuglidfiti systems of
cubics for variety of dimension three, i.e. we find all the momal examples of
three-folds satisfying Laplace equations.

Introduction

A k-dimensional varietyy whosed-osculating space at a general point has dimen-
sion (";d)—l—(S is said to satisfys independent Laplace equations of ordefnVe have
studied rational varieties satisfying Laplace equatiandwo papers ([4], [7]), i.e. we
have considered rational varieties whas¢h osculating space does not have the ex-
pected dimension at the generic point. We have linked thesd@ion of the osculating
spaces for a projection of a Veronese variety to the positifotine linear space from
which we project. We found both a lower bound and an upper @don the dimen-
sion of p. Finally in [4, 7] we have examined a famous example, by Hdtjli of a
smooth rational surface with elliptic hyperplane sectiamsP>(C), satisfying a single
Laplace equation. In [4] the approach is completely difiérend we use the so called
“Voie ouest” introduced by Ellia and Hirschowitz in [3]. Weake use of the Borel-
fixed point method.

Now we use a different point of view.

In [9] Togliatti studies the not ruled surfaces, of degressler equal than six of
P"(C), with r > 5, which represent one Laplace equation of order two. Fafigwhis
arguments, we consider another step: i.e. the researctedutiaces of higher degree
of P5(C), which represent one Laplace equation of order two. Inipder we study
the surfaces of degree more than six with elliptic hyperplaactions inP>(C), which
satisfy one Laplace equation of order two.

In the second section we study the three-folds, in particaianomial Togliatti
systems of cubics for variety of dimension three (for therdifin of Togliatti system
see later and for more details see [7]).

The content of the paper is the following one:
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In Section 1 we set some notations and recall some basic #bodst the oscu-
lating spaces to the Veronese varieties and about the Toglgstems. In Section 2
we study linearly 2-normal rational surfaces Bf(C) (for the definition of linearly
2-normal surface see later).

For instance, a smooth example is given considering theiditigtriangle ([4],
[7]). This is the unique example among the surfaces of degre@, that is linearly
2-normal and smooth iP>(C). Then we study the monomial rational 3-folds satis-
fying a Laplace equation of order two. We study all the moradngixamples with a
computer program. We conclude with a conjecture, gendmglithe above mentioned
Togliatti example.

1. Preliminaries

We use terminology and preliminaries of [7].

By variety we mean a projective integral scheme over the fidldomplex num-
bers embedded in some complex projective sgiceNe denote by, a variety of di-
mensionk. A linear space of dimension will be called ans-plane. At every smooth
point p of a variety V. C P*" we define the projective tangent space Woat p, de-
noted by T(V, p). The projective tangent space i@ at p is the k-plane containing
all tangent lines tov, at p.

Let Vi, be the quasi projective variety of smooth points of a varigtyThe va-
riety Tan(V) = Upevm T(V, p) is called the tangent variety tg.

Let V; C P" and letp be a general point of,. Let

X=X(t1, ..o 1) = X(1)
be a local parametrization df;, centered ap.

DEFINITION 1.1. The dth-osculating space td, at p is the subspace oP”
spanned byp and by all the derivative points of degree less than or equal of
a local parametrization oV, evaluated afp.

This definition does not depend on the parametrization. Weotde the dth-
osculating space t& at p by T9(V, p). Let V, C V be the quasi projective variety
of points whereT“(V, p) has maximal dimension. The variety

Tarf (V) = | J T4(V. p)

peVp

is called the variety ofith-osculating spaces tU.
Let Vi be ak dimensional variety. Let, = (*;*) — 1. Obviously

dim (T(V, p)) < min(n, k).
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If, for general p,
dimT(Vi, p) = ks = 9,

with d > 2, we say thatV, satisfiess Laplace equations of ordet.

