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COMMUTING FAMILIES IN HECKE AND
TEMPERLEY-LIEB ALGEBRAS

TOM HALVERSON, MANUELA MAZZOCCO anD ARUN RAM

Abstract. We define analogs of the Jucys-Murphy elements for the affine
Temperley-Lieb algebra and give their explicit expansion in terms of the basis
of planar Brauer diagrams. These Jucys-Murphy elements are a family of
commuting elements in the affine Temperley-Lieb algebra, and we compute
their eigenvalues on the generic irreducible representations. We show that they
come from Jucys-Murphy elements in the affine Hecke algebra of type A, which
in turn come from the Casimir element of the quantum group U gl,,. We also
give the explicit specializations of these results to the finite Temperley-Lieb
algebra.

81. Introduction

The “Jucys-Murphy elements” are a family of commuting elements in
the group algebra of the symmetric group. In characteristic 0, these elements
have enough distinct eigenvalues to give a full analysis of the representation
theory of the symmetric group [OV]. Even in positive characteristic these
elements are powerful tools [K]. Similar elements are used in the Hecke
algebras of type A and, in a strong sense, it is these elements that control the
beautiful connections between the modular representation theory of Hecke
algebras of type A and the Fock space representations of the affine quantum
group (see [Ar] and [Gr]).

Since the Temperley-Lieb algebra is a quotient of the Hecke algebra of
type A it inherits a commuting family of elements from the Hecke algebra
(these elements can be viewed as the image, under a surjective homomor-
phism, of the commutative subalgebra in the Bernstein presentation of the
affine Hecke algebra). In order to use these elements for modular represen-
tation theory of the Temperley-Lieb algebra it is important to have good
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control of their expansion in terms of the standard basis of noncrossing di-
agrams. In this paper we study this question, in the more general setting
of the affine Temperley-Lieb algebras. Specifically, we analyze a convenient
choice of a commuting family of elements in the affine Temperley-Lieb al-
gebra. Our main result, Theorem 2.9, is an explicit expansion of these
elements in the standard basis. The fact that, in the Templerley-Lieb al-
gebra, these elements have integral coefficients is made explicit in Remark
2.10. The import of this result is that this commuting family can be used
to attack questions in modular representation theory.

In Section 3 we review the Schur-Weyl duality setup of Orellana and
Ram [OR] which (following the ideas in [Re]) explains how commuting fam-
ilies in centralizer algebras arise naturally from Casimir elements. We ex-
plain, in detail, the cases that lead to commuting families in the affine Hecke
algebras of type A and the affine Temperley-Lieb algebra. One new conse-
quence of our analysis is an explanation of the “special” relation that is used
in one of the Temperley-Lieb algebras of Graham and Lehrer [GL2]. In our
context, this relation appears naturally from the Schur-Weyl duality (see
Proposition 3.2). Using the knowledge of eigenvalues of Casimir elements
we compute the eigenvalues of the commuting families in the affine Hecke
algebra and in the affine Temperley-Lieb algebra in the generic irreducible
representations (analogues of the Specht, or Weyl, modules).

The representation theory of Temperley-Lieb algebras and affine
Temperley-Lieb algebras is ‘well understood’. In particular, in the paper
[GL1], the cell modules and the irreducible modules of the affine Temperley-
Lieb algebra are analyzed in detail and the eigenvalues of a commuting
family of ‘Murphy elements’ on these modules are determined. They show
([GL1, Thm. (9.6)]) that the representations of the affine Hecke algebra
which appear as affine Temperley-Lieb algebra representations are those
representations that correspond, under the Deligne-Langlands correspon-
dence [KL], to unipotent elements in GL,, with at most two Jordan blocks.
The commuting family of elements we use in this paper does not differ sig-
nificantly from those used in [GL1]. Our results provide an expansion of
these elements in terms of the basis of noncrossing diagrams and place the
representations studied in [GL1] into a Schur-Weyl duality context.
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82. Affine braid groups, Hecke and Temperley-Lieb algebras

2.1. The affine braid group B;
The affine braid group is the group By, of affine braids with & strands

(braids with a flagpole). The group B, is presented by generators 11,715, .. .,
Tr_1 and X°t,

1 i1

[TTR ] =
e=dI 1T

XN X9y =T X' T X!

T;

(2.1)

o) XOT, = T,X°", for i > 1,
T T = T T, H1<i<k-2

For 1 <4 < k define

(2.3) X =T, T g-- -y X Ty---T;
-y
¢ 6 4 6

[

By drawing pictures of the corresponding affine braids it is easy to check
that

(2.4) XOX% = XX, forl1<i,j<k,
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so that the elements X', ..., X%k are a commuting family for Bj. Thus
X = (X% |1 <i<k)is an abelian subgroup of Bi. The free abelian group
generated by e1,...,¢e; is ZF and

(2.5) X ={X*| A eZF} where X*=(X")M(X2)M2... (X)),
for A = A\jeg + -+ - + Mgy in ZF.

