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GALOIS SECTIONS IN ABSOLUTE ANABELIAN

GEOMETRY

SHINICHI MOCHIZUKI

Abstract. We show that isomorphisms between arithmetic fundamental groups
of hyperbolic curves over p-adic local fields preserve the decomposition groups
of all closed points (respectively, closed points arising from torsion points of
the underlying elliptic curve), whenever the hyperbolic curves in question are
isogenous to hyperbolic curves of genus zero defined over a number field (re-
spectively, are once-punctured elliptic curves [which are not necessarily defined
over a number field]). We also show that, under certain conditions, such iso-
morphisms preserve certain canonical “integral structures” at the cusps [i.e.,
points at infinity] of the hyperbolic curve.

Introduction

In this paper, we continue our study of the absolute anabelian geometry

of hyperbolic curves over p-adic local fields [i.e., finite extensions of the field

of p-adic numbers, for some prime number p], begun in [Mzk2], [Mzk3]. In

[Mzk3, Theorem 2.4], it was shown, as a consequence of the main theorem

of [Mzk1], that certain categories of finite étale correspondences associated

to a hyperbolic curve XK over a p-adic local field K may be recovered

from the profinite group structure of the étale fundamental group ΠXK
of

XK . In the present paper, we generalize this result to show [again as a

consequence of the main theorem of [Mzk1]] that certain categories of arbi-

trary dominant [i.e., not necessarily finite étale] correspondences associated

to XK may be recovered from the profinite group structure of ΠXK
[cf.

Theorem 2.3]. We then apply this result to study the extent to which the

decomposition groups associated to closed points of XK may be recovered

from the profinite group structure of ΠXK
[cf. Corollaries 2.5, 2.6, 3.2]. One

result that is representative of these techniques is the following special case

of Corollary 3.2:
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Theorem A. Let K be a finite extension of Qp; XK a hyperbolic

curve of genus zero over K which is, in fact, defined over a num-

ber field. Write ΠXK
for the étale fundamental group of XK . Then any

automorphism of the profinite group ΠXK
preserves the decomposition

groups ⊆ ΠXK
associated to the closed points of XK .

This result may be regarded as a sort of [very] weak version of the “Section

Conjecture” [cf., e.g., [Mzk1], Section 19 for more on the “Section Con-

jecture”]. Finally, in Section 4, we show, in the notation of Theorem A,

that various canonical auxiliary structures associated to the decomposition

groups of cusps of XK are also preserved by arbitrary automorphisms of

ΠXK
[cf. Corollary 4.11].

Acknowledgements. I would like to thank Akio Tamagawa for var-
ious useful comments, especially concerning the statement of Theorem A;
Corollaries 2.8, 3.2 and the proof of Lemma 4.6.

§0. Notations and conventions

Numbers:

If p is a prime number , then we shall denote by Qp the field of p-adic

numbers, i.e., the completion of the field of rational numbers Q with respect

to the p-adic valuation of Q. We shall refer to a field which is isomorphic

to a finite extension of Qp for some p as a local field . [In particular, in this

paper, all “local fields” are nonarchimedean.] A number field is defined to

be a finite extension of the field of rational numbers Q.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup.

Let us write

ZG(H)
def
= {g ∈ G | g · h = h · g, ∀h ∈ H}

for the centralizer of H in G;

NG(H)
def
= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G; and

CG(H)
def
= {g ∈ G | (g ·H · g−1) ∩H has finite index in H, g ·H · g−1}
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for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and

CG(H) are subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H). If H = CG(H), then we shall say that

H is commensurably terminal in G. Note that ZG(H), NG(H) are always

closed in G, while CG(H) is not necessarily closed in G.

If G1, G2 are Hausdorff topological groups, then an outer homomor-

phism G1 → G2 is defined to be an equivalence class of continuous ho-

momorphisms G1 → G2, where two such homomorphisms are considered

equivalent if they differ by composition with an inner automorphism of G2.

Categories:

Let C be a category . We shall denote the collections of objects and

arrows of C by

Ob(C); Arr(C)

respectively. If A ∈ Ob(C) is an object of C, then we shall denote by

CA

the category whose objects are morphisms B → A of C and whose mor-

phisms (from an object B1 → A to an object B2 → A) are A-morphisms

B1 → B2 in C.

We shall refer to a natural transformation between functors [from one

category to another] all of whose component morphisms are isomorphisms

as an isomorphism between the functors in question. A functor φ : C1 →
C2 between categories C1, C2 will be called rigid if φ has no nontrivial

automorphisms. A category C will be called slim if the natural functor

CA → C is rigid , for every A ∈ Ob(C).

Given two arrows fi : Ai → Bi (where i = 1, 2) in a category C, we

shall refer to a commutative diagram

A1
∼

−−−−→ A2yf1

yf2

B1
∼

−−−−→ B2

— where the horizontal arrows are isomorphisms in C — as an abstract

equivalence from f1 to f2. If there exists an abstract equivalence from f1 to

f2, then we shall say that f1, f2 are abstractly equivalent and write f1
abs
≈ f2.
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Let G be a profinite group. Then we recall that the category B(G) of

finite sets with continuous G-action and morphisms of G-sets is slim if and

only if ZG(H) = {1} for all open subgroups H ⊆ G.

Curves:

Suppose that g ≥ 0 is an integer . Then if S is a scheme, a family of

curves of genus g

X −→ S

is defined to be a smooth, proper, geometrically connected morphism of

schemes X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We

shall denote the moduli stack of r-pointed stable curves of genus g (where

we assume the points to be unordered) by Mg,r [cf. [DM], [Knud] for an

exposition of the theory of such curves; strictly speaking, [Knud] treats the

finite étale covering of Mg,r determined by ordering the marked points].

The open substack Mg,r ⊆ Mg,r of smooth curves will be referred to as the

moduli stack of smooth r-pointed stable curves of genus g or, alternatively,

as the moduli stack of hyperbolic curves of type (g, r). The divisor at infinity

Mg,r\Mg,r of Mg,r determines a log structure on Mg,r; denote the resulting

log stack by M
log
g,r .

A family of hyperbolic curves of type (g, r)

X −→ S

is defined to be a morphism which factors X ↪→ Y → S as the composite

of an open immersion X ↪→ Y onto the complement Y \D of a relative

divisor D ⊆ Y which is finite étale over S of relative degree r, and a family

Y → S of curves of genus g. One checks easily that, if S is normal , then

the pair (Y,D) is unique up to canonical isomorphism. (Indeed, when S is

the spectrum of a field, this fact is well-known from the elementary theory

of algebraic curves. Next, we consider an arbitrary connected normal S on

which a prime l is invertible (which, by Zariski localization, we may assume

without loss of generality). Denote by S ′ → S the finite étale covering

parametrizing orderings of the marked points and trivializations of the l-

torsion points of the Jacobian of Y . Note that S ′ → S is independent of the

choice of (Y,D), since (by the normality of S), S ′ may be constructed as the

normalization of S in the function field of S ′ (which is independent of the

choice of (Y,D) since the restriction of (Y,D) to the generic point of S has
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already been shown to be unique). Thus, the uniqueness of (Y,D) follows

by considering the classifying morphism (associated to (Y,D)) from S ′ to

the finite étale covering of (Mg,r)Z[ 1
l
] parametrizing orderings of the marked

points and trivializations of the l-torsion points of the Jacobian [since this

covering is well-known to be a scheme, for l sufficiently large].) We shall

refer to Y (respectively, D; D; D) as the compactification (respectively,

divisor at infinity ; divisor of cusps; divisor of marked points) of X. A

family of hyperbolic curves X → S is defined to be a morphism X → S

such that the restriction of this morphism to each connected component of

S is a family of hyperbolic curves of type (g, r) for some integers (g, r) as

above. If the divisor of cusps of a family of hyperbolic curves X → S forms

a split finite étale covering over S, then we shall say that this family of

hyperbolic curves is cuspidally split . A family of hyperbolic curves X → S

of type (0, 3) (respectively, (1, 1)) will be referred to as a tripod (respectively,

once-punctured elliptic curve).