Let I = (i1, ..., i) be a multindex, that is &-tuple of non negative integers. We
shall denote by7| the sum of the components &f i.e. |I| =ip+---+ip. If xq9,...,x¢
are variables, we shall denote by the monomial

XI:xil.....xli"’_
If x(t1, ..., 1) = (xa(te, ... s 2)s ..., xu(t1, . . ., 1)) IS @ vector function, we shall denote
by x; the partial derivative
< = 8'”5([1, cey lk)
ot - 91

Let V, be a variety which satisfie$ Laplace equations of ordef and let X,
..., 1) be any local parametrization df;. V, is locally given by the set of equations:

(1) > aAPx =0 h=1...8
0<|I|<d

We say thatV, represents the system of differential equations (1), or thas an
integral variety for it.

REMARK 1.2. Since, for genergp € Vg,
kg — 8 =dimTY(Vy, p) > dimT(Vi, p) =k
then
8 < ky—k.

If n < ky, thenV, C P" represents at leagt; — n Laplace equations of ordef.
These Laplace equations are called trivial.

We shall denote by, = |Op«(r)| the complete linear system of hypersurfaces
of degreer in P*. Its dimension isk,. By

U*(k, l"): ‘Ck.l ad ['k.r
we denote the dual Veronese map, defined by:

vi(k,r)(H)=rH
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The image ofv*(k, r), denoted byV*(k, r), is projectively equivalent, on the complex
field, to the usual Veronese varie¥(k, r).

A linear subspace C L, represents a linear system of hypersurfaces of degree
r. Among them we have the linear systems consisting of all gtk hypersurfaces of
type ¢ —d)H + D, where H is a fixed hyperplane an is a variable hypersurface of
degreed. We denote these linear systems by—{d)H + L 4. The following theorem
is well known:

Theorem 1.3.

TYV*(k,r),rH) = (r — d)H + L} 4.
Proof. See [7]. O
Corollary 1.4. For all d < r, we have

dimT4(V*(k, r), rH) = dimLy.4 = kq.

Corollary 1.4 is equivalent to the fact th@t*(k, r) does not satisfy any Laplace
equation of ordewl, for d < r.

It is very convenient to fix a homogeneus coordinate system®jnx, ...x;} and
a dual homogeneous coordinate systen. .. u;}. We associate to a linear system C
Ly, of hypersurfaces of degreeits apolar system, denoted (L) and defined as
follows: a hypersurface of equatiop (r!/1')a;x! = 0 and degree belongs toAp(L)
if and only if > (r!/1")a;b; = O for all hypersurfaced_(r!/1!)b;x! = 0 belonging toL.

Let p = (I'y, ..., I';) be a subspace of;, and let V;(k,r) be the projection of
V*(k,r), from p. Whenk andr are fixed we shall denot&, (k, r) by V, for simplic-
ity. Let Ap(p) = (Co, ..., Cr,——1). The rational map:

Liy——— Vi(k,r) CPY7Y
can be written in a suitable local coordinates system, inféflewing form:
X0y o vy Xk — fo(x), ey fk,__,_]_(x),

where f;(x) is a homogeneous equation f6¥.

DEFINITION 1.5. Letp C P* be ans-plane. We denote by, the projection of
a variety V C P to P*=~1 from p.

Lemma 1.6. Let p be ans-plane of P, let 7: P" ——— P"~*~1 be the projec-
tion from p and let P be a general point ofV. ThenT¢(V,, =(P)) is the projection
of T4(Vv, P), from p.
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Proof. See [7]. U

Corollary 1.7. Let V, C P" be a variety satisfying Laplace equations of order
d and letp C P"* be ans-plane intersecting the general-osculating space td&/ in a
space of dimensiod. ThenV, satisfiest +§ + 1 Laplace equations of orded.

For V = V*(k,r), linear spacep C L, can be identified with linear systems of
hypersurfaces of degree Then:

Proposition 1.8. V7 (k, r) satisfiesl+e Laplace equations of ordef, if and only
if the linear systenp satisfies the following conditiofk, d):

For the general hyperplanél C P*, p contains(l +¢) linearly independent hy-
persurfaces of the linear system

(r - d)H +Lra.
We definep a Togliatti system.