Remark 2.1. An alternate presentation of By can be given using the
generators Ty, T1,...,Tr_1 and 7 where

L@
T=X"0TT T = q _//%%X. and
qerrr”
TOZT_1T1T2<X:\\ .

Remark 2.2. The affine braid group B, is the affine braid group of type
GLj. The affine braid groups of type SL; and PGL; are the subgroup

l’;’Q = (Ty,T1,...,Tx—1) and the quotient Bp = respectively.

Lk
(k)
Then 7F = X~1X%2... X % is a central element of Bk, tTir ! = i+l
(where the indices are taken mod k), and

Z(By) = (%), Bp=(r)x Bg, Bp=(7)x Bg.

In Bj, we have (1) 2 Z, and 7 € Bp is defined to be the image of 7 under
the homomorphism Z — Z/kZ so that (7) = Z/kZ.

2.2. The Temperley-Lieb algebra TLj(n)

A Temperley-Lieb diagram on k dots is a graph with k& dots in the top
row, k dots in the bottom row, and k edges pairing the dots such that the
graph is planar (without edge crossings). For example,

DA w03 K
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are Temperley-Lieb diagrams on 7 dots. The composition dj o do of two
diagrams dy,ds € T} is the diagram obtained by placing d; above do and
identifying the bottom vertices of d; with the top dots of do removing any
connected components that live entirely in the middle row. If T} is the
set of Temperley-Lieb diagrams on k dots then the Temperley-Lieb algebra
TL(n) is the associative algebra with basis T},

TLy(n) = span{d € T},} with multiplication defined by dids = n’(d; o dy),

where ¢ is the number of blocks removed from the middle row when con-
structing the composition d; o do and n is a fixed element of the base ring.
For example, using the diagrams d; and ds above, we have

e
dydy = o/o’\o\o(\o:n.\/‘I.\.\_/./.
'\Y A I e & e ee
« « e
The algebra TLy(n) is presented by generators
i i+l

RS S D=4 S S R TITT!

and relations
(2.7) 622 =ne;, ejei+1e; =¢€;, and ee; =eje;, if|i—jl>1
(see [GHJ, Lemma 2.8.4]).

Remark 2.3. In the definition of the Temperley-Lieb algebra, and for
other algebras defined in this paper, the base ring could be any one of
several useful rings (e.g. C, C(q), C[[h]], Z[q,q7'], Z[n] or localizations of
these at special primes). The most useful approach is to view the results
of computations as valid over any ring R with n,q,h € R such that the
formulas make sense.

2.3. The surjection Hy(q) — TLy(n)
The affine Hecke algebra Hy, is the quotient of the group algebra of the
affine braid group CBy, by the relations

(2.8) T2 =(q—q¢ )T;+1, so that CB; — Hy

(3
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is a surjective homomorphism (g is a fixed element of the base ring). The
affine Hecke algebra Hj, is the affine Hecke algebra of type GLj. The affine
Hecke algebras of types SLi and PGLy are, respectively, the quotients ﬁQ
and Hp of the group algebras of l’;’Q and Bp (see Remark 2.2) by the relations
(2.8).

The Twahori-Hecke algebra is the subalgebra Hj, of Hj, generated by
T1,...,T;_1. In the Iwahori-Hecke algebra Hy, define

(2.9) e, =q—T;, fori=1,2,....k—1.

Direct calculations show that e? = (q+ q_l)ei and that ejese; = e; and
ege1eg = eg if and only if

(2.10) ¢ — Ty — Ty + qTh Ty + ¢TI Ty — TV TR Ty = 0.

Thus, setting n = [2] = g+¢ !, there are surjective algebra homomorphisms
given by

¥+ Hip(q) — Hi(q) — TLy(n)
(2.11) X — 1 — 1

T, — T, +— q—e;.

The kernel of 1 is generated by the element on the left hand side of equation
(2.10). In the notation of Theorem 4.1, the representations of Hy, correspond
to the case when pu = ). Writing ﬁ,;\/@ as ﬁ,ﬁ‘, the element from (2.10) acts
as 0 on the irreducible Iwahori-Hecke algebra modules ﬁgm and f[gﬂ , and

(up to a scalar multiple) it is a projection onto I:IE

Remark 2.4. There is an alternative surjective homomorphism that in-
stead sends T} — e; — ¢~ . This alternative surjection has kernel generated
by

g+ ¢ T +q T+ ¢ TV Ts + ¢ ' IoT + TN T

This element is 0 on ﬁg and ﬁ?E,F , and (up to a scalar multiple) it is a
projection onto HE™.