If XK (respectively, YL) is a hyperbolic curve over a field K (respec-

tively, L), then we shall say that XK is isogenous to YL if there exists a

hyperbolic curve ZM over a field M together with finite étale morphisms

ZM → XK , ZM → YL.

§1. Brief review of anabelian geometry

LetK, L be local fields [cf. Section 0]; XK (respectively, YL) a hyperbolic

curve [cf. Section 0] over K (respectively, L). Any choice of basepoint for

XK determines, up to inner automorphism, the étale fundamental group

ΠXK

def
= π1(XK) of XK . Moreover, ΠXK

fits into a natural exact sequence

1 −→ ∆X −→ ΠXK
−→ GK −→ 1

where GK is the absolute Galois group of K; ∆X , which is often referred

to as the geometric fundamental group of XK , is defined so as to make the

sequence exact. Any choice of basepoint for YL determines a similar exact

sequence for YL.

Proposition 1.1. (First properties)

(i) ΠXK
is slim [cf. Section 0].

(ii) Every isomorphism of profinite groups α : ΠXK

∼
→ ΠYL

fits into a
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unique commutative diagram

ΠXK

α
−−−−→ ΠYLy

y

GK −−−−→ GL

where the vertical arrows are the surjections of the natural exact sequence(s)
discussed above; the horizontal arrows are isomorphisms.

Proof. Assertion (i) (respectively, (ii)) follows from [Mzk2, Lemma
1.3.1] (respectively, [Mzk2, Lemma 1.3.8]).

Theorem 1.2. (Anabelian theorem for hyperbolic curves over local
fields) The étale fundamental group functor determines a bijection between

the set of dominant morphisms of schemes

XK −→ YL

and the set of open outer homomorphisms φ : ΠXK
→ ΠYL

that fit into

a commutative diagram

ΠXK

φ
−−−−→ ΠYLy

y

GK −−−−→ GL

for which the induced morphism GK → GL is an open immersion [i.e., an

isomorphism onto an open subgroup of GL] which arises from an embedding

of fields L ↪→ K.

Proof. Recall that given a local field M , the topology of M may be
always be recovered solely from the field structure of M by observing that
the ring of integers OM ofM is additively generated by O×

M , and that O×
M ⊆

M is equal to the subgroup of elements of M× that are infinitely divisible by
powers of some prime number. In particular, the Qp-algebra structure of M
[for some suitable prime number p], as well as the prime number p itself [i.e.,
the unique prime number l such that OM is not infinitely divisible by powers
of l], may be recovered from the field structure of M . In a similar vein, given
a function field in one variable M ′ over M , consideration of the discrete
valuations on M ′ with trivial restriction to M reveals that the subfield
M ⊆ M ′ may be recovered — solely from the field structure of M ′ — as
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the subfield generated by the elements of (M ′)× that are infinitely divisible

by powers of some prime number. In light of these remarks, Theorem 1.2
follows formally from [Mzk1, Theorem A].

Next, let us write XK ↪→ XK for the compactification [cf. Section 0] of

XK . Let

x ∈ XK

be a closed point . Thus, x determines, up to conjugation by an element of

ΠXK
, a decomposition group:

Dx ⊆ ΠXK

We shall refer to a closed subgroup of ΠXK
which arises in this way as

a decomposition group of ΠXK
. If x is a cusp, then we shall refer to the

decomposition group Dx as cuspidal . Note that Dx always surjects onto an

open subgroup of GK . Moreover, the subgroup

Ix
def
= Dx ∩ ∆X

is isomorphic to Ẑ(1) [i.e., the profinite completion of Z, Tate twisted once]

(respectively, {1}) if x is (respectively, is not) a cusp. We shall refer to a

closed subgroup of ΠXK
which is equal to “Ix” for some cusp x as a cuspidal

geometric decomposition group.

Theorem 1.3. (Decomposition groups)
(i) (Determination of the point) The closed point x is completely deter-

mined by the conjugacy class of the closed subgroup Dx ⊆ ΠXK
. If x is a

cusp, then x is completely determined by the conjugacy class of the closed

subgroup Ix ⊆ ΠXK
.

(ii) (Commensurable terminality) The subgroup Dx is commensurably

terminal in ΠXK
. If x is a cusp, then Dx = CΠXK

(H) for any open

subgroup H ⊆ Ix.

(iii) (Absoluteness of cuspidal decomposition groups) Every isomor-

phism of profinite groups

α : ΠXK

∼
−→ ΠYL

preserves cuspidal decomposition groups and cuspidal geometric decomposi-

tion groups.

(iv) (Cuspidal and noncuspidal decomposition groups) No noncuspidal

decomposition group of ΠXK
is contained in a cuspidal decomposition group

of ΠXK
.



24 S. MOCHIZUKI

Proof. The first half of assertion (i) follows, for instance, formally from
[Mzk1, Theorem C]; the second half of assertion (i) follows from elemen-
tary facts about fundamental groups of topological surfaces. Assertion (ii)
follows formally from assertion (i) and the definition of a “decomposition
group”. Assertion (iii) follows from assertion (ii) and [Mzk2, Lemma 1.3.9].
As for assertion (iv), we may assume, by passing to a finite étale covering of
XK , that XK is of genus ≥ 2, so that XK is still hyperbolic. Then assertion
(iv) follows from assertion (i).

§2. Categories of dominant morphisms

Let XK be a hyperbolic curve over a field K. Write XK ↪→ XK for the

compactification of XK .

Definition 2.1.
(i) We shall refer to an open immersion

XK ↪−→ YK

as a partial compactification, or PC , for short, of XK if the natural open
immersion XK ↪→ XK factors as the composite of the given morphism
XK ↪→ YK with some open immersion YK ↪→ XK . By abuse of notation,
we shall also often speak of “YK” as a PC of XK .

(ii) If XK ↪→ YK is a PC such that YK is a hyperbolic curve, then we
shall say that XK ↪→ YK [or YK ] is a hyperbolic partial compactification, or
HPC, of XK .

(iii) If XK ↪→ YK is a PC such that the arrow “↪→” is an isomorphism,
then we shall say that XK ↪→ YK [or YK ] is a trivial partial compactification

of XK .

