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A 7-LOCAL IDENTIFICATION OF THE MONSTER

C. W. PARKER and C. B. WIEDORN

Abstract. We identify the monster from two of its 7-constrained maximal
7-local subgroups.

§1. Introduction

All groups considered in this article are finite. Suppose that X is a

group and p is a prime. Then X is p-constrained if CX(Op(X)) ≤ Op(X).

For a group G, S ∈ Syl p(G), and T a non-trivial subgroup of S, NG(T ) is

called a p-local subgroup. We say that G has local characteristic p if every

p-local subgroup is p-constrained and we say that G has parabolic charac-

teristic p provided every p-local subgroup that contains S is p-constrained.

A K-group is a group which has all its composition factors from among the

known simple groups and a group G is K-proper if every proper subgroup

of G is a K-group.

It is expected that the programme to identify the K-proper groups

of local characteristic p orchestrated by Meierfrankenfeld, Stellmacher and

Stroth (see [20]) will soon have a list of possible amalgams within such

groups. Some of these amalgams will uniquely determine the target group

via its p-local geometry (for example via the building if G is expected to be

a Lie type group in characteristic p of rank at least 3). For other groups,

where for example there are only two p-local subgroups containing a Sylow

p-subgroup, other methods will be needed. In this paper we investigate one

of these exceptional configurations. Our main theorem is as follows.

Theorem 1.1. Suppose that G is a K-proper group, S ∈ Syl 7(G),
Zβ = Z(S) has order 7, Zα = Z2(S) (the second centre of S) has order

49 and

(a) Nβ = NG(Zβ) ∼ 71+4
+ .2.Alt(7).6 is 7-constrained ; and
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(b) Nα = NG(Zα) ∼ 72+1+2.GL2(7) is 7-constrained.

Assume that O7(〈Nα, Nβ〉) = 1. Then G is isomorphic to the monster, the

largest sporadic simple group. In particular, G is of parabolic characteristic

7 but not of local characteristic 7.

In Theorem 1.1 we have used the Atlas [5, page xx] notation for group

extensions. We also use the Atlas [5] notation for the sporadic simple groups

except that the baby monster is denoted by BM rather than B. Cyclic

groups of order n will be denoted by n or Zn. To avoid confusion with Lie

type groups of type A and D, we use Alt(n) and Sym(n) for the alternating

and symmetric groups of degree n, respectively, and Dih(n) for the dihedral

group of order n. We use p1+2n
+ to denote the extraspecial group of order

p1+2n and exponent p when p is odd and, when p = 2, the extraspecial

group of order 21+2n which has elementary abelian subgroups of order 21+n.

We write G ∼ A.B. . . . .Z or say that G has shape A.B. . . . .Z when G

has a normal series with factors of shape A,B, . . . , Z. Thus, for example,

G ∼ 71+4
+ .2.Alt(7) indicates that G contains proper normal subgroups of

order 7, 75, 2.75 and 2.75.|Alt(7)|. It also indicates that the normal subgroup

Q of order 75 is an extraspecial group of exponent 7 and that G/Q is

isomorphic to a non-split extension of Alt(7) by a cyclic group of order 2.

The notation G ∼ 72+1+2.GL2(7) indicates that G contains proper normal

subgroups of orders 72, 73, and 75 but nothing further about the action of

G/O7(G) ∼= GL2(7) on O7(G) is meant to be implicit in the notation. A

p-element x ∈ G is called p-central if CG(x) contains a Sylow p-subgroup

of G.

The amalgam A consisting of the triple (Nα, Nβ, Nα ∩Nβ) and the two

inclusion mappings is an example of a symplectic amalgam and appears as

A48 in [22, Table 1.8]. Notice that we have not assumed that A is isomorphic

to the corresponding amalgam in M (though it may well be) nor have we

assumed that G is generated by Nα and Nβ.

Our strategy for identifying the monster from this 7-local information

is to determine the structures of the centralizers of the involutions in G.

Thus our objective is to find 2 involutions, one of which has 2-constrained

centralizer of shape 21+24
+ .Co1 and the other one has centralizer 2.BM .

Once this has been done, and after noting that the monster sporadic simple

group possesses two 7-local subgroups as described in Theorem 1.1 (see [25]

or [5, page 234]), the main result follows from [12]. As part of our proof
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we present some elementary results about K-groups which characterize cer-

tain of the simple K-groups by the structure of the centralizer of elements

of order 7 or by the structure of their Sylow p-subgroups. These results

are included in Section 2. Finally we mention that the monster has been

characterized from the amalgam of its 2-local subgroups by Ivanov [15] and

from the amalgam of its 3-local subgroups by Ivanov and Meierfrankenfeld

[16]. These two results actually show that the universal completion of the

amalgam under investigation is isomorphic to the monster.

There are other exotic amalgams related to the large sporadic simple

groups. Four examples occur with p = 5 and are listed as A20, A21, A46 and

A53 in [22, Table 1.8]. These four amalgams are related to HN , BM , Ly,

and M , respectively, and are the subject of [21], [23], and [24]. A further

remarkable example which occurs in the monster has Nβ ∼ 131+2
+ .12.Sym(4)

and Nα ∼ 132.4.L2(13).2. With respect to this amalgam the monster is of

parabolic characteristic 13; unfortunately, as yet we have no idea how to

characterize M from these two subgroups. The strategies used in [21], the

present paper, [23] and [24] will not work in this particular case since the

largest elementary abelian 13-subgroup in the centralizer of an involution

in Nα and Nβ has order 13. Thus the critical method of proof used in

Propositions 5.6 and 6.5 to control Op′(CG(t)) for an involution t fails.

Dr. Corinna Wiedorn died on 25th February 2005 in Lingen, Germany.

Her contribution to our mathematical community is greatly missed.

§2. Preliminaries

This section primarily contains characterizations of K-groups by their

7-local structure. However, we begin with a result concerning the 4-dimen-

sional GF (7)-module for G = 2.Alt(7).2 which, as we shall see, appears in

Nβ as O7(Nβ)/Zβ .