Remark 2.5. A priori, there are two different kinds of integrality for
the Temperley-Lieb algebra: coefficients in Z[n] or coefficients in Z[q, ¢~ ?]
(in terms of the basis of Temperley-Lieb diagrams). The relation between
these is as follows. If

1 1
2 =q+q ' =n then g=3(n+Vni-4), ¢'=30n-Vn-4)
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since ¢> —ng+ 1 =0. Then

k _k (k+1)/2
9 —4q 1 Z k k—2m+1/, 2 m—1
m=1

so that [k] is a polynomial in n. The polynomials

g —q*

nf=(q+q¢H* and {k}=¢"+¢* and [k] = pp—

all form bases of the ring C[(¢+¢~1)]. The transition matrix B between the
[k] and the {k} is triangular (with 1s on the diagonal) and the transition
matrix C between the n* and the {k} is also triangular (the non zero entries
are binomial coefficients). Hence, the transition matrix BC~! between [k]
and n* has integer entries and so [k] is, in fact, a polynomial in n with
integer coeflicients.

2.4. Affine Temperley-Lieb algebras

The affine Temperley-Lieb algebra T} is the diagram algebra generated
by

i

oL o= [T 1 0sizion,

R e

The generators of T}} satisfy 622 = ne;, e;ei116; = €, Te;T L = ei+1 (where
the indices are taken mod k) and

(see [GL2, 4.15(iv)]). In T¢, we let X = T, Ty - T, L 77! (see Remark
2.1).

(2.12)




132 T. HALVERSON, M. MAZZOCCO AND A. RAM

Graham and Lehrer [GL2, §4.3] define four slightly different affine
Temperley-Lieb algebras, the diagram algebra T} and the algebras defined
as follows:

Type GLy: ﬁz is ﬁk with the relation (2.10),
Type SLg: TLk is HQwith the relation (2.10),
Type PGLy: TLk is Hp with the relation (2.10).

For each invertible element « in the base ring there is a surjective homo-
morphism

H, — ﬁz — Iy

Ti — q—e — q—¢;

and every irreducible representation of TEZ factors through one of these
homomorphisms (see [GL2, Prop. 4.14(v)]). In Proposition 3.2 we shall
see that these homomorphisms arise naturally in the Schur-Weyl duality
setting.

Remark 2.6. Following [GL1, Cor. (5.11) and Thm. (6.1)], for any ir-
reducible T'1 Lk -module there is a constant x such that

(2.14) e1 X le; = zey.

In other words, the representation theory (at least the full information of the
cell modules, see [GL1, §6], and irreducible modules) is completely contained
in the algebras obtained by adding the relation (2.14) to TLk

2.5. A commuting family in the affine Temperley-Lieb algebra
View the elements X ~%¢ in the affine Temperley-Lieb algebra TLZ via
the surjective algebra homomorphism of (2.13). Define

(g—q Hmi=¢ X and

2.15 )
( ) (q _ q_l)mi — qz—2(X—6¢ _ q—2X—ei_1)7

for i = 2,3,...,k. Since X % X7% = X %X "% for all 1 <4,5 <k, and
the m; are linear combinations of the X %%,

m;m; = m;m; in TEZ, forall 1 <4,5 <k.
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PROPOSITION 2.7. For1<1i <k,
() X5 =g D (g—g ) (mi+q ' mii+q P mi g+ +¢ T my),
(b) X~ 4o+ X5 = 2 (g — g ) (my + [2myy + -+ + [i]ma).

Proof. Rewrite (2.15) as
X5 =q g — g mi+ g X
and use induction,
X~ =q (g —q my
+q7° (q—(¢—1—2)(q — ¢ H(mi—i+q ' mig + -+ q—(i—2)m1))7

to obtain the formula for X% in (a). Summing the formula in (a) over ¢
gives

7 7
Zrmﬁiﬂ“qw S
P =1
i J—1
—q " g—q" ¢y
7=14¢=0

and, thus, formula (b) follows from

7j—1 % %
D) ISRIINES ) SEEUES 3 s
=0

j=1r=1 r=1 j=r

:Z[z’—r+1]m

7j=1

a

The following Lemma is a transfer of the recursion X = T; 1 X%-1T; 4
to the m;. The following are the base cases of Lemma 2.8.

~1
my = q — X7 and mg=——
q—4q q—4q

€1 — (elml + mlel)
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LEMMA 2.8. Following Remark 2.6, assume that e X *te; = xey for
some constant x. For 2 <1i <k,

~
|
N

2z . .
L (eimimi—1+mi—1ei—1) — > ([i =] = [i —€—2])mee;—1.