REMARK 1.9. LetV, C P" be a rational variety of dimensioh Then V, is ob-
tained by projecting a suitable Veronese variét§(k, r) from a linear subspace C
Ly, By Theorem 1.3, the conditiore (d) is equivalent to the fact thgb intersects
each osculating space ®*(k,r) in (1 +¢) independent points. Since every rational
variety is obtained by projecting a suitable Veronese tgrignen the problem to clas-
sify rational varieties which satisfy Laplace equationsaiivalent to the problem of
classifying linear spaces in special position with resgectarf (V*(k, r)).

Since we are interested in varieties satisfying 4 mon trivial Laplace equations
of orderd, we can always assume that:

2) dimp <k, —k; —1+e.

Theorem 1.10. Let p C L;, be as-plane satisfying the conditiofe, d). Then
dimp > k +e.

Proof. See [7]. U
In the following section we shall be mainly concerned witke tases wherd = 2

andk = 2.
There are two natural problems to consider.
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The first one is to find sharp bounds for the dimension of a attjlsystem for
given values ofk, r, d, €. For example ifr =3,d =2, ¢ =0, we have:

(*) k§dimp§k3—k2—1.

The second problem is to classify all possible Togliattiteys of given dimen-
sion, at least when the dimension is close to the bounds. \Weegr[7] that:
i) forr=3,d=2¢=0,if dimp =k, thenp=Q + L 1;
iy for r=3,d=2¢=0,k>2,ifdimp=k+1, thenp=(Q +L;1,C), whereC is
a cubic;
i) if r>4,d=2,¢=0, then dinp > k + 2.

We remark that all the ruled surfaces (also not developable) satisfy a Laplace
equation. In fact the ruled surfaces have parametric reptagonx; = a;(v) + ub;(v)
i=0,...,r).

REMARK 1.11. We remember that:

1) V;(2,r) satisfies one Laplace equation of order two if and only if foe gen-
eral line L C P? p contains one and only one hypersurface of the linear system
(r=2)L+Lop.

Let we consider a rational surfadé, not ruled, representing a Laplace equation,
belonging toP" with n > 5. It is a projection ofV(2,r), projection by a space of
dimensionp =N —n—1 onP", with N =r(r +3)/2. In the general pointA of V, the
second osculating space has dimension four.

If we consider the linear system of hyperplanesRSf containing T%(V,, A), ev-
ery hyperplane intersectg, in a curve having inA a triple point. If we consider the
linear system of plane curve§” that representd, we have, in the pointd’ e P?
corresponding ta4, a curve having inA” a triple point.

2) For the general poini’ e P? there exists a curve of degreehaving in A" a
triple point.

The two points of view are equivalent (see [10] for the proof)

2. Rational surfaces linearly 2-normal in P"

DEFINITION 2.1. A varietyV, C P" | is linearly 2-normal if and only if:
1) V, verifies a not trivial Laplace equation of order two.
2) Vi is not projection of a variety that satisfies a Laplace eguatif order two.

An interesting problem is to classify linearly 2-normalioaal surfaces. An exam-
ple is Togliatti triangle. In [9] Togliatti proves that this the unique example, among
the linearly 2-normal surfaces of degree6, to be smooth irP®.

Let S be a surface, lefD| be a complete linear system of curves &nand let
Py, ..., P, be points ofS. Then we will consider the sublinear systeinconsisting
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of divisors D e |D| which pass through the point8,, ..., P, and we denote it by
|D— Py —---— P.|. We say thatPy, ..., P, are the assigned base pointséof

We consider nowr : S — S the morphism obtained by blowing up, ..., P,
and letE,, ..., E. be the exceptional curves; then there is a natural one-goean-
respondence between the elements afn S and the elements of the complete linear
systemé’ = |[n*D—E;—---—E,| on S’ given byD —» n*D — E,—---— E,, because
the latter divisor is effective o8’ if and only if D passes througt®,, ..., P,.

The new linear systerd’ on S may or may not have base points. We call any
base point of§’, considered as an infinitely near point 8§f an unassigned base point
of §.