Firstly we note that the smallest GF (7) representation of Alt(7) is 6-

dimensional (see [17, page 15]). So G contains a subgroup isomorphic to the

non-split extension 2.Alt(7). Furthermore, as the multiplicative group of

GF (7) has no elements of order 4, we have G/Z(G) ∼= Sym(7). We note also

before we start that the smallest dimension of a faithful 2.Alt(7).2 module

over GF (7) is 4. Again this well-known fact can be read, for example, from

[17, page 15].
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Lemma 2.1. Let G ∼ 2.Alt(7).2, V be a faithful irreducible 4-dimen-

sional GF (7)G-module, and denote by P(V ) = {W ≤ V | dimW = 1} the

set of one-dimensional subspaces of V .

(1) Let x ∈ G, o(x) = 3. If x projects to a 3-cycle in G/Z(G) ∼= Sym(7),
then CV (x) = 0. If x projects to a product of two disjoint 3-cycles in

G/Z(G), then dimCV (x) = 2.

(2) If H ≤ G with H ∼= SL2(7), then H acts irreducibly on V .

(3) G′ ∼= 2.Alt(7) has just two orbits on P(V ). They have lengths 120
and 280 and stabilizers 2 × 7 : 3 and 2 × 3 × 3, respectively.

(4) G′ has just two orbits on V #. They have lengths 720 and 1680 and

stabilizers of order 7 and 3, respectively.

(5) The orbits in (3) and (4) are preserved by G, the corresponding stabi-

lizers being 2 × 7 : 6 and 2 × 3 × Sym(3) in (3) and 7 : 2 and Sym(3)
in (4).

(6) Let P = 〈x, y〉 ∈ Syl 3(G) such that V = CV (x) ⊕ CV (y). Let W ∈
P(V ), W ≤ CV (x). Then NG(W ) acts irreducibly on CV (y). In

particular, if W ≤ W1 ≤ V such that W1 is NG(W )-invariant and

dimW1 = 3 then W1 = W + CV (y).

(7) For S ∈ Syl 7(G), dimCV (S) = dimV/[V, S] = dim[V, S]/[V, S, S] =
1.

Proof. First of all as V is a faithful module for G, we note that 〈z〉 =
Z = Z(G) inverts each vector of V . This fact will be used without further
comment below.

(1) Let x and y be elements of order 3 projecting to (567) and (123)
in G/Z(G), respectively, and suppose W = CV (x) 6= 0. Let Q be the
preimage in G of the subgroup 〈(12)(34), (13)(24)〉 ≤ Alt(7). Then Q ∼= Q8

and 〈Q, y〉 ∼= Q8 : 3. Since [〈Q, y〉, x] = 1, 〈Q, y〉 normalizes W , and since
Z ≤ Q we see that 〈Q, y〉 acts faithfully and irreducibly on W and on
V/W and that dimW = dimV/W = 2. Since 〈Q, y〉 = 〈yQ〉, we have
that dimCW (y) = dimCV/W (y) = 1. Set X = 〈x, y〉. Then X ∈ Syl 3(G),
dimCV (X) = 1, and consequently

V/CV (X) =
⊕

u∈X#

CV/CV (X)(u)

has dimension 3. Since CV (X) is normalized by NG(X), since x and y as
well as xy and xy−1 are conjugate in NG(X), and since dimV/CV (X)(x) =
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1, we infer that dimCV/CV (X)(u) ≥ 1 for all u ∈ X#. This means that
dimV/CV (X) > 3, a contradiction. Thus we have that CV (x) = 0 and as
a consequence we have dimCV (xy) = 2. Hence (1) holds.

(2) Suppose that (2) is false and let W ≤ V be such that W is nor-
malized by H. Since Z ≤ H, we have dimW = 2 and H acts faithfully in
its natural representation on W and V/W . Since 3-elements of SL2(7) act
fixed point freely on the natural SL2(7)-module, they act fixed point freely
on V . But the only 3-elements of G which are conjugate into H are those
which correspond to a product of two disjoint 3-cycles in Alt(7) and these
elements have fixed points by (1). Therefore, (2) holds.

(3) and (4) Let P ∈ Syl 3(G
′). Then by (1) there are x ∈ P # and

W ∈ P(V ) such that [W,x] = 0 6= [W,P ] and such that W is normalized by
P . Thus, 〈z, P 〉 ≤ NG′(W ), 〈z, P 〉 ∼= 2 × 3 × 3, and 〈z, P 〉 ∩CG′(W ) = 〈x〉.
In particular, 〈z, P 〉 realizes the full automorphism group Z6 on W . Hence,
if NG′(W ) > 〈z, P 〉 then CG′(W ) > 〈x〉. Now any subgroup of Alt(7)
properly containing a Sylow 3-subgroup also contains an involution. But
all involutions in Alt(7) lift to elements of order 4 in 2.Alt(7), whence they
square to z and so cannot be contained in CG′(W ). It follows that W is
a representative for an orbit of length 280 for G′ on P(V ) and that the
structures of NG′(W ), and CG′(W ) are as claimed in (3) and (4).

Since G′ has an orbit of length 280 on P(V ), it follows that any other
orbit of G′ on V has length at most 400 − 280 = 120.

Let S ∈ Syl 7(G
′). Then there is U ∈ P(V ) with U ≤ CV (S). Cer-

tainly U is in a different G′ orbit than W . Suppose that two distinct Sylow
7-subgroups of G′ centralize U . Then U is centralized by a subgroup isomor-
phic to SL2(7) or by G′. This contradicts (2) or the fact that V is an irre-
ducible G′-module. Hence we infer that U is centralized by a unique Sylow
7-subgroup and so NG′(U) ≤ NG′(S) ∼= 2×7 : 3. Since |G′ : NG′(S)| = 120,
we conclude that NG′(U) = NG′(S). Clearly, z ∈ NG′(U) \ CG′(U) and by
(1) and the previous paragraph U is not centralized by a 3-element, either.
So (3) and (4) are proved.

(5) Since 400 does not divide |Sym(7)|, we see that G ∼ 2.Sym(7) must
preserve the orbits of G′. Since |G : G′| = 2 and, as we have seen that, for
any X ∈ P(V ), NG′(X) realizes Aut(X) on X, it is easy to deduce from
(3), (4), and the structure of a group of shape 2.Sym(7) that the structures
of NG(X) and CG(X) are as stated.