~
I
-

Proof. From (2.3) and (2.9) we have X % = (¢~ ! —e; 1) X =-1(¢7! -
ei—1). Substituting this into the definition of m; gives
(g—q mi=q (X5 —q X =)
— g — e )X T (g — e) — ¢ X
= ¢ e X T e — ¢ (e X T 4 X e ).
Use Proposition 2.7 (a) to substitute for X %1,
(¢ —q ")mi
=(g—q g " Peiamiei — ¢ (eisimiy + mirei1))
+(@—a N T g e+ + 7 Tma) (%l — 20" Pein)
= (q— q_l)(qei—lmi—lei—l — (ei—1mi—1 + mi—lei—l))
+(@—g mia+ -+ Tm)(g+ ¢ - 20 e
_ _1, [ 9€i-1Mi—1€i—1 — (ei—1mi—1 +mj_1€;—1)
Sl < +(g—q Hmig+ -+ q_(i_3)m1)€z‘—1>7
which gives
(2.16) m; = qej—1mi—1€;—1 — (e;—1mji—1 + Mmi_1€i-1)
+ (=g mica+q ' mis +q P mig -+ g Tmy e

Using induction, substitute for the first m;_1 in this equation to get

i—2
m; = —(ei_1mi_1 +mi_1ei-1) + (¢ —q ") Z g U Imye; 4
=1
¢z i—3
+q 61— 2m;_oe;_1 — Z([Z —{— 1] — [Z —f— 3])’1’)1(6@'_1
q—q —
¢ 2z i—2
=———ei1— (ei—1mi—1 + mi—1ei-1) — Y ([i =€ = [i — £ —2])mye;_1.
11 =2
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2.6. Diagram representation of Murphy elements

Label the vertices from left to right in the top row of a diagram d € T}
with 1,2,...,k, and label the corresponding vertices in the bottom row with
1,2',... K. The cycle type of a diagram d € Ty, is the set partition 7(d) of
{1,2,...,k} obtained from d by setting 1 = 1,2 =2'... k. = k. If 7(d)
is a set partition of the form {{1,2,..., i}, {m + 1L, w1 +2,....m +~v+
24 oo+ -1+ 1, k}}, where (71, ...,7¢) is a composition of
k, then we simplify notation by writing 7(d) = (y1,...,7¢). For example

¢ 9 o o '\)
/ has  7(d) = (5,3,4).
e ¢ o ¢ o e ¢ o

There are diagrams whose cycle type cannot be written as a composition (for
_ &2 )
example d = oo has cycle type {{1,4},{2,3}}) but all of the diagrams

needed here have cycle types that are compositions.
If v =(v,...,7) is a composition of k define

(2.17) dy= > d

T(d)=y

as the sum of the Temperley-Lieb diagrams on k£ dots with cycle type ~.
Define d7 be the sum of diagrams obtained from the summands of d, by
wrapping the first edge in each row around the pole, with the orientation
coming from X! as shown in the examples below. When the first edge
in the top row connects to the first vertex in the bottom row only one new
diagram is produced, otherwise there are two. For example, in TL4,

O S R ST S B e B O
w=IS iz =g

_ [|ases . _ [lases  [lopas
dpp = Y d22_<¥ooo+(%n

View d, and d as elements of ﬁz by setting

dy =d,jk-i, if v is a composition of i with 7 < k.
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With this notation, expanding the first few m; in terms of diagrams gives

(g—q Dmi=q'di,  (¢—q ")me=ady—q 'ds,
(q—q ")yms = qudio — ¢ '[2)d} , — xds + ¢ d5,
(q— q_l)m4 =q !L“d12 24 ! 3 ] [1])d7 2 z[2]da2 + q‘1[2]d§,2

(
—qudig +q ' [2)d] 5 + wdy — g7,
(¢—q "yms = @xdys o — ¢ ([4] — 21)dis 5 — ¢Padiz 3 + ¢ ([3] = [1])d}2 5
+qudig — g ' [2d7 4 — qz2dig + g7 2P d] 50 + 2[2)da 3
—q '[2]d5 53— o([3] —[1 da2+q (3] - (1])d5 1 o
+x[2dz — g ' [2)d5, — xds + g,

where, as in Lemma 2.8, z is the constant defined by the equation
e1 X flep = xeq.

THEOREM 2.9. Following Remark 2.6, assume that e; X "*le; = xey for
some constant x. Then (¢ —q Y )my = ¢ 1d}, (¢ — ¢ V)me = 2dy — ¢~ 1d}
and, fori > 2,

mi= > (ma)ydy + (mi)ids,

compositions ~y

where the sum is over all compositions v = 1%1711%2p .- 1%y of i with
re > 1, and

b1
_ _ q- T
(mi)y = (1) TT(b; +2] - b)), and
q q 7>1

(mo) = (~D)P0 (1) = oy — 1) T[ (s +2) — b))

-4 i>1
with 0(y) =0+ by + -+ + by.

Proof. From our computations above, m; = Adj and mg = Bdy — Ads,
where

and B =

g ! qg—q
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Let m; = Adj. For ¢ > 2 the recursion in Lemma 2.8 gives

~
|
N

m; = qi_2Bei_1 — (ei_lmi_l + mi_lei_l) — ([Z — 6] — [Z — 0 — 2])mg€i_1

~
I
-

= qi—2Bd1i72,2 — ( Z ((mi_l)wlrdwlﬂq_l + (mi_l):lrd:/7r+l)>

y=y'r
—([i—1] = [i — 3)Adi» 5
i—2
+) (=== =2) ((me)yrdyri-a-ez + (Me)2rdls i o 0y)-
=2 5

So if d has cycle type v = 1%1711%2p5 - .- 1%y with r, > 0, then

(a) Each part of size r (r > 1) contributes (—1)"~! to the coefficient.
Thus, there is a total contribution of (—1)"1=¢() from these parts.