Now we define a “category of dominant localizations”

DLoc(XK)

associated to the hyperbolic curve XK as follows: The objects of this cate-

gory are the hyperbolic partial compactifications

Y ↪−→ Z

where Y is a hyperbolic curve over some field [which is necessarily a finite

separable extension ofK] that arises as a finite étale covering Y → XK . The



ABSOLUTENESS OF GALOIS SECTIONS 25

morphisms of this category from an object Y ↪→ Z to an object Y ′ ↪→ Z ′

are diagrams of the form
Y Y ′

y
y

Z −−−−→ Z ′

where the vertical morphisms are the given morphisms, and the horizontal

morphism is a dominant morphism of schemes. By abuse of notation, we

shall often simply refer to the horizontal arrow Z → Z ′ as being a morphism

of DLoc(XK).

Similarly, by stipulating that all schemes appearing in the definition

of the category DLoc(XK) given in the preceding paragraph be equipped

with K-structures [where we take the K-structure on XK to be the given

K-structure] and that all morphisms beK-morphisms, we obtain a category

DLocK(XK)

together with a natural faithful functor DLocK(XK) → DLoc(XK).

Remark 2.2.0. Thus, the category DLoc(XK) is reminiscent of the cat-
egory “Loc(XK)” of [Mzk3, Section 2]. Indeed, there is a natural faithful

functor

Loc(XK) −→ DLoc(XK)

whose essential image consists of the objects Y ↪→ Z which are trivial partial

compactifications and the dominant morphisms Z → Z ′ which are finite

étale. In particular, if we denote by Ét(XK) the category of finite étale

coverings of XK and morphisms over XK , then we have natural faithful

functors:
Ét(XK) −→ Loc(XK) −→ DLoc(XK)

Similarly, we have natural faithful functors: Ét(XK) → LocK(XK) →
DLocK(XK).

Proposition 2.2. (Slimness of the category of dominant localizations)
Suppose that K is a local field. Then the categories DLoc(XK), DLocK(XK)
are slim.

Proof. Indeed, by using the various copies of “Ét(Z)” [where, say,
Y ↪→ Z is an object of DLoc(XK)] lying inside DLoc(XK), DLocK(XK)
[cf. Remark 2.2.0], the slimness of the categories DLoc(XK), DLocK(XK)
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follows formally from Proposition 1.1, (i) [cf. also the discussion of slimness
in Section 0].

Next, let us consider the category DLocGK
(ΠXK

) defined as follows:

An object of this category is a surjection of profinite groups

H −� J

where H ⊆ ΠXK
is an open subgroup; J is the quotient of H by the

closed normal subgroup generated by some collection of cuspidal geometric

decomposition groups; and we assume that J is “hyperbolic”, in the sense

that the image of ∆X ∩H in J is nonabelian. Given two objects Hi � Ji,

where i = 1, 2, of this category, a morphism in this category is defined to

be a diagram of the form
H1 H2y

y

J1 −−−−→ J2

where the vertical morphisms are the given morphisms, and the horizon-

tal morphism is an open outer homomorphism that is compatible with the

various natural [open] outer homomorphisms from the Hi, Ji to GK .

Now we have the following analogue of [Mzk3, Theorem 2.4]:

Theorem 2.3. (Group-theoreticity of the category of dominant local-
izations) Let K, L be local fields; XK (respectively, YL) a hyperbolic

curve over K (respectively, L). Then:

(i) The étale fundamental group functor determines equivalences of

categories

DLocK(XK)
∼

−→ DLocGK
(ΠXK

); DLocL(YL)
∼

−→ DLocGL
(ΠYL

)

(ii) Every isomorphism of profinite groups

α : ΠXK

∼
−→ ΠYL

induces an equivalence of categories

DLocGK
(ΠXK

)
∼

−→ DLocGL
(ΠYL

)

hence also [by applying the equivalences of (i)] an equivalence of cate-

gories

DLocK(XK)
∼

−→ DLocL(YL)
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in a fashion that is functorial, up to unique isomorphisms of equivalences

of categories, with respect to α.

Proof. Indeed, assertion (i) follows formally from Theorem 1.2,
while assertion (ii) follows, in light of Proposition 1.1, (ii); Theorem 1.3,
(iii), formally from the definition of the categories “DLocGK

(ΠXK
)”,

“DLocGL
(ΠYL

)”. [Here, we note that the uniqueness of the isomorphisms
of equivalences of categories involved follows from Proposition 2.2.]

Next, let

Dx ⊆ ΠXK

be a decomposition group associated to some closed point x ∈ XK .

Definition 2.4. We shall say that x or Dx is of DLoc-type if Dx

admits an open subgroup that arises as the image via a morphism Z → XK

of DLocK(XK) of some cuspidal decomposition group of ΠZ .

Corollary 2.5. (Group-theoreticity of decomposition groups of DLoc-
type) In the notation of Theorem 2.3, the isomorphism

α : ΠXK

∼
−→ ΠYL

preserves the decomposition groups of DLoc-type.

Proof. This follows immediately from the definitions; Theorem 2.3 [and
its proof]; Theorem 1.3, (ii), (iii).

Corollary 2.6. (The case of once-punctured elliptic curves) In the

notation of Theorem 2.3, let us suppose further that XK , YL are once-

punctured elliptic curves. Then the isomorphism

α : ΠXK

∼
−→ ΠYL

preserves the decomposition groups of the “torsion closed points” — i.e.,

the closed points that arise from torsion points of the underlying elliptic

curve. Moreover, the resulting bijection between torsion closed points of XK ,

YL is compatible with the isomorphism on abelianizations of geometric

fundamental groups ∆ab
X

∼
→ ∆ab

Y — i.e., “Tate modules” — induced by α.
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Proof. Indeed, if n ≥ 1 is an integer, write

φ : ZK −→ XK

for the finite étale covering determined by “multiplication by n”. Note that
this covering may also be described more group-theoretically as the covering
associated to the open subgroup H ⊆ ΠXK

[which is easily verified to be
unique, up to conjugation in ΠXK

] such that: (i) H contains a cuspidal
decomposition group of ΠXK

; (ii) H ∩ ∆X is equal to the inverse image in
∆X of the subgroup n · ∆ab

X ⊆ ∆ab
X .

Observe that ZK admits XK as an HPC, by “filling in” all of the cusps
other than the “origin”. Thus, we obtain an open immersion

ψ : ZK ↪−→ XK

— i.e., an object of DLocK(XK), which exhibits the closed points of XK

that arise from n-torsion points of the underlying elliptic curve as closed

points of DLoc-type type. Thus, by transporting φ, ψ via the equivalences
of Theorem 2.3, (i), and applying Theorem 1.3, (ii), (iii) [as in the proof
of Corollary 2.5], we conclude that α preserves the decomposition groups
of the torsion closed points. Finally, the compatibility with the induced
morphism on Tate modules follows by considering the automorphisms of
ZK over [i.e., relative to φ] XK , after possibly enlarging K.

Definition 2.7. We shall say that a closed point x ∈ XK is algebraic

if, for some finite extension L of K, some hyperbolic curve YF over a number

field F ⊆ L, and some L-isomorphism XL
∼
→ YL [where XL

def
= XK ×K L,

YL
def
= YF ×F L], x lies under a closed point xL ∈ XL which maps to a closed

point of Y F under the composite XL
∼
→ Y L → Y F .