(6) In the proofs of (3), (4), and (5) we have seen that NG(W ) ∼=
2 × 3 × Sym(3). Further, NG(W ) ≤ CG(y) and so NG(W ) acts on CV (y).
Since x acts fixed point freely on CV (y) and CG(W ) ∼= Sym(3) we see that
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CG(W ) cannot normalize a 1-space in CV (y).
(7) Suppose that S centralizes two subspaces U,W ∈ P(V ). Then by

(3) we have W = U g for some g ∈ G′ \ NG′(S). So S < 〈S, Sg〉 ≤ CG(W )
and this contradicts (3) and (4). Hence dimCV (S) = 1. It follows from [1,
Lemma 5.5, Theorem 6.4] that as an S-module V embeds into the regular
S-module of dimension 7. Since this module is uniserial the claims in (7)
all hold.

Corollary 2.2. If G ∼ 2.Alt(7).2 acts faithfully on a 4-dimensional

vector space over GF (7), then G ∼= 2−Sym(7).

Proof. By Lemma 2.1(5) there is an involution x ∈ G \G′ such that x
centralizes a non-zero vector in V and normalizes a Sylow 7-subgroup of G.
The latter forces x to map onto a product of three disjoint transpositions in
Sym(7). In other words, the involutions of Sym(7) which lift to involutions
in G are the products of three disjoint transpositions whereas transpositions
lift to elements of order 4 in G. By [5, page 236], this is just the definition
of the group 2−Sym(7) (in contrast to 2+Sym(7)).

The irreducibility of both conjugacy classes of subgroups isomorphic to

SL2(7) in 2.Alt(7) on V proved in Lemma 2.1(2) will be a key point later

and distinguishes the situation considered in this paper significantly from

the corresponding 5-local case, which can be seen in the sporadic simple

group discovered by Lyons. Indeed, in Ly we have the 5-constrained 5-local

subgroup 51+4
+ .2.Alt(6).4. So 2.Alt(6) is acting on a 4-dimensional GF (5)-

space. Now 2.Alt(6) contains two conjugacy classes of subgroup 2.Alt(5) ∼=
SL2(5). It turns out that the module restricted to one of these subgroups is

irreducible and restricted to the other one it is an indecomposable extension

of two natural modules for SL2(5) (see [21] for further details).

In the following theorem we determine all the simple K-groups which

have an extraspecial Sylow p-subgroup of order p3 for some prime p. In

this paper, of course, we will then just make use of the case p = 7 but

we will use the case p = 5 in [24]. We remark that the simple groups

with dihedral Sylow 2-subgroups have been determined by Gorenstein and

Walter (see [10], [11]) independent from the K-group hypothesis. A shorter

proof has been established by Bender and Glauberman (see [2], [3]). It was

shown by Brauer and Suzuki (see [4]) that there are no finite simple groups

with quaternion Sylow 2-subgroups. It is also a pleasure at this stage to

acknowledge the assistance of our referee who pointed out that our original
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proof of our next theorem could be dramatically shortened by citing [9,

4.10.3 (c)].

Theorem 2.3. Let G be a simple K-group, p a prime, and S ∈
Sylp(G). Assume that S is extraspecial of order p3. Then one of the fol-

lowing holds.

(1) G ∼= L3(p) or p is odd and G ∼= U3(p).

(2) p = 2 and G ∼= Alt(7) or G ∼= L2(q) where q ≡ ±7 (mod 16).

(3) p = 3 and G ∼= G2(2)
′ ∼= U3(3) or G ∼= G2(r

a) for some prime r where

r ≡ ±2,±4 (mod 9), a is not divisible by 3, and a > 1 if r = 2.

(4) p = 3 and G ∼= 2F4(2)
′ or G ∼= 2F4(2

a), where a ≥ 3 is odd and not

divisible by 3.

(5) G is a sporadic group and

(i) p = 3 and G is one of M12, M24, J2, J4, He, Ru ; or

(ii) p = 5 and G is one of HS, Co3, Co2, McL, Ru, Th ; or

(iii) p = 7 and G is one of He, O′N , Fi′24 ; or

(iv) p = 11 and G ∼= J4 ; or

(v) p = 13 and G ∼= M .

Proof. For the case p = 2 we simply refer to [4] and to [10, Theorem 2]
(see also [6, page 462]). So from now on we assume p is odd.

Suppose first that G ∼= Alt(m) for some m. Then p > 3 since there
are no alternating groups with Sylow 3-subgroup of order 33. Further, as
|S| = p3, we must have 3p ≤ m ≤ 4p − 1. But for such m the Sylow
p-subgroups of Alt(m) are elementary abelian, generated by three disjoint
p-cycles. So G is not an alternating group.

If G is a Lie type group in characteristic p with associated root sys-
tem Φ, then, since the order of S is at least pa|Φ|/2, we deduce that G is
isomorphic to either L3(p) or U3(p).

Suppose now that G is a group of Lie type defined over a field of order
ra where r is a prime with r 6= p. By a result due to Huppert [8, 15.21]
the exponent of S is p and so S contains p +1 maximal elementary abelian
subgroups. Using [9, 4.10.3 (c)] we infer that p = 3 and that G is isomorphic
to one of A2(r

a) with ra ≡ 1 (mod 3), 2A2(r
a) with ra ≡ −1 (mod 3),

2F4(2
a)′, G2(r

a)′, or 3D4(r
a). In the first two cases a Sylow 3-subgroup of

the universal group of Lie type is contained in a subgroup (ra −1) : Sym(3)
when G ∼= A2(r

a) and in a subgroup (ra + 1) : Sym(3) when G ∼= 2A2(r
a).
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Thus, a Sylow 3-subgroup of the simple group G (which is the universal
group factored by its centre of order 3) has order either 32 or strictly greater
than 33. So these cases do not occur. Also, by [7, 10-1(4)] we have that
G 6∼= 3D4(r

a). Therefore, to conclude the proof of (3) and (4) we only have
to establish the assertions about r and a. First let G ∼= 2F4(2

a). Then a is
odd since the groups 2F4(2

a) are only defined for odd a. To prove that a is
not divisible by 3, we examine each of the possibilities a ≡ 0,±1 (mod 3)
and look when

2a ≡ −1 (mod 3), but 2a 6≡ −1 (mod 9).

If a = 3b for some b then b must be odd (since a is odd). So

2a = 23b ≡ 8b ≡ (−1)b = −1 (mod 9).

Hence this case cannot occur. If a = 3b + 1 then b is even. So

2a = 23b+1 ≡ 2 · 8b ≡ 2 · (−1)b = 2 (mod 9)

and
2a = 23b+1 ≡ 2 · 2b ≡ 2 · (−1)b = 2 ≡ −1 (mod 3).