(b) Each inner 1° (b > 0) contributes a factor of [b+ 2] — [b] to the coeffi-
cient.

(c) The first 1° (b > 0) contributes a —¢"B in a nonstarred class,

(¢') The first 1° (b = 0) contributes a —B in a nonstarred class, which is
the same as case (¢) with b = 0.
(d) The first 1° (b > 0) contributes a ([b+ 1] — [b—1])A in a starred class.

(d') The first 1° (b = 0) contributes an A in a starred class, which is the
same as case (d) with b = 0 assuming [-1] = 0. [

Remark 2.10. To view my,...,my in the (nonaffine) Temperley-Lieb
algebra TLi(n) (via (2.11)) let X5t = 1 so that # = ¢+ ¢ 1. If by > 1
then di; = d and if by = 0 then d:'; = 2d,,. In both cases the coefficients in
Theorem 2.9 specialize to

(mi)y + (ma)5 = (=)D by 1) T (b +21 = (b))
b;>0,5>1

and

mi =Y ((mi)y + (ma)?)dy,

~
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where the sum is over compositions v = 16101029 - 1%, of 4 with 7, > 1.
The first few examples are

g g
my = — = — i, my = ez = da, m3 = [2]d12 — ds,
q—q q—q
myq = [3](11272 - [2]d272 — [2](1173 + d4,
ms = [4]dys 5 — [B]dy2 3 + [2]d14 — [2]°d1 22 + [2]d2z — (3] — [1])d2,1,2

+ [2]d3 2 — ds.

83. Schur functors

3.1. R-matrices and quantum Casimir elements

Let Upg be the Drinfeld-Jimbo quantum group corresponding to a finite
dimensional complex semisimple Lie algebra g. We shall use the notations
and conventions for Upg as in [LR] and [OR]. There is an invertible element
R = > a; ®b; in (a suitable completion of) Upg ® Upg such that, for two
Upg modules M and N, the map

. M ® N
Ryn: M®N — N®M _}
. . §

meen »—>me®alm NoM

is a Upg module isomorphism. In order to be consistent with the graphical
calculus these operators should be written on the right. The element R
satisfies “quasitriangularity relations” (see [LR, (2.1)—(2.3)]) which imply
that, for Upg modules M, N, P and a Upg module isomorphism 737: M —
M,

M@ N M® N

N TMLJ

(TM PN
NM N®M
Ry (dy ®@7a) = (Tn @ idn) Ry,
Mo (NeP) MN®P
gm0

(N®P) @ M {’(\;
NPM

Rynep = (Ryn ®idp)(idy @ Rusp)
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MNP
(M@;N)}@P L
> /
P (M®N
PRM®N

Ruen,p = (idy @Byp)(Ryp ® idy),
which, together, imply the braid relation

Gl 1l

PRINQM PRINQM
(Ryn ®idp)(idy ®Ryp) (Ryp @ iday)
= (idas ®RNP)(RMP ®idy)(idp ®RMN)-

Let p be such that (p,a;) = 1 for all simple roots «;. As explained
in [LR, (2.14)] and [Dr], there is a quantum Casimir element e~"Pu in the
center of Upg and, for a Upg module M we define a Upg module isomorphism

M
Cvy: M — 15\4 IOM
m +— (e”"Pu)m
M

and the elements C); satisfy
(3.1) Cugn = (RMNRNM)_l(CM ®Cyn), and Cj = q_<)">‘+2p> id s

if M is a Upg module generated by a highest weight vector v™ of weight A
(see [LR, Prop. 2.14] or [Dr, Prop. 3.2]). Note that (A\,A\+2p) = (A+p, A+
p) — (p, p) are the eigenvalues of the classical Casimir operator [Dx, 7.8.5].
From the relation (3.1) it follows that if M = L(u), N = L(v) are finite
dimensional irreducible Uy, g modules then Ry/nvRyu acts on the A isotypic
component L(A)@cfw of the decomposition

(3-2) L(u) ® L(v) = P LN®
A
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3.2. The B module M @ V&
Let U = Upg be a quantum group and let M and V be U-modules

such that the operators Ryrv, Ry and Ryyv are well defined. Define R;,
1<i<k—1,and R2 in Endy(M ® V®*) by

(k—i—1) and

R, = idy @1d2 Y @ Ryy @ 1dY
Rg = (RMVRVM) ® idg(k_l) .
Then the braid relations
}J /
. N ..
RiR;i11R; = % = ( =R 1 RiRi 1
¢