Remark 2.7.1. One verifies immediately that if a closed point x ∈ XK

is algebraic, then given any L′-isomorphism

XL′

∼
−→ Y ′

L′

[where XL′

def
= XK×KL

′; Y ′
L′

def
= Y ′

F ′×F ′L′; L′ is a finite extension of K; Y ′
F ′

is a hyperbolic curve over a number field F ′ ⊆ L′], it holds that any point

xL′ ∈ XL′ lying over x maps to a closed point of Y
′

F ′ under the composite

XL′

∼
→ Y

′

L′ → Y
′

F ′ .
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Corollary 2.8. (The case of genus zero) In the notation of Theorem

2.3, let us suppose further that XK (respectively, YL) is isogenous [cf.
Section 0] to a hyperbolic curve of genus zero. Then the isomorphism

α : ΠXK

∼
−→ ΠYL

preserves the decomposition groups of the algebraic closed points. In par-

ticular, XK is defined over a number field [or, equivalently : XK has at

least one algebraic point ] if and only if YL is.

Proof. By Theorem 1.3, (ii), and [the “LocK(−) portion” — already
contained in [Mzk3, Theorem 2.4] — of] Theorem 2.3, (ii), one reduces
immediately to the case where both XK and YL are of genus zero. Also, by
Theorem 1.3, (ii), we may always enlarge K, L without loss of generality;
in particular, we may assume that XK , YL are cuspidally split , so that both
curves admit a [cuspidally split] tripod as an HPC. Then we argue as in
the proof of Corollary 2.6: That is to say, given any algebraic x ∈ XK , we
observe that [after possibly enlarging K] there exists, by the definition of
“algebraic” and the famous main result of [Belyi], a “Belyi map”

β : XK −→ XK

that maps x, as well as all of the cusps of XK , to cusps of XK , and,
moreover, is unramified over the open subscheme of XK determined by
the tripod that forms an HPC for XK . In particular, β is unramified over
the open subscheme XK ⊆ XK . Put another way, there exists an open

immersion φ : ZK ↪→ XK [i.e., an HPC] such that the composite β ◦ φ
factors through XK ⊆ XK in such a way that the resulting morphism
βZ : ZK → XK is finite étale. In particular, βZ exhibits φ as an object of
DLocK(XK), and so φ exhibits x as a closed point of DLoc-type. Thus, by
transporting φ, βZ via the equivalences of Theorem 2.3, (i), and applying
Theorem 1.3, (ii), (iii) [as in the proof of Corollary 2.5], we conclude that α
preserves the decomposition groups of algebraic closed points, as desired.

Remark 2.8.1. In fact, tracing through the proofs of Corollaries 2.6,
2.8 shows that in these proofs, we did not actually need to use the full
“Hom” version of Theorem 1.2. That is to say, for these proofs, in fact
the “isomorphism version” of Theorem 1.2 [i.e., the bijection between iso-

morphisms “XK
∼
→ YL” and certain isomorphisms “ΠXK

∼
→ ΠYL

”], applied
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in combination with Theorem 1.3, (iii), is sufficient . Indeed, if we use the
natural faithful functor discussed in Remark 2.2.0 to think of LocK(XK) as
a [not necessarily full!] subcategory of DLocK(XK), then let us denote by

Arr(LocK(XK)) ⊆ OFLocK(XK) ⊆ Arr(DLocK(XK))

the collection of arrows Z → Z ′ of DLocK(XK) which factor as the com-
posite of an arrow Z → Z ′′ [of DLocK(XK)] which is an open immersion

[i.e., an HPC] with an arrow Z ′′ → Z ′ [of DLocK(XK)] which is finite étale.
We shall refer to the arrows of OFLocK(XK) as arrows of OF-type [i.e.,
“open immersion + finite étale” type]. Similarly, we define

OFLocK(ΠXK
) ⊆ Arr(DLocGK

(ΠXK
))

to be the collection of arrows J1 → J2 of DLocGK
(ΠXK

) that factor as the
composite of a surjection J1 � J3 [in DLocGK

(ΠXK
)] whose kernel is nor-

mally topologically generated by some collection of cuspidal geometric de-
composition groups, with an open immersion J3 ↪→ J2 [in DLocGK

(ΠXK
)].

Then [cf. Theorem 2.3, (ii), and its proof] we obtain an equivalence of cat-

egories

DLocGK
(ΠXK

)
∼

−→ DLocGL
(ΠYL

)

whose induced map on “Arr(−)’s” maps OFLocK(ΠXK
) into OFLocL(ΠYL

)
by applying Proposition 1.1, (ii); Theorem 1.3, (iii) [i.e., without using The-
orem 1.2 at all !]. Moreover, the isomorphism portion of Theorem 1.2 implies
that the étale fundamental group functor induces a natural commutative
diagram

OFLocK(XK) ⊆ Arr(DLocK(XK))
y

y

OFLocK(ΠXK
) ⊆ Arr(DLocGK

(ΠXK
))

such that the vertical arrow on the left is “essentially surjective” — i.e.,
more precisely: induces a bijection on abstract equivalence [cf. Section 0]
classes [defined relative to the category structures of DLocK(XK),
DLocGK

(ΠXK
)] lying in OFLocK(XK), OFLocK(ΠXK

). Since the proofs
of Corollaries 2.6, 2.8 only make use of arrows of OF-type, the bijection
of abstract equivalence classes just observed, together with the equivalence
DLocGK

(ΠXK
)

∼
→ DLocGL

(ΠYL
) — all of which involves only the isomor-

phism portion of Theorem 1.2 — are sufficient for the proofs of these cate-
gories, as claimed.
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§3. Limits of Galois sections

Let XK be a hyperbolic curve over a local field K. As in Sections 1, 2,

we have an exact sequence:

1 −→ ∆X −→ ΠXK
−→ GK −→ 1

Since ∆X is topologically finitely generated , it follows that there exists a

sequence of characteristic open subgroups

· · · ⊆ ∆X [j + 1] ⊆ ∆X [j] ⊆ · · · ⊆ ∆X

[where j ranges over the positive integers] of ∆X such that
⋂

j ∆X [j] = {1}.
In particular, given any section

σ : GK −→ ΠXK

we obtain open subgroups

ΠXK [j,σ]
def
= Im(σ) · ∆X [j] ⊆ ΠXK

[where Im(σ) denotes the image of σ in ΠXK
] corresponding to a tower of

finite étale coverings

· · · −→ XK [j + 1, σ] −→ XK [j, σ] −→ · · · −→ XK

of XK by hyperbolic curves over K.

The following lemma is reminiscent of the techniques of [Tama], [Mzk1]:

Lemma 3.1. (Criterion for Galois sections associated to rational points)
Suppose that XK is defined over a number field, i.e., there exists a hy-

perbolic curve XK over a number field F ⊆ K such that XK = XF ×F K.

Let σ : GK → ΠXK
be a section such that Im(σ) is not contained in any

cuspidal decomposition group of ΠXK
. Then the following conditions on σ

are equivalent :

(i) σ arises from a point x ∈ XK(K) [i.e., “Im(σ) = Dx”].

(ii) For every integer j ≥ 1, XK [j, σ](K) 6= ∅.

(iii) For every integer j ≥ 1, XK [j, σ](K)alg 6= ∅ [where the superscript

“alg” denotes the subset of algebraic [K-rational ] closed points].