Similarly, if a = 3b + 2 then b is odd. So

2a = 23b+2 ≡ 4 · 8b ≡ 4 · (−1)b = −4 (mod 9)

and
2a = 23b+2 ≡ 4 · 2b ≡ 1 · (−1)b = −1 (mod 3).

So when 3 does not divide a, the Sylow 3-subgroups of 2F4(2
a) are at least

of order 33. As 2F4(2
a) ≥ 2F4(2)

′ ≥ L3(3) (see [5, page 74]) they are seen
to be extraspecial and (4) is shown.

The proof for G2(r
a) is an easy exercise and goes in the same way,

distinguishing the cases r ≡ ±1 (mod 3) and ord 3(r
a) = 1, 2. We leave the

details for the reader and just mention that G2(r
a) ≥ G2(2)

′ ∼= U3(3) for
all r (see [5, page 14] for r = 2 and [18] for r odd). This again shows that
the Sylow 3-subgroups are extraspecial in the respective cases.

Finally, if G is a sporadic group the statement follows by inspection of
[9, pages 262–287]. This concludes the proof.

Corollary 2.4. Assume that G is a simple K-group and S ∈ Syl 7(G).
If NG(S) ∼ 71+2

+ : (3 : 6) ∼ 71+2
+ : (3 × Sym(3)), then G ∼= He.
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Proof. Since S is extraspecial of order 73, G ∼= L3(7), U3(7), He, O′N
or Fi′24 by Theorem 2.3. The groups L3(7) and U3(7) have NG(S)/S ∼= 6×2
and NG(S)/S ∼= 48, respectively. So G is neither of these two groups. We
now consult [9, Tables 5.3s and 5.3v] to see that the only possibility is that
G ∼= He.

Theorem 2.5. Let G be a simple K-group and S ∈ Syl 7(G). Assume

that |S| = 72 and, for any x ∈ S#, either

(1) CG(x) ∼= 7 × Alt(7), or

(2) CG(x) ∼= 7 × L3(2) or 7 × 26.L3(2),

and that S contains elements of type (1) as well as of (one of the types in)
(2). Then G ∼= Co1 and the possibility that CG(x) ∼ 7 × 26.L3(2) does not

occur.

Proof. Again we examine each of the possibilities for G. If G is an
alternating group Alt(n), then, as |S| = 72, n ≥ 14. Taking x to be a
7-cycle we have CG(x) ∼= Alt(n− 7)× 7 and so n = 14. Now take x to be a
permutation of cycle shape 72. Then CG(x) = S, a contradiction. Thus G
is not an alternating group.

Suppose that G is a Lie type group defined in characteristic r. From [9,
Theorem 4.9.6], for x ∈ S, the components of CG(x) are Lie type groups in
characteristic r. Since Alt(7) is not a Lie type group in any characteristic,
we have a contradiction in this case.

Finally assume that G is a sporadic simple group. Since |S| = 72, by
considering group orders we see that the only possibilities are G ∼= Co1,
G ∼= Th or G ∼= BM . Consulting [9, Tables 5.3 l, 5.3 x and 5.3 y] and
using the fact that G has at least two conjugacy classes of cyclic subgroups
of order 7, we immediately obtain G ∼= Co1. Since Co1 does not possess a
7-element with centralizer 7 × 26.L3(2), the remaining part of the theorem
follows.

Theorem 2.6. Assume that G is a simple K-group and S ∈ Syl 7(G).
If |S| = 72 and, for some x ∈ S#, CG(x) ∼= 7 × 2.L3(4).2, then G ∼= BM .

Proof. Once more we consider the possibilities for G. If G ∼= Alt(n)
with n ≥ 5, then, as the minimal permutation representation of 2.L3(4).2
has degree at least 21, we have |G|7 ≥ 73, a contradiction.

Suppose that G is a Lie type group defined in characteristic r. Since
G is not of local characteristic 7, r 6= 7. From [9, Theorem 4.2.2 (ii)], for
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x ∈ S, the components of CG(x) are Lie type groups in characteristic r.
Since 2.L3(4).2 is not a Lie type group in any characteristic, we have a
contradiction in this case.

Finally assume that G is a sporadic simple group. Then, as |S| = 72,
looking at [9, Tables 5.3 l, 5.3 x and 5.3 y] we immediately see that G ∼= BM .

Lemma 2.7. Let F be a group and H be a non-trivial subgroup of F
such that H ≤ R whenever R is a non-trivial subgroup of F which is nor-

malized by H. Then F has a unique minimal normal subgroup N , N is

simple, and either

(1) F embeds into Aut(N), or

(2) H = N congZp for some prime p, CF (N) is cyclic of order pk for

some k ≥ 1, and F/CF (N) embeds into Aut(Zp), or

(3) H = N ∼= Z2 and F = CF (N) is a quaternion group.

Proof. If N and M are minimal normal subgroups of F , then 1 6=
H ≤ N ∩ M and so N = M . Therefore, F has a unique minimal normal
subgroup N .

Since N is a minimal normal subgroup of F , N is a direct product of
simple groups, say, N = N1 × N2 × · · · × Nk. But as H ≤ N ≤ NG(Ni) for
1 ≤ i ≤ k, we get H ≤

⋂k
i=1 Ni and so we conclude that N is simple. If

N is a non-abelian simple group then (1) holds. So assume H = N ∼= Zp

for some prime p. Set K = CF (N). Of course, F/K embeds into Aut(Zp).
Let S ∈ Syl r(K) for some prime r 6= p. Then H = N ≤ CF (S) and so
H ≤ S by hypothesis, a contradiction. Hence K is a p-group. Finally,
if x ∈ K is an element of order p then again H = N ≤ CF (〈x〉) and so
H = N = 〈x〉. This shows that K contains a unique subgroup of order p.
Now by [6, Theorem 4.10] either N is cyclic and (2) holds or p = 2, F = K
is a quaternion group, and (3) holds.

§3. Some general properties of the amalgam

In this section we set up some more notation and we prove some general

properties of the amalgam A = (Nα, Nβ , Nα ∩Nβ) described in the hypoth-

esis of Theorem 1.1. These results will be used without further reference in

the remaining sections.