{

S/ }J / /
SR
Rémgm& ()= (8 =R] = e,

f(f&fg

imply that there is a well defined map

and

®: B, — Endy(M @ V&)
(3.3) T, — R;, 1<i<k-—1,
X — Rg,

which makes M ® V& into a right B, module. By (3.1) and the fact that
(3.4)

s \.l

the eigenvalues of ®(X*) are related to the eigenvalues of the Casimir. The
Schur functors are the functors

{U-modules} — {Bj-modules}

(3.5) M — Homy(M(\), M ® V®k)

where Homy (M ()\), M ® V®F) is the vector space of highest weight vectors
of weight A in M @ V®*,
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3.3. The quantum group Ugl,

Although the Lie algebra gl,, is reductive, not semisimple, all of the
general setup of Sections 3.1 and 3.2 can be applied without change. The
stmple roots are o; = €; — €541, 1 <i<n—1, and

(3.6) p= (n—1)51—|—(n—2)€2+---—|—5n_1.
The dominant integral weights of gl,, are
A=A e+ -+ Mep, Where Ay > Ay > - > A\, and A\, ..., A\, € Z,

and these index the simple finite dimensional Upgl,,-modules L(\). A par-
tition with < n rows is a dominant integral weight with A, > 0. If A,, <0
and A denotes the 1-dimensional “determinant” representation of Upgl,,
then (see [FH, §15.5])

(3.7) L) ZAM QLA+ (=X, =)
with A+ (=A,,...,—\,) a partition.

Identify each partition A with the configuration of boxes which has \;
boxes in row ¢. For example,

]
]
(3.8) A= = De1 + Deg + 363 + 364 + €5 + €¢.

If 4 and X are partitions with ;1 C A (as collections of boxes) then the skew
shape A/ is the collection of boxes of A that are not in u. For example, if

Ais as in (3.8) and
u
= @ then ANpu= [ .

If b is a box in position (i,7) of A the content of b is

0|1|2|3]4

10|12
(3.9)  ¢(b) = j — i = the diagonal number of b, so that [“2 1] ©

—3|-2[-1

—4
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are the contents of the boxes for the partition in (3.8).
If v is a partition and

(3.10) V=LO) then L)@V =P L
Aevt

where the sum is over all partitions A with < n rows that are obtained by
adding a box to v [Mac, I App. A (8.4) and I (5.16)], Hence, the Upgl,,-
module decompositions of

(3.11) ) @ Ve = @L N @ HYH, ke Ls,

are encoded by the graph H/F with

vertices on level k: {skew shapes A\/u with k boxes}

edges: A — v/, if v is obtained from A
(3.12) ,
by adding a box

labels on edges: content of the added box.

For example if ;= (3,3,3,2) = D, then the first 4 rows of H/* are
(3.13)

[/

/N

D”ED

//ﬁ@%@%*&\\

FFETFFUPIIP IR

The following result is well known (see [Ji] or [LR, (4.4)]).

Iy
N
|
—

PROPOSITION 3.1. If U = Ugl,, and V = L(e1) = L(n) is the n-
dimensional “standard” representation of gl,, then the map ® of (3.3) fac-
tors through the surjective homomorphism (2.8) to give a representation of
the affine Hecke algebra.
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For a skew shape \/p with k boxes identify paths from p to A/p in H/®
with standard tableauz of shape A/ by filling the boxes, successively, with
1,2,...,k as they appear. In the example graph H/E above

corresponds to the path D — I_F]J — L_‘_'J—> IZEHJ

2[3

3.4. The quantum group Upgl,

In the case when n = 2, U = Upgly and the partitions which appear in
(3.11) and in the graph H/# all have < 2 rows. For example if ;= (42) =
[ then the first few rows of H/* are

w

I

o
-~ ﬂ

1
k=1: L
4

!

2 1
(3.14) k=2: | m [ [
4 5 6

I__,_I_I_I_I

7

2
k=3: L
5

3

N
@i»—'

1

k=4 CoB [P o2 0

and this is the graph which describes the decompositions in (3.11).

PROPOSITION 3.2. If U = Uygly, M = L(u) where u is a partition of
m with < 2 rows, and V. = L(ey1) = L(o) is the 2-dimensional “standard”
representation of gly then the map ® of (3.3) factors through the surjective
homomorphism of (2.13) with o®> = —¢*™~! to give a representation of the
affine Temperley-Lieb algebra T} .