(iv) For every integer j ≥ 1, ΠXK [j,σ] contains a decomposition group

[i.e., relative to ΠXK
] of an algebraic closed point of XK that surjects

onto GK .
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Proof. (i) =⇒ (ii): It follows from the definitions that x ∈ XK(K) lifts
to a point of ∈ XK [j, σ](K), for all j ≥ 1, which implies (ii).

(iii) =⇒ (ii), (iv); (iv) =⇒ (iii): Immediate from the definitions.
(ii) =⇒ (i): For j ≥ 1, choose points xj ∈ XK [j, σ](K). Since the

topological space ∏

j≥1

XK [j, σ](K)

is compact , it follows that there exists some infinite set of positive integers

J ′ such that for any j ≥ 1, the images of the xj′ , where j′ ≥ j, in

XK [j, σ](K)

converge to a point yj ∈ XK [j, σ](K). Moreover, note that, by the defini-

tion of yj, it follows that if j1 > j2, then yj1 maps to yj2 in XK [j2, σ](K).
In particular, if we write y ∈ XK(K) for the image of the yj in XK(K),
then it follows formally from the fact that the yj form a compatible sequence

of points of the sets XK [j, σ](K) that Im(σ) is contained in the decompo-
sition group [well-defined up to conjugation] Dy. On the other hand, by
our assumption that Im(σ) is not contained in any cuspidal decomposition
group of ΠXK

, we conclude that y is not a cusp, hence that “Im(σ) = Dy”,
as desired.

(ii) =⇒ (iii): Given a point xj ∈ XK [j, σ](K) with image x ∈ XK(K) =
XF (K), it follows from “Krasner’s lemma” [cf., e.g., [Kobl, pp. 69–70]] that
one may approximate x by a point x′ ∈ XF (F ′) ⊆ XF (K) = XK(K), where
F ′ ⊆ K is a finite extension of F , which is sufficiently close to x that [just
like x] it lifts to a point x′j ∈ XK [j, σ](K), which is necessarily algebraic, as
desired.

Corollary 3.2. (Absoluteness of decomposition groups for genus zero)
Let K, L be local fields; XK (respectively, YL) a hyperbolic curve over

K (respectively, L), which is, in fact, defined over a number field. Sup-

pose, moreover, that XK (respectively, YL) is isogenous [cf. Section 0] to

a hyperbolic curve of genus zero. Then every isomorphism of profinite

groups

α : ΠXK

∼
−→ ΠYL

preserves the decomposition groups of the closed points.

Proof. Indeed, Corollary 3.2 follows formally from Corollary 2.8; The-
orem 1.3, (iii), (iv); and the equivalence (i) ⇐⇒ (iv) of Lemma 3.1.
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Remark 3.2.1. Since any once-punctured elliptic curve is isogenous to
a hyperbolic curve of genus zero, one might think, at first glance, that
Corollary 2.6 is [essentially] a “special case” of Corollary 3.2. In fact, how-
ever, this is false, since Corollary 2.6 applies even to curves which are not

necessarily defined over a number field .

§4. Discrete and integral structures at cusps

Let XK be a hyperbolic curve over a local field K; write XK ↪→ XK

for the compactification of XK . Also, if p is the residue characteristic of K,

then we shall write Ẑ′ def
= Ẑ/Zp. Let

Dx ⊆ ΠXK

be a decomposition group associated to some cusp x ∈ XK(K). Then we

have an exact sequence

1 −→ Ix (∼= Ẑ(1)) −→ Dx −→ GK −→ 1

whose splittings form a torsor over

H1(GK , Ẑ(1)) ∼= (K×)∧

[where the “∧” denotes the profinite completion]. If ωx denotes the cotan-

gent space to XK at x, then any choice of a nonzero θ ∈ ωx determines a

splitting of this torsor by considering the Ẑ(1)-torsor over the formal com-

pletion (XK)x [i.e., of XK at x] given by taking N -th roots [as N ranges

over the positive integers] of any local coordinate t ∈ mXK ,x such that

dt|x = θ. In particular, if the pointed stable curve associated to XK has

stable reduction over OK , then the cotangent module to this stable reduc-

tion at the OK-valued point determined by x determines a natural integral

structure on ωx [i.e., a rank one free OK -submodule of the one-dimensional

K-vector space ωx]. In particular, this integral structure determines a re-

duction of the structure group of the torsor of splittings considered above

from (K×)∧ to O×
K .

Definition 4.1.
(i) If (K×)∧ → A is a continuous homomorphism of topological groups,

then the torsor obtained from the torsor of splittings considered above by
changing the structure group via this homomorphism will be referred to
as the A-torsor at x. If, moreover, B ⊆ A is a closed subgroup, then any
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reduction of the structure group of the A-torsor at x from A to B will be
referred to as a B-torsor structure at x.

(ii) A O×
K - (respectively, K×-) torsor structure on the (K×)∧-torsor at

x will be referred to as a(n) integral (respectively, discrete) structure on the
cuspidal decomposition group Dx. Let us think of (K×)∧⊗ Ẑ′ as a quotient
of (K×)∧; write (O×

K)′, (K×)′ for the images of O×
K , K×, respectively, in

(K×)∧ ⊗ Ẑ′. Then a (O×
K)′- (respectively, (K×)′-) torsor structure on the

(K×)∧⊗Ẑ′-torsor at x will be referred to as a(n) tame integral (respectively,
tame discrete) structure on the cuspidal decomposition group Dx.

(iii) If XK has stable reduction over OK (respectively, XK is arbitrary),
then the particular integral (respectively, discrete) structure on Dx arising
[as discussed above] from a generator of the rank one free OK -submodule
of ωx determined by the stable reduction of XK (respectively, any nonzero
element of ωx) will be referred to as the canonical integral (respectively,
discrete) structure on the cuspidal decomposition group Dx. The canonical
integral (respectively, discrete) structure on Dx induces a tame integral
(respectively, tame discrete) structure on Dx which we shall also refer to as
canonical .

(iv) An arbitrary closed point x′ of XK will be referred to as absolute

if, for every YL, α as in Theorem 2.3, there exists a closed point y ′ of Y L

such that α(Dx′) = Dy′ . A nonconstant unit U ∈ Γ(XK ,O
×
XK

) on XK

will be called coabsolute if XK admits an absolute point at which U is
invertible. The hyperbolic curve XK will be called coabsolute if it admits a
coabsolute unit. The hyperbolic curve XK will be called quasi-coabsolute if
it is isogenous to a coabsolute hyperbolic curve. If XK has stable reduction

over OK (respectively, XK is arbitrary), then the cusp x will be called
integrally absolute (respectively, discretely absolute) if, for every YL, α as
in Theorem 2.3, the isomorphism Dx

∼
→ Dy [where y is a cusp of YL — cf.

Theorem 1.3, (iii)] induced by α is compatible with the canonical integral
(respectively, discrete) structures on Dx, Dy. Similarly, one has a notion of
tamely integrally absolute and tamely discretely absolute cusps.

(v) The cusp x will be called subprincipal if it is contained in the
support of a cuspidal principal divisor on [i.e., principal divisor supported
in the cusps of] XK . The hyperbolic curve XK will be called subprincipally

ample if every cusp of XK is subprincipal. The hyperbolic curve XK will
be called subprincipally quasi-ample if it is isogenous to a subprincipally
ample hyperbolic curve.
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Remark 4.1.1. By Theorem 1.3, (iii), cusps are always absolute. By
Corollaries 2.6, 3.2, once-punctured elliptic curves, as well as hyperbolic
curves that are isogenous to a hyperbolic curve of genus zero which is defined
over a number field, have infinitely many absolute points.