For γ ∈ {α, β} we set Lγ = N∞
γ and Qγ = O7(Nγ). Also, we usually

write Nαβ = Nα ∩ Nβ and Lαβ = Lα ∩ Lβ. The results in the next lemma
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follow from the information presented in the statement of Theorem 1.1 with

a little help from Lemma 2.1.

Lemma 3.1. (1) S = QαQβ, Zβ ≤ Zα ≤ Qβ.

(2) Qβ is extraspecial and Qβ/Zβ is an irreducible module for Lβ/Qβ
∼=

2.Alt(7).

(3) Qα ∩ Qβ = CQβ
(Zα) = [Qα, Qβ ] and Zα/Zβ = CQβ/Zβ

(S).

(4) Zα is elementary abelian, |Φ(Qα)| = 73, Φ(Qα) ≤ Qβ, and Zα and

Qα/Φ(Qα) are natural modules for Nα/Qα
∼= GL2(7); in particular,

all elements in Z#
α are conjugate in Nα.

(5) NNβ
(Zα) = Nαβ = NNα(Zβ) and Nαβ/Qα

∼= 7 : 6 × 6 ∼= Nαβ/Qβ.

(6) Lβ = CNβ
(Zβ); in particular, Nβ realizes the full automorphism group

Z6 on Zβ.

(7) Nβ = LβNNα(Zβ) = LβNαβ and Nβ/Qβ ∼ 2.(3 × Sym(7)).

(8) Nα = LαNNβ
(Zα) = LαNαβ.

(9) Qβ and Qα are both characteristic subgroups of S.

(10) Qβ contains representatives of at most two G-conjugacy classes of

cyclic subgroups of order 7.

Proof. (1) Since O7(〈Nα, Nβ〉) = 1, the statements S = QαQβ and
Zβ ≤ Zα are immediate from the definitions. Furthermore, as Zα = Z2(S)
and Qβ is normal in S, Zα ≤ Qβ.

(2) Since, by [17], the smallest dimension of a faithful representation of
2.Alt(7) over GF (7) is 4, (2) holds.

(3) Observing that [Qα, Qβ ] ≤ Qα ∩ Qβ and that the latter is of order
74 the statement in (3) follows from (1), the fact that Nβ is 7-constrained
and Lemma 2.1(7).

(4) If Nα ≤ Nβ , then Qβ ≤ O7(〈Nα, Nβ〉) = 1, which is a contradiction.
Thus Nα does not normalize Zβ. In particular, Zα is not cyclic, for otherwise
Zβ would be the unique cyclic subgroup of Zα of order 7 and as such would
be normal in Nα. Furthermore, we see that Nα/Qα

∼= GL2(7) acts as GL2(7)
on Zα. Since Φ(Qα) ≥ [Qβ ∩ Qα, Qα] = [Qβ, Qα, Qα] which has order 73

by Lemma 2.1(7) and Qα/Φ(Qα) admits Nα/Qα faithfully, the remaining
parts of (4) follow easily.

(5) The first claim follows directly from the definition of Nα and Nβ

and (4) and the structure of GL2(7) imply the structure of Nαβ/Qα. The
structure of Nαβ/Qβ can be infered from the action of GL2(7) on the natural
module Qα/Φ(Qα) involved in Qα and (1).
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(6) A cyclic group of order 6 which normalizes Zβ and acts faithfully
on it can be observed in the quotient Nα/Qα

∼= GL2(7).

(7) The first statement follows from parts (5) and (6). Further, since
Aut(Alt(7)) ∼= Sym(7) either Nβ/Qβ ∼ 2.(6 × Alt(7)) or Nβ/Qβ is as
claimed. But the first possibility obviously contradicts the structure of
Nαβ/Qβ stated in (5).

(8) To see this we note that Nα = LαNNα(S) = LαNNα(Zβ) by a
Frattini argument.

(9) Because |S| = 76, Zβ = Z(S), and Zα/Zβ = CQβ/Zβ
(S), we have

that Qβ is the unique extraspecial subgroup of order 75 in S. To see that
Qα is characteristic in S we simply note that Zα is characteristic in S by
its definition and that Qα = CS(Zα).

(10) By Lemma 2.1(3), Nβ has two orbits on the cyclic subgroups of
Qβ/Zβ. Since for each subgroup F ≤ Qβ of order 49 containing Zβ , Qβ

has two orbits on the cyclic subgroups of F , we infer that there are 3 Nβ-
conjugacy classes of cyclic subgroups in Qβ. One of these conjugacy classes
consists of Zβ and we have seen in (4) that Zβ is Nα-conjugate to a cyclic
subgroup of Qβ not contained in Zβ . Hence (10) is true.

We now exploit the previous lemma to deduce some information about

the structures of Nα and Nβ . We have that Nαβ ∼ S : (6 × 6). Let T

be a fixed complement to S in Nαβ. So Nαβ = ST and T ∼= 6 × 6. Let

t1, t2, t3 be the three involutions in T . From the structure of Nα and Nβ

we may assume that t1Qβ ∈ Z(Nβ/Qβ) and t2Qα ∈ Z(Nα/Qα). We set

Jβ = CNβ
(t1), Kβ = J∞

β and, similarly, Jα = CNα(t2), Kα = J∞
α . So

Jβ ∼ (7 × 2.Alt(7)) : 6, Kβ
∼= 2.Alt(7)

Jα ∼ (7 × SL2(7)) : 6 and Kα
∼= SL2(7).

Lemma 3.2. We have t2, t3 ∈ Nβ \Lβ, t1, t3 ∈ Nα \Lα. In particular,

〈Lβ, t2〉 = 〈Lβ , t3〉 ∼= 2−Sym(7).

Proof. Since the involutions in Alt(7) lift to elements of order 4 in
2.Alt(7), Lβ does not contain an elementary abelian group of order 4.
Therefore the first statement holds for Nβ. By Lemma 3.1(7) and Corol-
lary 2.2 we have that 〈Lβ , t2〉 = 〈Lβ, t3〉 ∼= 2−Sym(7). Since SL2(7) contains
a single involution, the lemma also holds for Nα.
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§4. The centralizer of a non 7-central element

In this section we pick a certain subgroup of S of order 7 and show that

it is not contained in the center of any Sylow 7-subgroup of G. We prove

that its centralizer in G is isomorphic to 7×He and so is not 7-constrained.

In particular, we note that G is not of local characteristic 7. The existence

of the subgroup 7×He in G will be exploited in Sections 5 and 6 to obtain

information about the 2-local structure of G.