Proof. The proof that the kernel of ® contains the element (2.12) is
exactly as in the proof of [OR, Thm. 6.1(c)]: The element e; in 7% acts on
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V@2 as (¢4 q~') - pr where pr is the unique Up,g-invariant projection onto
LB) in V¥2, Using e;Ty = —¢ 'e; and the pictorial equalities

B

U

it follows that ®9(e; X171 X) acts as —(¢+ ¢ 1)g! 'RL(E),L(;L)RL(H),L(E)
(idz(u) ®pr). By (3.1), this is equal to
Cry ® CL(E))O_( )®L(E)<I>2(idL( ) ®e1)
=—q q—<u7u+2p>q (e1tez,e1teat2p) oy (1“+61+62) 2(id () ®er),
and the coefficient —g g~ Hr+20) ¢ <51+52751+52+2p>0_(u+8 +p) Simplifies to
gL o 20) g (erken e teat20)  (ukerten utertea+2p)
e e
where m = o1 + iz = |ul. 0

3.5. The quantum group Upysls

The restriction of an irreducible representation L(\) of Upgl,, to Upsl,
is irreducible and all irreducible representations of Upsl, are obtained in
this fashion. Since the “determinant” representation is trivial as an Upsl,
module it follows from (3.7) that the irreducible representations Ly, (A) of
Upsl, are indexed by partitions A = (Aq,...,\,) with A\, = 0. Hence, the
graph which describes the Upslo-module decompositions of

(3.15) 1) @ Ve = EBL N@TMH k€ Zso,

is exactly the same as the graph for Upgly except with all columns of length
2 removed from the partitions. More precisely, the decompositions are en-
coded by the graph T/r with

(3.16)

vertices on level k: {1 —po+k, 1 —po+k—2,..., 01 —p2 — kN Z>o

edges: {— £+ 1.
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For example if m =7 and p; — po = 3 then the first few rows of 7/# are

k=0: —

O
VAAVN

(3.17) k=2: 0 ) T

AV VN

k=3 O 04 -
VA VAN

k=4: 0 ™ o o

Paths in (3.17) correspond to paths in (3.14) which correspond to standard
tableaux T" of shape A/p.
84. Eigenvalues

4.1. Eigenvalues of the X in the affine Hecke algebra

Recall, from (2.8), that the affine Hecke algebra H,, is the quotient of
the group algebra of the affine braid group CBj by the relations

(4.1) T? = (¢ —q T+ 1.

2

As observed in Proposition 3.2 the map ® in (3.3) makes the module L(pu)®
V®k in (3.11) into an Hj module. Thus the vector spaces ﬁg‘/“ in (3.11)
are the Hi-modules given by

ﬁ;‘/“ — F)(L(p)), where Y are the Schur functors of (3.5).

The following theorem is well known (see, for example, [Ch]).

THEOREM 4.1.  (a) The X%, 1 < i < k, mutually commute in the
affine Hecke algebra Hy.
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(b) The eigenvalues of X% are given by the graph H/W of (3.13) in the
sense that if

H ,é“ = {skew shapes \/u with k boxes} and
ﬁ;‘/“ = {standard tableaux T' of shape \/u}

for N u € ﬁé”, then

ﬁ,ﬁ“ s an index set for the simple Hj, modules ﬁ,?/“

appearing in L(p) @ VOF,
and
FI;?/” has a basis {vr | T € FI;?/M} with X&vp = ¢ Ty,

where c¢(T'(i)) is the content of box i of T.

(¢) k= X°--. X% 4s a central element of ﬁk and
K acts on ﬁ,?/“ by the constant q2 2vex/u )

Proof. (a) is a restatement of (2.4). (b) Since the Hj, action and the
Upgl,, action commute on L(x) ® V& it follows that the decomposition in
(3.11) is a decomposition as (Upgl,, Hy) bimodules, where the ﬁ,i‘/” are
some Hyi-modules. Comparing the L(\) components on each side of

DLy e d " =L eV =L e Ve ey
A
= (PrLoyo i) ov
=D D e’

X Aw=0
~P(rve (P @)
A Mv=0
gives
(4.2) "= @ Al
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for any ¢ € Z>o and skew shape \/p with ¢ boxes. Iterate (4.2) (with
¢=Fk,k—1,...) to produce a decomposition

A T
Hk - @ Hl ’
Ter)"

where the summands H ;‘F are 1-dimensional vector spaces. This determines
a basis (unique up to multiplication of the basis vectors by constants) {vr |
T e fI,i‘/”} of ﬁ;‘/“ which respects the decompositions in (4.2) for 1 < ¢ < k.

Combining (3.1), (3.2) and (3.4) gives that X acts on the L(\) com-
ponent of the decomposition (3.10) by the constant

q()\,)\+2p> —(vv+2p)—(e1,61+2p) _ q2c()\/1/)

since if A = v+ ¢, so that A is the same as v except with an additional box
in row j, then v C A\, A\/v =[O and

(MA+2p) — (v,v +2p) — (e1,€1 + 2p)
=V +e,vt+ei+20) —(v,v+2p) —(1+2(n—1))
=2+ (gj,ej+2p) —2n+1=2v;+(1+2(n—j)) —2n+1
=2(v; +1) — 25 =2c(\/v).

Hence,
X&vp = ¢® Ty for 1 <i <k,

where T'(7) is the box containing ¢ in 7.

The remainder of the proof, including the simplicity of the Hj-modules
H}" s accomplished as in [R, Thm. 4.1].