These definitions also make sense if some of fhehemselves are infinitely near
points of S, or if they are given with multiplicities greater than 1. fgr example, P,
is infinitely near P, (we say also that; and P, coincide), then forD € § we require
that D containsP,, and thatr*D — E; contain P,, wherer, is the blowing-up ofP;.
On the other hand, i, is given with multiplicity » > 1, then we require thab have
at least anr-fold point at P;, and in the definition ofs’, we taken*D — rEq, (for
more details see [6]).

Let |£| = £, = |O3(r)| be the system of all the curves of degreén P2

Let £Lo3(—PL—---— P,) be the linear system of plane cubic curves with assigned
(ordinary) base point#y, ..., P,, and assume that no three of tReare collinear, and
no six of them lie on a conic (i.e. the points are in genericitiwy. Let 7: X — P?
be the morphism obtained by blowing up,..., P.. For eachr = 0,1,...,6, we
obtain an embedding ok in P®" as a surface of degree-9r, hose canonical sheaf
wx is isomorphic toOx(—1).

A Del Pezzo surface is defined to be a surfateof degreed in P? such that
wx = Ox(—1). So the previous construction gives Del Pezzo surfacedegfeesd =
3,4,...,9.

A classical result states that every Del Pezzo surface iereibne given by the
previous construction for a suitable choice of poiftse P2, or the 2-uple embedding
of a quadric surface i3, which is a Del Pezzo surface of degree eightth

We remark:

The not ruled irreducible surfacds”, of degreen, with elliptic sections are ratio-
nal and are projections of theel Pezzo surfaces

We study this class of surfaces. First of all we examine theraled surfaces of
degree seven P> whose hyperplane sections have genus onB®imand which satisfy
one Laplace equation.

Theorem 2.2. Let V' be the image oP? in P°, under the embedding defined by
the linear systemM c L,3(—P — Q). If P and Q do not coincide the surface is not
ruled. It doesn't verify a Laplace equation
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Proof. LetV’ C P° be a surface of degree seven M whose hyperplane sec-
tions have genus one iR® and which satisfy one Laplace equation’ is the image
of P? in P> embedded by a subsystem of dimension fiveCgg(—P — Q). Let M be
this system.

P is a base point ofM; hence the lines foP are images of a pencil of conics,
let S be, of V7. Let A be a general point o’ 7. We considerT’?(V7’, A), it is a linear
subspace of dimension four and cutg in a curveL having in A a triple point. The
image onP? is a cubic with a triple point in the imagg’ of A. We have thaiCy, is
made by three lines containing’. Hence the cubic contains as a part the liRd’,
we haveC, = (P, A’Y + Ry, Where Ry is a conic throughA’. Hence the curvel
contains the conic of the pencll, I'4, that passes through. We consider the linear
system residual to the pendsl with respect to the system of hyperplane sections. Let
F be. Let F’ be the corresponding net of conics. For eathe P?, Ry € F'. But,

R4 is singular atA’, henceF’ is a net whose jacobian is not determined. Therefore
F’ is composed with a pencil, with base poi@t Hence through the general point of
the surface, we find a hyperplane section of degree six, mgdbarbe conics. Contra-
diction.

If P and Q coincide, the surface is ruled, because the image of the(lhel’)
in the surface is a line. O

We consider now the not ruled surfaces of degree ®3rwhose hyperplane sec-
tions have genus one iR and which satisfy one Laplace equation.

We have to consider two cases:
1) M cC Lo3(=P).
2) M C £2.4(—2P - 2Q)

Now we examine the first one.

Theorem 2.3. Let V8 be the image oP? in P®, under the embedding defined by
the linear systemM c L, 3(—P). It satisfies a Laplace equation

Proof. For the general’ € P?, C, is made by the line throug® and A’ and
a residual singular coni®, .. Ry € F' (by the previous theorem). We prove that
is composed with a pencil. There are two possibilities,ezith” consists of reducible
conics, because the systgR,| has dimension two, or the systefR4| has dimen-
sion one. Also in the second cage consists of reducible conics, because each pencil
in 7' contains two double lines. HencE' is composed with a pencil.