Lemma 4.1. Let Uα = CQα(t2). Then |Uα| = 7, Uα ≤ Qβ, and Uα is

not 7-central in G.

Proof. As Qα involves two natural modules for Nα/Qα and t2 acts
fixed point freely on such modules and Lα centralizes Φ(Qα)/Zα, which
by Lemma 3.1(4) is of order 7 and contained in Qβ, we have |Uα| = 7
and Uα ≤ Qβ. Suppose Uα = Zg

β for some g ∈ G. Then CG(Uα) ≤ N g
β .

But ZαUαKα ≤ CG(Uα) and Kα acts irreducibly on Zα. This shows that
Zα ≤ Qg

β and that Kα
∼= KαQg

β/Qg
β
∼= SL2(7) does not act irreducibly on

Qg
β/Zg

β = Qg
β/Uα, a contradiction to Lemma 2.1(2).

For γ ∈ {α, β} let Xγ = CNγ (Uα) and Yγ = NNγ (Uα). Let X =

〈Xα, Xβ〉, Y = 〈Yα, Yβ〉, and let X0 = CG(Uα), Y0 = NG(Uα). Obviously,

(∗) X ≤ X0 ∩ Y ≤ X0Y ≤ Y0.

Lemma 4.2. Let C = CQβ
(Uα). Then C ∈ Syl 7(A) for A ∈ {X,Y,

X0, Y0} ; in particular, the 7-part of the order of A is 74.

Proof. We first note that |C| = 74 by Lemma 4.1 and as Qβ is extraspe-
cial. Also, since C ≤ X, (∗) shows that it suffices to prove the statement
for A = Y0. Let R ∈ Syl 7(Y0). We may assume that C ≤ R, so R∩Qβ = C.
Since Uα is not 7-central by Lemma 4.1, we have |R| ≤ 75, so |R : C| ≤ 7
and CER. Hence also Zβ = Q′

β = C ′ER and therefore R ≤ NG(Zβ) = Nβ.

If |R| = 75, then R 6≤ Qβ and so C E QβR = R1 ∈ Syl7(Nβ). But
then UαZβ = Z(C) E R1 and Lemma 2.1 applied to Qβ/Zβ implies that

Z(C)g = Zα for g ∈ Nβ with Rg
1 = S. As all elements in Z#

α are 7-central
we get a contradiction to Lemma 4.1. So R = C and we are done.

Lemma 4.3. (1) Xα = Uα × ZαKα
∼= 7 × 72 : SL2(7) and Yα =

UαZαJα ∼ (7 × 72 : SL2(7)) : 6.
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(2) Xβ ∼ 7 × 71+2
+ .(Sym(3) × 3) and Yβ ∼ (7 × 71+2

+ ).(Sym(3) × 3 × 6);
in particular, O7′(Xβ) = 1.

(3) Xβ acts irreducibly on O7(Xβ/UαZβ) and |Xβ : Xβ ∩ Lβ| = 6.

Proof. (1) is a straightforward consequence of the definition of Uα and
(2) follows easily from Lemmas 4.1, 4.2, and 2.1. (Note that t1, t3 ∈ (Yα ∩
Yβ)\ (Xα ∪Xβ).) Finally, the first statement of (3) holds by Lemma 2.1(6),
the second one by (2) and Lemma 2.1(4).

Lemma 4.4. NX0
(C) = Xβ = NX(C).

Proof. Let N = NX0
(C). As C ≤ Qβ and |C| = 74, C ′ = Zβ and

therefore
N ≤ NX0

(C ′) = NX0
(Zβ) ≤ NG(Zβ) = Nβ .

Since Uα ≤ Z(X0) we get N ≤ CNβ
(Uα) = Xβ and so NX0

(C) = Xβ =
NX(C).

Proposition 4.5. CG(Uα) = X ∼= 7 × He and NG(Uα) = Y ∼ (7 :
3×He) : 2; in particular, NG(Uα) is not 7-constrained and G is not of local

characteristic 7.

Proof. With CG(Uα) = X0 as above, by Lemma 4.2 we have C =
CQβ

(Uα) ∈ Syl7(X0). We are going to apply Corollary 2.4 and Lemma 2.7.
Let K > Uα be a subgroup of X0 which is normalized by X. Suppose

first K = Uα × O, where O = O7′(K). Then

O = 〈CO(z) | z ∈ Z#
α 〉.

Since all elements in Zα are conjugate in X into Zβ, we may assume that
CO(Zβ) 6= 1. But CO(Zβ) E Xβ and so CO(Zβ) ≤ O7′(Xβ) = 1, a contra-
diction.

Hence 72 divides |K| and K ∩C > Uα. Since Z(C) is not normal in Xα

we have K 6= Z(C) and then Lemma 4.3(3) shows that C ≤ K. Now Xα is
generated by its Sylow 7-subgroups and so Xα ≤ K, too. Finally, Xα∩Xβ ∼
7 × 71+2

+ .(2 × 3) which shows that Xβ is generated by its conjugates of
Xα ∩ Xβ . We thus get X = 〈Xα, Xβ〉 ≤ K.

This shows that F = X0/Uα and H = X/Uα satisfy the hypothesis of
Lemma 2.7. So Lemma 2.7 tells us that X0 has a unique normal subgroup
N which is minimal with respect to properly containing Uα, that N/Uα

is simple, and as N/Uα is obviously not cyclic, that X0/Uα embeds into
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Aut(N/Uα). Furthermore, as N/Uα ≥ X/Uα, Lemma 4.4 and Corollary 2.4
imply that N/Uα

∼= He. Since the Schur multiplier of He is trivial (see [5,
page 104]) this implies N ∼= 7 × He. Moreover, [5, page 104] reveals that
Xα and Xβ are both maximal subgroups of N and so N = 〈Xα, Xβ〉 = X.
Finally, X0 = NNX0

(C) = NNX(C) = X by a Frattini argument and
Lemma 4.4.

From the definition of Y and the structures of Yα, Yβ we further see that
X E Y and that Y = 〈X,x〉 for some element x of order 6 whose cube does
not centralize X ′. Together with the fact that |Out(He)| = 2 this shows
that the structure of Y is also as stated and that Y = Y0. (Otherwise we
would get X0 > X.)

Comparing Proposition 4.5 with the list of p-local subgroups of the

monster M in [5, page 234] we see that Y is isomorphic to a 7A-normalizer

in M .