Next, let us write

L
def
= OXK

(x)

for the line bundle determined by the cusp x;

L −→ XK

for the geometric line bundle determined by L; and

(L ⊇) L× −→ XK

for the complement of the zero section in L. Thus, the natural inclusion

OXK
↪→ OXK

(x) determines a section

XK −→ L

whose restriction to XK determines a section XK → L×, hence a morphism

of fundamental groups:

ΠXK
−→ ΠL×

def
= π1(L

×)

Lemma 4.2. (The line bundle associated to a cusp) Suppose that XK

is of type (g, r), where g ≥ 2, r = 1. Then:

(i) ΠL× fits into a short exact sequence:

1 −→ Ẑ(1) −→ ΠL× −→ ΠXK
−→ 1

Moreover, the resulting extension class ∈ H2(ΠXK
, Ẑ(1)) is the first Chern

class of the line bundle L.

(ii) The morphism of fundamental groups ΠXK
→ ΠL× induces an iso-

morphism Ix
∼
→ Ker(ΠL× → ΠXK

). In particular, the morphism ΠXK
→

ΠL× is surjective.

(iii) Write ∆X/X
def
= Ker(ΠXK

� ΠXK
). Then the quotient of ∆X/X

by

Ker(ΠXK
→ ΠL×) ⊆ ∆X/X

is the maximal quotient of ∆X/X on which the conjugation action by ∆X

is trivial.
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Proof. Assertion (i) follows from [Mzk4, Lemmas 4.3, 4.4, 4.5]. As-
sertion (ii) is immediate from the discussion preceding Definition 4.1 in-

volving roots of local coordinates. As for assertion (iii), write Q1
def
=

∆X/X/Ker(ΠXK
→ ΠL×); Q2 for the maximal quotient of ∆X/X on which

the conjugation action by ∆X is trivial . Thus, we have a natural surjection
Q2 � Q1. Now assertion (iii) follows from assertion (ii) and the well-known
fact that ∆X/X is topologically generated by the ∆X -conjugates of Ix.

Next, let us recall the notation of [Mzk2, Section 1.2]: By local class

field theory , we have a natural isomorphism

(K×)∧
∼
−→ Gab

K

which we may use to think of the group of roots of unity of (K×)∧ as a

subgroup:

µQ/Z(K) ⊆ Gab
K

Also, we recall [cf. [Mzk2, Proposition 1.2.1, (iv)]] that the subgroup K× ⊆
(K×)∧

∼
→ GK may be recovered group-theoretically from the profinite group

structure of GK . Allowing “K” to vary among the various finite extensions

of a given K inside an algebraic closure K of K, we obtain groups:

µQ/Z(K); µbZ
(K)

def
= Hom(Q/Z,µQ/Z(K)); µbZ′

(K)
def
= µbZ

(K) ⊗ Ẑ′

In particular, by considering roots of local coordinates as in the discussion

preceding Definition 4.1, we obtain a natural isomorphism µbZ
(K)

∼
→ Ix.

Theorem 4.3. (Rigidity of cuspidal geometric decomposition groups)
In the notation of Theorem 2.3, suppose that α induces isomorphisms

Ix
∼

−→ Iy; µbZ
(K)

∼
−→ µbZ

(L)

where x ∈ XK(K) (respectively, y ∈ Y L(L)) is a cusp. Then these isomor-

phisms are compatible with the natural isomorphisms µbZ
(K)

∼
→ Ix;

µbZ
(L)

∼
→ Iy.

Proof. Indeed, by replacing XK , YL by finite étale coverings, one re-
duces immediately to the case where both curves are of genus ≥ 2. By
“filling in” [cf. Theorem 1.3, (iii)] all of the cusps other than those of inter-
est [i.e., x, y], we may assume, moreover, thatXK , YL satisfy the hypotheses
of Lemma 4.2. Thus, by Lemma 4.2, we conclude that the morphism

H2(∆X , Ix)
∼

−→ H2(∆Y , Iy)
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induced by α is compatible with the extension classes of Lemma 4.2. On
the other hand, by [Mzk2, Lemma 2.5, (ii)], the morphism

H2(∆X ,µbZ
(K))

∼
−→ H2(∆Y ,µbZ

(L))

induced by α is compatible with the elements determined by the Chern class
of a point on either side. Since all of these “H2’s” are isomorphic to Ẑ, we
thus obtain the compatibility asserted in the statement of Theorem 4.3.

Proposition 4.4. (Tame integral absoluteness) Suppose that XK has

stable reduction over OK . Then:

(i) Every cusp of XK is tamely integrally absolute.

(ii) A cusp of XK is discretely absolute if and only if it is integrally

absolute.

Proof. Assertion (ii) follows formally from assertion (i) and the fact
that the restriction of the projection Ẑ � Ẑ′ to Z ⊆ Ẑ is injective. Now we
consider assertion (i). First, let us observe that it is immediate from the
definitions that it suffices to prove assertion (i) after replacingXK by a finite
étale covering of XK that extends to an admissible covering of the stable
model of XK . In particular, we may assume without loss of generality that
every irreducible component of the normalization of the geometric special
fiber of this stable model has genus ≥ 1.

Next, let us recall the “étale quotient”

ΠXK
−� Πet

XK

of [Mzk2, Section 2]. Thus, the finite quotients of Πet
XK

correspond to the
coverings of XK that arise from finite étale coverings of the stable model
of XK that are tamely ramified at the cusps. In particular, the quotient of
GK determined by Πet

XK
is the natural quotient GK � Gk, where k is the

residue field of K. If x is a cusp of XK , then [in light of our assumption that
every irreducible component of the normalization of the geometric special
fiber of the stable model has genus ≥ 1] the quotient

Dx −� D′
x

determined by Πet
XK

fits into an exact sequence:

1 −→ I ′x −→ D′
x −→ Gk −→ 1
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[where I ′x
def
= Ix ⊗ Ẑ′]. In particular, the splittings of this exact sequence

form a torsor over H1(Gk, I
′
x) ∼= k×. These splittings may be thought of

as elements of H1(D′
x, I

′
x) whose restriction to I ′x is equal to the identity

element of H1(I ′x, I
′
x) = Hom(I ′x, I

′
x). Thus, unraveling the definitions,

one verifies immediately that the pull-back to Dx of any such element of
H1(D′

x, I
′
x) forms an element of H1(Dx, I

′
x) which determines the canonical

tame integral structure on Dx. Since the étale quotient is compatible with
isomorphisms α as in Theorem 2.3 [cf. [Mzk2, Lemma 2.2, (ii)]], we thus
conclude that x is tamely integrally absolute, as desired.

Proposition 4.5. (Absoluteness and coverings) Let Z → XK be a fi-

nite étale covering. Let z be a closed point of the compactification Z of

Z that maps to a closed point x of XK . Then:

(i) z is absolute (respectively, a discretely absolute cusp) if and

only if x is.