We have two possibilities: the base point of the penciPisthe base point of the
pencil is Q, different from P. If the base point of the pencil i®, as before, for the
general point of the surface, we find a hyperplane sectionegfet 6, contradiction.
If the base point of the pencil ig, different from P, we can find the suitable linear
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systemM. AssumingP = (1,0,0), O = (0, 1, 0), M has the following generators
3) X3, x2x3, X135, x5, f(x1, X2, x3), g(x1, X2, X3),

where f or g is smooth andf and g passes througl® and for other 8 points not on
the line (P, Q). The V2 corresponding to this linear system satisfies our condition
i.e. satisfies one Laplace equation and is not ruled becdestowest degree curves it
contains are conics. ]

Now let us consider the second case:

Theorem 2.4. Let V® be the image oP? in P°, under the embedding defined by
the linear systemM c L, 4(—2P — 2Q). It doesn't verify a Laplace equation

Proof. Suppose thaP and Q do not coincide.P is a double base point af1;
hence the lines for? are images of a pencil of conics, I6tbe. LetA be a general
point of V8, We considerr’?(V8, A), it is a P* and cutsV® in a curveL having in A
a triple point. The image of? is C4 = (P, A’) + R4.. HenceL contains the conic of
the pencilS, T4, that passes through. We consider the linear system linked to the
pencil S with respect to the system of hyperplane sections. Eebe. Let 7' be the
corresponding net of cubics=’ ¢ L£,3(—P — 2Q). For eachA’ € P?, Ry € F'. But,
R4 is singular atA’, henceF’ is a net of cubics whose jacobian is not determined.
Therefore, removed a possible fixed line, it is composed withencil, and the pencil
is a pencil of lines. The lingP, Q) is a fixed component off’, and the pencil is
the pencil of lines throughQ. Through the general point of the surface, we find a
hyperplane section of degree six. Contradiction.

If P and Q coincide we have a contradiction, because for the geneiat po
P? doesn't exist a curve having i@’ a triple point (i.e. cubic becomes curve). Let
us consider the blow-upr: P2 — P? of the planeP? at P. Let E be the excep-
tional divisor corresponding to the blown-up poiRt Consider a quarticC € M C
L24(—2P — 2Q). We consider the blow-up of the pla® at P. The strict transform
C has a double poinQ € E. We can consider the line passing throughP, with
the tangent direction given bg@. By Bezout theorem(,  is made by the ling P, A")
and a cubicR,. P must be a double point forR, and, by Bezout theorem again,
R4 contains the line through? and A’. Hence we haveC, = 2(P, A’) + 2r, contra-
diction. ]

We consider now the not ruled surfaces of degree ®3rwhose hyperplane sec-
tions have genus one iR° and which satisfy one Laplace equation.

Theorem 2.5. Let V° be the general projection of the general Del Pezzo surface
of degree nine inP°, corresponding to the choice of a general subsystemof £ 3
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of dimension fiveThen V? is linearly 2-normal

Proof. We can construct a general system without base piointyou can add
general. A linear systenM, without base points, is generated by the curves:

4) x3, x3, x1x3, x3xa, f(x1, X2, x3), g(x1, X2, X3),

where f is any smooth cubic not containing the point @01). HenceM is a system

without base points and the general member of the systéns smooth. In this case
the surface cannot be ruled, in fact the curves of minimalrekegre curves of de-
gree three. The surface verifies the Remark 1.11, hencdiestis Laplace equation of
order two. ]

These examples belong to the class of examples given in€k&mple 2, p.133).
For the discussion in [7], Section 4, this example is line&dnormal and there are no
other examples of this type in this class.