§5. 2-Central involutions

The main goal of this section is to prove that G contains a unique

conjugacy class of 2-central involutions and to show that the centralizer of

such an involution is of shape 21+24
+ .Co1. As a consequence, we also get

that the 2-part of |G| is 246.

Recall our fixed complement T ∼= 6 × 6 of S in Nαβ and its three

involutions t1, t2, t3.

Lemma 5.1. t1, t2, and t3 are all conjugate in G.

Proof. By Lemma 3.2 and Corollary 2.2, t2 and t3 both project to a
permutation conjugate to (12)(34)(56) in 〈Lβ, t2〉/O7,2(〈Lβ , t2〉). In partic-
ular, they are conjugate in Nβ. Further, it follows from the structure of
GL2(7) that there is some g ∈ NNα(T ) \ Nαβ such that Zα = ZβZg

β. As

[t1, Zβ] = 1 6= [t1, Zα] we get [t1, Z
g
β ] 6= 1 and so t1 6= tg1. Since g normalizes

〈t1, t2〉 = 〈t1, t3〉 and tg2 = t2 we must have tg1 = t3 and the lemma follows.

Set E = CQβ
(t2).

Lemma 5.2. |E| = 72 and CNβ
(t2) has two orbits {Ui | i = 0, 1, 2, 3}

and {Zi | i = 0, 1, 2, 3} on the set of cyclic subgroups of order 7 in E, where

U0 = Uα and the Zi are conjugates of Zβ.
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Proof. We have

Qβ/Zβ = CQβ/Zβ
(t2) ⊕ [Qβ/Zβ , t2]

as a decomposition invariant under CNβ
(t2). Since

C〈Lβ ,t2〉(t2)Qβ/Qβ ∼ 2 × 2.Sym(4)

and t1 inverts Qβ/Zβ we conclude that both factors must be 2-dimensional.
So |E| = 72 as Zβ 6≤ E.

Clearly U0 = Uα ≤ E. Now let g ∈ Nα with tg1 = t3 as in the proof of

Lemma 5.1 and choose h ∈ 〈Lβ, t2〉 with th3 = t2. Then tgh
1 = t2 and so t2

centralizes Z0 = Zgh
β . Since

Z0 = Zgh
β ≤ Zgh

α = Zh
α ≤ Qh

β = Qβ

we see that Z0 ≤ E. Finally, the length of the orbits follows from the
facts that Z0 and U0 are not conjugate in G by Proposition 4.5, that E
contains precisely eight cyclic subgroups of order 7, and that t1 ∈ N ′ for
any subgroup N ≤ CNβ

(t2) with |CNβ
(t2) : N | < 4.

Set N0 = NG(Z0), L0 = CG(Z0), Q0 = O7(N0), J0 = CN0
(t2), and

K0 = J∞
0 . Then J0 ∼ (7 × 2.Alt(7)) : 6 and K0

∼= 2.Alt(7).

Let K = CG(t2).

Lemma 5.3. We have X ∩ K = CX(t2) ∼ 7 × 21+6
+ .L3(2),

Y ∩ K = CY (t2) ∼ (7 : 3 × 21+6
+ .L3(2)).2,

and O2(X ∩ K)/〈t2〉 is irreducible as module for (Y ∩ K)/O2(Y ∩ K).

Proof. We know that X∩K ≥ Kα
∼= SL2(7) and so [5, page 104] shows

that X ∩K is as stated (since the other involution centralizer 22.L3(4).2 ≤
He does not contain SL2(7)). The structure of Y ∩K follows immediately.

Lemma 5.4. E ∈ Syl 7(K).

Proof. We have E ≤ K by the definition of E and K. Let E ≤ E1 ≤
E0 ∈ Syl7(K) such that E E E1. Then CE(E1) 6= 1 and by Lemma 5.2 we
may assume that either Z0 ≤ Z(E1) or Uα ≤ Z(E1). In the second case we
get E = E1 = E0 from Lemma 5.3. In the first case, as t2Q0 ∈ Z(L0/Q0),
t2 inverts Q0/Z0 whence E1 ∩ Q0 = Z0 and E1Q0 = EQ0 ∈ Syl7(L0). So
E = E1 = E0 as |S : Qβ| = 7.
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Corollary 5.5. O7(K) = 1.

Proof. This can easily be deduced from Lemmas 5.2, 5.3, and the
structure of J0.

Proposition 5.6. K ∼ 21+24
+ .Co1.

Proof. Let R = O7′(K) and K = K/R. Let N be a minimal normal
subgroup of K and N its full preimage in K. Then 7 divides |N |. Now
Lemmas 5.2 and 5.4 immediately imply that E ≤ N and that N is simple.
From the structures of X ∩ K and K0 we infer further that

O7(K) = N ≥ 〈X ∩ K,K0〉R/R.

In particular, CN (Zi) ∼= 7×Alt(7) and CN (Ui) ∼ 7× 26.L3(2) or CN (Ui) ∼=
7 × L3(2) for i = 0, . . . , 3. Applying Theorem 2.5 to N now shows that
N ∼= Co1 and also that CN (Ui) ∼= 7 × L3(2) must hold for i = 0, . . . , 3. In
particular, R 6= 〈t2〉.

On the other hand, as R = 〈CR(e) | e ∈ E#〉 and we also see that
CR(Zi) = 〈t2〉 and CR(Ui) ∼= 21+6

+ for i = 0, . . . , 3 we conclude that R
is a 2-group of order |R| = 225. Also, t2 ∈ R′. Since R/〈t2〉 admits N
faithfully and the dimension of the smallest nontrivial representation of
Co1 over GF (2) is 24, we get that R is extraspecial with R′ = 〈t2〉 and
R/R′ is irreducible as N -module. Moreover, by [13] the 24-dimensional
representation of Co1 over GF (2) is absolutely irreducible and uniquely
determined. So our representation of N on R/〈t2〉 must be identical to the
known one which embeds Co1 into O+

24(2) and R must be extraspecial of
+-type. Finally, we get K = N since the outer automorphism group of Co 1

is trivial (see [5, page 180]).

Corollary 5.7. Let P ∈ Syl 2(K). Then Z(P ) = 〈t2〉 and P ∈
Syl2(G); in particular, {tg2 | g ∈ G} is the unique conjugacy class of 2-
central involutions in G.