(ii) Suppose that XK , Z have stable reduction [over the rings of in-

tegers of their respective fields of constants]. Then z is an integrally ab-

solute cusp if and only if x is.

Proof. Assertion (i) is immediate from the definitions; [the “LocK(−)
portion” — already contained in [Mzk3, Theorem 2.4] — of] Theorem 2.3,
(ii) [cf. the proof of Corollary 2.8]; Theorem 1.3, (ii); the fact that Ẑ/Z is
divisible. Assertion (ii) is immediate from assertion (i) and Proposition 4.4,
(ii).

Before proceeding, we recall the following well-known result:

Lemma 4.6. (Vanishing of Galois invariants of the Tate module) We

have: H0(GK ,H
1(∆X ,µbZ

(K))) = 0.

Proof. Since TX
def
= ∆ab

X
, i.e., the Tate module of the Jacobian JX of

XK , is isomorphic to its Cartier dual , it suffices to show thatH 0(GK , TX) =
0, i.e., that the torsion subgroup of JX(K) is finite. Since JX is a proper
group scheme over K, it follows that the p-adic topology on K determines
a p-adic topology on JX(K) with respect to which JX(K) forms a compact

p-adic Lie group. As is well-known [cf., e.g., [Serre, Chapter V, Section 7]],
the exponential map for this p-adic Lie group determines an isomorphism
of a certain open neighborhood of the identity of JX(K) with a free Zp-
module of finite rank. Thus, the desired finiteness follows formally from
this isomorphism, together with the compactness of JX(K).
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Remark 4.6.1. The author wishes to thank A. Tamagawa for informing
him of the simple proof of Lemma 4.6 given above.

Next, let us observe that for any integer N ≥ 1, the Kummer exact

sequence

1 −→ µN −→ Gm −→ Gm −→ 1

[where Gm → Gm denotes the N -th power map on Gm; µN is defined so

as to make the sequence exact] on the étale site of XK determines a long

exact sequence in cohomology, hence, in particular, by letting N vary, an

injection

HX
def
= Γ(XK ,O

×
XK

) ↪−→ H∧
X ↪−→ H1(ΠXK

,µbZ
(K))

[where we use the easily verified fact that HX is residually finite]. On the

other hand, the Leray spectral sequence for the quotient ΠXK
→ GK yields

an exact sequence:

0 −→ (K×)∧ −→ H1(ΠXK
,µbZ

(K)) −→ DX
def
= H0(GK ,H

1(∆X ,µbZ
(K)))

Moreover, since, by Lemma 4.6, H0(GK ,H
1(∆X ,µbZ

(K))) = 0, it follows

that, if we assume, for simplicity, that XK is cuspidally split , then re-

striction to the various “Ix” in ∆X determines [by applying the natural

isomorphisms Ix
∼
→ µbZ

(K)] an injection

DX ↪−→ PX
def
=

∏

x

Ẑ

[where the product ranges over the cusps x of XK ]. In particular, we obtain

exact sequences:

0 −→ K× −→ HX −→ PX ; 0 −→ (K×)∧ −→ H∧
X −→ PX

Write EX
def
= Im(HX) ⊆ PX for the image of HX in PX [so we obtain an

induced injection E∧
X ↪→ PX ]. Thus, the maps

HX −→ PX ; H∧
X −→ PX

are the maps obtained by associating to a function in HX its divisor of

zeroes and poles. Put another way, EX ⊆ PX may be characterized as the

submodule of cuspidal principal divisors.
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Proposition 4.7. (Principal cuspidal divisors) In the notation of The-

orem 2.3, assume that XK , YL are cuspidally split. Then the isomorphism

PX
∼
−→ PY

induced [cf. Theorem 1.3, (iii)] by α maps EX onto EY .

Remark 4.7.1. In the statement of Proposition 4.7, as well as in the
discussion to follow, we shall use similar notation for the objects associated
to YL to the notation used for the various objects just defined for XK .

Proof. Write JX (respectively, AX) for the Jacobian (respectively, Al-

banese variety) of XK . Thus, the natural map XK → AX determines a

surjection on fundamental groups ΠXK
� ΠAX

def
= π1(AX) whose kernel is

the kernel of ∆X � ∆ab
X

. In particular, any pair of sections of ΠXK
→ GK

determines a pair of sections of ΠAX
→ GK whose difference determines

an element of H1(GK ,∆
ab
X

). Moreover, if these sections arise from points

∈ XK(K), then the resulting element of H1(GK ,∆
ab
X

) completely deter-

mines the point of JX(K) given by forming the difference of these two
points [cf., e.g., [Mzk1], the discussion preceding Definition 6.2; [BK, Ex-
ample 3.11]]. More generally, given any divisor of cusps on XK with Z-
coefficients of degree 0, the divisor is principal if and only if the resulting
element of H1(GK ,∆

ab
X

) vanishes. Since the sections of ΠXK
→ GK arising

from cusps are preserved by α [cf. Theorem 1.3, (iii)], we thus conclude that
the isomorphism PX → PY induced by α maps EX onto EY , as desired.

Definition 4.8. We shall say that XK is unitwise absolute if, in the
notation of Theorem 2.3, the isomorphism

H1(ΠXK
,µbZ

(K))
∼

−→ H1(ΠYL
,µbZ

(L))

induced by α maps the image of Γ(XK ,O
×
XK

) via the Kummer map onto

the image of Γ(YL,O
×
YL

) via the Kummer map.

Corollary 4.9. (Divisor-theoretic properties) In the notation of The-

orem 2.3, let x, y (respectively, A ∈ EX , B ∈ EY ) be cusps (respectively,
cuspidal principal divisors) of XK , YL, respectively, that correspond via

α [cf. Proposition 4.7]. Then:

(i) x is subprincipal if and only if y is.

(ii) A is the divisor of a coabsolute unit if and only if B is.
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(iii) XK is coabsolute (respectively, quasi-coabsolute) if and only if

YL is.

(iv) XK is subprincipally ample (respectively, subprincipally qua-

si-ample) if and only if YL is.

Proof. In light of Proposition 4.7, all of these statements follow for-
mally from the definitions. Also, we note that for the various “quasi-”
properties, one must apply [the “LocK(−) portion” — already contained
in [Mzk3, Theorem 2.4] — of] Theorem 2.3, (ii), as in the proof of Corol-
lary 2.8.

Theorem 4.10. (Units and canonical integral structures) Let XK be a

hyperbolic curve over a local field K. Then:

(i) If XK is quasi-coabsolute, then it admits a discretely absolute

cusp.

(ii) If XK admits a discretely absolute cusp or an absolute non-

cusp [i.e., an absolute point which is not a cusp], then XK is unitwise

absolute.

(iii) If XK is unitwise absolute and subprincipally ample, then

every cusp of XK is discretely absolute.

(iv) Suppose that XK has stable reduction over OK . Then if XK is

quasi-coabsolute and subprincipally quasi-ample, then every cusp of

XK is integrally absolute.