(c) The element X¢! - .. X¢t is central in By, (it is a full twist) and hence
its image is central in Hj,. The constant describing its action on H 2‘ /M follows
from the formula X¢ivp = ¢2¢T@) g, [

4.2. Eigenvalues of the m; in T}

Let my,ms, ..., my be the commuting family in the affine Temperley-
Lieb algebra as defined in (2.15). We will use the results of Theorem 4.1 to
determine the eigenvalues of the m; in the (generically) irreducible repre-
sentations.

THEOREM 4.2.  (a) The elements m;, 1 < i < k, mutually commute
in Ty
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(b) The eigenvalues of the elements m; are given by the graph T/w of
(3.17) in the sense that if the set of vertices on level k is

Tk/u:{Nl—ﬂ2+/€7,u1—M2+k—2,~--,ul—Mz—k}mzzm and
T = {paths p = (u = p® — p — - = p® = X\/p) to A in T/H,

for M\ € Tk{“ then

Tk{“ is an index set for the simple T}, modules T,?/“
appearing in L(p) @ VEF,
and
T,:/” has a basis {vp | pETk)‘/M}
with
+pCD 41, if piD £1 = p(=2) = plO),
m;vp = P )
0, otherwise.
where p' is the partition (a single part in this case) on level i of the
path p.
() k=my+ [2Jmp_1+ -+ [klm1 is a central element of T and k acts
on T,:/” by the constant

g~ (path)—(p—p2)+1

q—q!
g (A = Ao+ 2]+ A = Ag 4] + o+ [ — o+ K]).

Proof. (a) The elements X commute with one another in the affine
Hecke algebra (see (2.4) and the m; are by definition linear combinations
of the X¢ (see 2.15), so they commute.

(b) Let p be a path to A/p in 7% and let T be the corresponding standard
tableau on 2 rows. If p(@ = p(i=1) — 1 = p(i=2) — 2 or If p(¥) = pli-D 4 1 =
p(=2) 4+ 2 then ¢(T(i — 1)) = ¢(T(i)) — 1 and, from (2.15) and Theorem
4.1(b),

o q—QC(T(i)) — q_2q_2C(T(i—l))
m;vr = ¢ = q_l oy

g 2@W) 22T
— -1 vr = 0.

q—4q
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If p) = p=2) = p(= _ 1 with TC-Y = (a,b) then ¢(T(i)) = a and
c¢(T'(i—1)) =b—2and

o2 — 22
miur = q = o
q—q
—(a+b+1) (,—(a—b+1) _ ,(a—b+1)
i 4 q q —
= | q—q! ):—q "la—b+1or,

where m = |u| = a+b—i+1. If p@ = p=2) = pl=D 11 with 70~V = (a,b)
then ¢(T(i — 1)) =a—1 and ¢(T(i)) =b— 1 and

g g
mivT =g 3 vr
q9—q
—(a+b+1) ((a—b+1) _ ,—(a—b+1)
i 4 q q —
=7 ( q—q! ):qm[a—b—i—l]vT,

where m = |u| =a+b—i+ 1.
(c) Let k = |A/u|. The identity

Ao—1
e Y gl < <Z A1+ Xo — 2i](q — q_l)) + [K]gH

beEN/ 11 i=p2
is best visible in an example: With A\ = (10,6) and x = (4, 2),

q16_2 0 40 40 40 +q78 +q710 g2 g4 4416 418
+0 40 +¢72 +¢* +¢ 8 +¢78

_ 040 40 40 +¢° +¢* +¢* +¢° +¢7% +q7*
40 40 +q¢'2 +q'0 +¢8 +4b

[ 0 40 +0 +0 +0 +0 +0 +0 +0 40
— 40 40 (¢"2—q71?) +(¢'°—q¢71%) +(¢®B—q78) +(¢f—q7F)

+( 040 40 40 ¢ +¢72 +¢° +¢* +¢* +q6)
+0 40 +¢7'2 ¢ +¢7% 447

6—1
— <Z q16—27, _ q—(16—27,)> + [10]q4—2+1'
i=2
Then Proposition 2.7 says

X4 X% = 2D (g — Y (my + [2mp_y + - + [K]ma),
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and so my, + [2]my_1 + - - - + [k]mq acts on T,?/“ by the constant

(q_q -1 k 2 Z q—2c q_q 1)—1q—(,u,1+,u2)q)\1+)\2—2 Z q—20(b)
bex/p beEN/ 1
A2—1
=(g—q ") g R [ [K]gh T £ Y A+ A = 2i(g—q )
i=p2
—m—p©® 41 A2—1
q p
zw]q_ql +§:q [m + k — 2i]
q—m p( )41 & .
=W+ " + 2+ Y 4+

since

[Ar]

[Ch]
[Dr]
[Dx]

[FH]

[GHJ]

[GL1]

[GL2

[Gr]

+ PO + k=21 + p + K)),

p1 4 pg =m, gy —p2 =pO, A+ Ay =m+kand Ay — Ay = p®). ]
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