Proof. Since K/O2(K) acts faithfully on O2(K) and O2(K) ≤ P we
have Z(P ) ≤ CK(O2(K)) ≤ O2(K). So Z(P ) ≤ Z(O2(K)) = 〈t2〉, which is
the first assertion. Now let P EP1 ≤ P0 ∈ Syl2(G). Then P1 ≤ NG(Z(P )) =
NG(〈t2〉) = CG(t2) = K and so P = P1 = P0.
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§6. The centralizer of a non 2-central involution and the proof of

Theorem 1.1

To establish the isomorphism G ∼= M we also need to find an involution

with centralizer isomorphic to 2.BM in G. By [13], as a K/O2(K)-module,

O2(K)/〈t2〉 is isomorphic to the Leech lattice reduced mod 2. Let s ∈

O2(K) be an element such that s〈t2〉/〈t2〉 corresponds to a vector of type

2. Then from the Atlas [5, page 180], we have that s has order 2, CK(s) ∼

21+1+22.Co2 and CK(s)/〈s〉 ∼ 21+22
+ .Co2 is perfect.

Lemma 6.1. s and t2 are not conjugate in G.

Proof. Suppose that s is conjugate to t2. Then CK(s) = K ∩ CG(s)
and

CK(s)O2(CG(s))/O2(CG(s)) ∼= Co2,

as Co2 is a maximal subgroup in Co1. Thus O2(CK(s)) ≤ O2(K) ∩
O2(CG(s)). But

[O2(K) ∩ O2(CG(s)), O2(K) ∩ O2(CG(s))] ≤ 〈t2〉 ∩ 〈s〉 = 1

so O2(K) ∩ O2(CG(s)) is abelian. Since O2(CK(s)) is not abelian, we have
a contradiction. Thus s is not conjugate to t2.

Lemma 6.2. The elements of order 7 in CG(s) are not conjugate into

Zβ. In particular, we can choose s ∈ K = CG(t2) such that s ∈ X and

CX(s) ∼ 7 × 22.L3(4).2

Proof. Since all the involutions in CG(Zβ) = Lβ ∼ 71+4
+ .2.Alt(7) are

conjugate to t2, the first claim follows at once from Lemma 6.1. Conse-
quently, since 7 divides |Co2|, Lemmas 5.2 and 5.4 imply that we may
choose s ∈ O2(CK(t2)) so that [s, Uα] = 1. Now CX(s) ∼ 7 × 22.L3(4).2
follows from [5, page 104] and Lemmas 5.3 and 6.1.

Set L = CG(s), let F0 ∈ Syl7(X ∩ L) and F0 ≤ F ∈ Syl 7(L). Observe

that |F0| = 72.

Lemma 6.3. F = F0 and all the elements of F are conjugate in L to

elements of Uα.
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Proof. We have already seen that F does not contain any 7-central ele-
ment. In particular, the same holds for F0. Since by Lemma 4.2 CQβ

(Uα) ∈
Syl7(X) and as by Lemma 3.1 all elements in Qβ are either 7-central
or conjugate into Uα, we conclude that all elements in F0 must be con-
jugate into Uα. Thus, Sylow 7-subgroups of CG(f) are isomorphic to

CQβ
(Uα) ∼= 7 × 71+2

+ for any f ∈ F #
0 . We hence conclude that any 7-group

containing F0 properly contains 7-central elements and that F = F0.
Finally, let f ∈ F # and g ∈ G with f ∈ U g

α. Then s, sg−1
∈ CG(Uα) =

X. Since by [5, page 104] He just contains two conjugacy classes of in-
volutions and as s is not conjugate to t2 there must be some h ∈ X such
sh = sg−1

. Then hg ∈ L and Uhg
α = Ug

α = 〈f〉.

Lemma 6.4. CX(s)∩CK(s) contains a Sylow 2-subgroup V of CX(s).

Proof. From the identification of O2(K) in Proposition 5.6, we have
that CO2(K)(Uα) ∼ 21+6

+ and so CO2(CK (s))(Uα) has order 26. Now, by [5,
page 154], the centralizer of a Sylow 7-subgroup in CK(s)/O2(CK(s)) ∼= Co2

is 7 × Dih(8). Thus we infer that CCK(s)(Uα) ∼ 7 × V where V has order
29. By Lemma 6.2, |CX(s)|2 = 29. This proves that V ∈ Syl 2(CX(s)).

Proposition 6.5. L ∼= 2.BM .

Proof. Clearly, O7(L) = 1. Let U = O7′(L), L = L/U , let N be a
minimal normal subgroup of L, and N its full preimage in L. Since 7 dives
|N |, F ∩N 6= 1 and so F ≤ N , as all cyclic 7-subgroups of F are conjugate
in L by Lemma 6.3. A similar argument shows that N must be simple.

By Lemmas 6.2 and 6.3 we now have CN (f) ∼ 7 × 2.L3(4).2 or 7 ×
L3(4).2 for any f ∈ F #.

In the first case, Theorem 2.6 gives N ∼= BM . Furthermore, L ∩
CG(F ) ≤ N and so L/N embeds into Out(N ). Since Out(BM) = 1 by
[5, page 219] we get L = N . Also, as U = 〈CU (f) | f ∈ F #〉 and now
CU (f) = 〈s〉 for any f ∈ F # we get U = 〈s〉. Hence L ∼= 2.BM since
s ∈ CX(s)′ ≤ L′.

It remains to exclude the second case, that is, that 22 ∼= O2(X∩L) = U .
Now U ≤ V ≤ CK(s) where V ∈ Syl2(CX(s)) as in Lemma 6.4. As U is
normalized by CK(s) we infer that U = 〈s, t2〉. On the other hand, by [5,
page 104] all involutions in O2(X∩L) are conjugate in X. This contradiction
to Lemma 6.1 completes the proof.

Proof of Theorem 1.1. This now follows from Propositions 5.6, 6.5, [12],
and [25].
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We remark that in [25] Wilson proved that M contains just one con-

jugacy class of maximal 7-local subgroups which is not mentioned in [5].

This additional 7-local subgroup was discovered by Chat Yin Ho [14] it is

isomorphic to 72 : SL2(7) and so does not contain a Sylow 7-subgroup of

M .

Acknowledgement. We would like to thank the anonymous referee
for his remarks which improved the proof of Theorem 2.3 and considerably
simplified Section 5.
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