Proof. First, we consider assertion (i). In light of Proposition 4.5, (i),
we may assume that XK is coabsolute. Let U ∈ HX be a coabsolute unit

of XK ; let x be a cusp of XK at which U fails to be invertible. If U has a
zero of order (Z 3) n 6= 0 at x, then the restriction of the class

ηU ∈ H1(ΠXK
,µbZ

(K))

determined by U to Dx determines a splitting of the torsor obtained by
applying a change of structure group to the (K×)∧-torsor at x via the map
(K×)∧ → (K×)∧ given by multiplication by n. Since n 6= 0, and Ẑ/Z is
divisible, it thus follows that this splitting is sufficient to determine the
canonical discrete structure on Dx. Let us write εU ∈ EX for the image of
ηU in EX . Then εU determines the set (K×)∧ ·ηU . On the other hand, since
U is coabsolute, it follows that XK admits an absolute point x′ at which U
is invertible. Thus, the subset

K× · ηU ⊆ (K×)∧ · ηU
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may be characterized as the set of elements of (K×)∧ · ηU whose restriction
to Dx′ — which [by the invertibility of U at x′] necessarily lies in

(K×)∧ ∼= H1(GK ,µbZ
(K)) ⊆ H1(Dx′ ,µbZ

(K))

— in fact lies inside K× ⊆ (K×)∧. Thus, Theorem 4.3, Proposition 4.7,
together with the absoluteness of x′, imply that x is discretely absolute, as
desired.

Next, we consider assertion (ii). Let x be a discretely absolute cusp

or an absolute noncusp of XK . Then, as in the argument applied in the
proof of assertion (i), the image of HX in H1(ΠXK

,µbZ
(K)) may be charac-

terized as the set of elements lying over elements of EX whose restriction
to Dx determines a class in H1(Dx,µbZ

(K)) that lies in the submodule of
this cohomology module generated by the elements that define splittings
“compatible with the canonical discrete structure on Dx” [where in the
noncuspidal case, we take this compatibility to mean that the restriction to
Dx lies in K× ⊆ (K×)∧, as in the proof of assertion (i)]. Thus, assertion
(ii) follows from Theorem 4.3, Proposition 4.7, together with the discrete

absoluteness [in the cuspidal case] or absoluteness [in the noncuspidal case]
of x.

Next, we observe that assertion (iii) follows via the argument applied in
the proof of assertion (i), since the hypothesis that XK is unitwise absolute

and subprincipally ample implies that for every cusp x of XK , there exists a
unit U ∈ HX that is not invertible at x and whose class in H1(ΠXK

,µbZ
(K))

is mapped [in the notation of Theorem 2.3] to a class in H 1(ΠYL
,µbZ

(L))
that lies in the image of HY .

Finally, we observe that assertion (iv) is a formal consequence of Propo-
sition 4.4, (ii); Proposition 4.5, (i); assertions (i), (ii), (iii).

Corollary 4.11. (The case of genus zero) Let XK be a hyperbolic

curve over a local field K which is isogenous to a hyperbolic curve

of genus zero. Then XK is quasi-coabsolute, subprincipally quasi-

ample, and unitwise absolute. In particular, if XK has stable reduc-

tion over OK , then every cusp of XK is integrally absolute.

Proof. In light of Theorem 4.10, it suffices to show that if XK is of

genus zero and cuspidally split , then XK is coabsolute and subprincipally

ample. But since cusps are always absolute [cf. Theorem 1.3, (iii)], these
properties follow formally from the following two elementary facts: (a) every
divisor of degree 0 on XK is principal; (b) XK has at least 3 cusps.
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In certain situations, the O×
K-torsor determined by the canonical in-

tegral structure on the cuspidal decomposition group Dx admits an even

“finer reduction of structure group”, as follows:

Corollary 4.12. (The case of once-punctured elliptic curves) Let XK

be a once-punctured elliptic curve over a local field K of residue char-

acteristic 6= 2. Suppose that XK has stable reduction over OK . Also, if

n ≥ 1 is an integer, we shall write µn(K) ⊆ O×
K for the subgroup of n-th

roots of unity. Then there exists a µ12(K)-torsor structure at the unique

cusp x of XK which is compatible with the canonical integral structure

arising from the stable model X log and, moreover, is preserved by arbi-

trary automorphisms of ΠXK
.

Proof. We may assume without loss of generality that all of the 2-
torsion points of the underlying elliptic curve of XK are defined over K.
Write YK → XK for the Galois covering of degree 4 determined by the
“multiplication by 2” map on the underlying elliptic curve of XK [so YK is
hyperbolic of type (1, 4)] and Y log for the stable model over Spec(OK)log

[where the log structure on Spec(OK) is that determined by the closed

point] of the smooth log curve Y
log
K determined by YK . Also, let us write

e1, e2, e3, e4 for the four cusps of YK .

Let α : ΠXK

∼
→ ΠXK

be an automorphism of ΠXK
. Note that, by

Theorem 1.3, (ii), any µ12(K)-torsor structure at x is preserved by arbi-
trary inner automorphisms of ΠXK

. Thus, we may assume [by compos-
ing with a suitable inner automorphism that induces a suitable element of
Gal(YK/XK)] that the natural action of α on the cusps of YK [cf. Theo-
rem 1.3, (iii)] preserves e1.

Next, let us observe that [by the well-known definition of the group law

on an elliptic curve; the definition of YK → XK ] the divisorD
def
= 2[e1]−2[e2]

on YK is principal . Thus, there exists a unique rational function f on YK

whose divisor of zeroes and poles isD and whose value at e3 is 1. SinceD has
multiplicity 2 at e1, it follows that f determines a µ2(K)-torsor structure

at e1, hence also at x. Write η for the Kummer class [i.e., the image under
the Kummer map] of f . In the following, we shall write Kummer classes
additively .

Now, observe that, by Proposition 4.7; Theorem 1.3, (iii), if α fixes all

four cusps of YK , then it follows that α preserves the class η, hence also
the µ2(K)-torsor structure at x determined by η.
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Next, let us write Σ for the group of permutations of the three cusps
e2, e3, e4 that arise from automorphisms β ∈ Aut(ΠXK

) that preserve e1.
Thus, the order s of Σ divides 6. Let β1, . . . , βs ∈ Aut(ΠXK

) be a collection
of automorphisms that give rise to the elements of Σ. Set:

η′
def
= (6/s) ·

s∑

j=1

ηβj

Since YK is unitwise absolute by Corollary 4.11, it follows that η ′ arises
from a rational function f ′ on YK which has a pole of order 12 at e1. In
particular, η′ determines a µ12(K)-torsor structure at e1, hence also at x.
Moreover, it follows formally from the preceding observation concerning
automorphisms α that fix all four cusps of YK that arbitrary α [i.e., that
are only assumed to fix e1] preserve the µ12(K)-torsor structure determined
by η′. Finally, the fact that this µ12(K)-torsor structure is compatible with
the canonical integral structure follows from the easily verified fact that
the rational function f is generically invertible [in light of our assumption
that the residue characteristic of K is 6= 2] on the special fiber of Y. This
completes the proof.

Remark 4.12.1. The number “12” appearing in Corollary 4.12 is inter-
esting in light of the well-known fact that the line bundle on the moduli
stack of elliptic curves determined by the cotangent bundle at the origin of
the tautological family of elliptic curves has order 12 in the Picard group
of this moduli stack.

Remark 4.12.2. It seems natural to expect that a(n) [perhaps some-
what more complicated] analogue of Corollary 4.12 should hold for more
general hyperbolic curves XK . This topic, however, lies beyond the scope
of this paper.
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