3. Thecasek=3,r =3,d =2, ¢ =0, the monomial examples

The first step in the project of classifying the linearly 2#mal rational 3-folds,
for r=3,d =2,¢ =0, is to consider the three-folds given by monomial equetio

Among Togliatti systems of cubics, one can consider thostegys obtained by
adding some cubics to a Togliatti system of lower dimensiahall call these systems
enlarged. The variety/, obtained by projecting the Veronese variety from an entarge
Togliatti systemp = (p’, Cy, ..., C,) can be obtained by projection of the variety
which already satisfies the same number of Laplace equatfonariety V, is called
linearly 2-normal if and only ifo is not enlarged (and does not intersect any tangent
space toV).

DEFINITION 3.1. A Togliatti system is calleadnonomialif it is spanned by hy-
persurfaces whose equation are monomial. The apolar systeanmonomial system
gives a monomial map.

DEFINITION 3.2. A map:
¢:C"—> P

is called monomialif there exists a subse¥ = {mq,...,m;} C Z.o x --- X Z5g
1 n
(n times) s.t.g(x) = (xX™, ..., x™) (Wherex™ = (xT’ ---x,:""), Vi=0,...,1).

It is easy to prove (see [8]) the following theorem:
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Theorem 3.3. Let¢: C" — P' be a monomial map and lef be the subset as-
sociated tog as in (3.2).

Then ¢(C") satisfiesk linearly independent Laplace equations of ordérf and
only if there existk linearly independent hypersurfaces of degwdn C" contain-
ing V.

REMARK 3.4. By 3.2 a monomial map satisfies a Laplace equation ofrddé
and only if the exponents of the monomial map lie on a quadric.

REMARK 3.5. Let¢: C*" — P’ be a monomial map. Let be the maximal
bounded convex polyhedron generated {byy, ..., m;} and let X, be the closure of
the image ofp(C"). X, is not singular if and only ifc is simple, (i.e. each vertex of
o is incident to exactly: edges) and at each vertex of o, {m® —m, ..., m® —m}
form a basis for the lattic€”, where {m®, ..., m} are the lattice points on the
edges incident tan and closest tam itself.

For more details see [8].

We remember that we are considering the chse 3, r = 3,d =2,¢ = 0. In
this case the results are summarized in the following tabhere we recall the results
according to the dimension qf (recall that, p.8, & dimp < 9).

i) If dim p =3, thenp must be equal ta@Q + A;.

i) If dim p =4, thenp is enlarged.

We have found all the monomial Togliatti systems with a cotapgprogram. This
gives only five projectively distinct, not enlarged, monameéxamples, for diny) = 5,
and fifteen for dimg) = 6. If dimp < 7 there is only one example of linearly 2-normal
smooth 3-fold. With the same notations of the first paragrdbl Togliatti system is
the following:

—/+3 .3 .3 .3
p = (x3,x3, X3, xJ, X1x2X3, X1X2X4, X1X3X4, XpX3X4) .
The Laplace equation is:

‘512/295151 + 522/20&52 + %'3?/295353 + 5152/295152 + 5153/29&53 + 52553/2052&3
— &10g, — &20;, — £30:, +0 =0,

where&; =x; /x4, Vi=1,2,3.

This example is smooth. The polyhedron, associated to oample is the trun-
cated tetrahedron, discussed in [8, p.15 (3)]. In [8] thew cassified all the poly-
hedra corresponding to monomial maps fr@h whose image is smooth and satisfies
one Laplace equation of order two.

It is easy to check that the truncated tetrahedron is the polyhedron which
can be isometrically embedded in the simplex with vertexe®,(), (3, 0, 0), (0, 3, 0),
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(0, 0, 3) and therefore it is the only smooth monomial example whiah be obtained
from V*(3, 3) for projection.

Conjecture. This example can be generalized for &Jl for r = 3,d = 2,¢ = 0,
and we can say that iflimp < (kzz) — 3 there is only an example of smooth projec-
tion in PKK*D-1 of v*(k, 3). It is projectively equivalent to the monomial map of the

truncated (k + 1)-hedron

This conjecture is interesting because it is the naturalegdization of the
Togliatti example, known as Togliatti triangle ([4], [7]).
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