
NOTE ON NON-COMMUTATIVE SEMI-LOCAL RINGS

YUKITOSHI HINOHARA

Our aim in this note is to generalize some topological results of commuta-

tive noetherian rings to non-commutative rings. As a supplemental remark of

[2] we prove in § 1 that any right ideal of a complete right semi-local ring is

closed, and that

n MJS = (o)
β = l

for any finitely generated right module M over a complete right semi-local ring

A where / is the Jacobson radical of A.

In § 2 we are concerned with the flatness of modules. C. Lech gave in [7] an

ideal theoretical criterion of the flatness of modules over a commutative ring.

We notice that his criterion of the flatness is valid for non-commutative rings.

§ 1. Non-commutative semi-local rings

DEFINITION. Let A be a ring with a unit element 1 and J its Jacobson

radical; A is said to be right semi-local if the following conditions are satisfied:

(a)
s = l

(b) A is right noetherian,

(c) A/J satisfies the minimum condition on right ideals.

This definition is due to E. H. Batho who studied the basic property of this

class of rings in [2].

By virtue of the condition (a), we may introduce a Hausdorff topology

(called the /-adic topology) in A and construct the completion A of A with

respect to this topology.

For brevity, we call an ideal / of A a nucleus if Π 7s = 0 and denote the
8=1

Jacobson radical of the ring A by J(A).

LEMMA 1. Let A be a right semi-local ring and A the completion of A tvith

respect to the J{A)-adic topology. Then we have
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j(Ar=j(ArA, ή/(i)s=o,
s-=l

J(Λ)snΛ=J{Λ)s

y Λ/J(Λ)S~Λ/J(Λ)S

for any positive integer s.

For the proof we refer to [Theorem 2.3 of 2] and [Theorem 2 of 3].

LEMMA 2. Let A be a ring ivith a unit element 1. Then we have the re-

lation NJi l) # N for any finitely generated right Λ-module N{ ^0).

This is [Proposition 2 of 8, p. 200].

LEMMA 3. Let A be a ring and J its Jacobson radical Assume the follow-

ing conditions for A:

(a) A I] satisfies the minimum condition on right ideals,

(b) / is a nucleus and has a finite number of right A-basis,

(c) A is complete with respect to the J adic topology.

Then we have the relation

fλ(M+FJs) =M
S = l

for any finitely generated A-submodule M of a free right A-module F.

00

We notice that Π FJS = (0) since F is a free Λ-module and / is a nucleus.

Therefore we can define a Hausdorff topology in F by taking F, FJ, FJ2> . . .

to be neighbourhoods of zero. Then the closure N of any submodule N of F

is equal to Π(N+FJS).
s = l

Before proving Lemma 3 we prove

LEMMA 4. If a submodule M of F is finitely generated we have M = M+ MJ.

Proof. We consider the residue class module F/MJ of which (M+ MJ)/MJ

is a submodule. Since MJQMJ, we have ((M+MJ)/MJ)J= (0). Let m beany

element of M. Then m can be written in the following form, for any positive

integer t,

m = 'Σmiλ\j

where {mi, . . . f mn) is a Λ-basis of M, λi e A and jt e FJ*. Now m = imA + M

+ MJ)!MJ is a finitely generated module and in/ = 0. Therefore m is considered
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as a finitely generated /(//-module. Since Λ/J satisfies the minimum condition

on right ideals, the module πt satisfies the minimum condition on submodules.

Consider the descending sequence of submodules

in2mΠ (FJ+MJ)/MJΏ in Π (FJ2

and there exists an integer u such that

in Π ( F f + M/)/M/= mΠ ( F / ^

The fact that MJ is closed implies

m Pi (FJU + MJ)/MJ = (0).

Let m = Σ w i ί + ; « , ju G FJU. Then we have

ju = m- Y>niiλ'i G FT Π (raΛ 4- M).

Therefore ./« G M/, i.e. m e M-f- M/. Thus we have M^ M+ MJ. The converse

inclusion is obvious and we completes the proof of Lemma 4.

Proof of Lemma 3. Since M i s a finitely generated module and the two-

sided ideal / is finitely generated as a right ideal, MJ* is finitely generated for

any positive integer s. Thus we have

M/ = M/ + M//+1.

Now we are in a position to prove M — M. Let m be any element of M> Then

we have, by virtue of the above relation of submodules,

m = Σ mλi0) 4- m\ λf] e= Λ, m' e= M/ c F/,

m' = Σ w;} υ + w", ;S υ e /, m7' G Mj2" C Fj\

rn" = .

Let I/= Σ^ί 7 ) Then we have Wι = Σ w ? ι e M. This completes the proof of
j = 0 t

Lemma 3.

As an immediate consequence of Lemma 1 and Lemma 3, we have

THEOREM 1. Let A be a right semi-local ring and J its Jacobson radical.

Then any finitely generated right ideal of the completion A of A is closed, and

therefore there holds the relation I A Γ\ A = I tvhere T is the closure in A of a

right ideal /of A.

THEOREM 2. Let A be a complete right semi-local ring. Then any right ideal

of A is closed. Further, for any finitely generated right A-module M, ive have
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Γ1M/-0 where J^J(A).

Proof. There exists an exact sequence of right A-modules

0->N-+F-+M~> 0

where F is a finitely generated free Λ-module. Since A is right noetherian, N

is finitely generated. Thus we deduce Π (N+FJS) - N, i.e. f](F/N)Γ = 0.
s--l s = 1

This is the required result since F/N^ M.

By combining this theorem with [Remark 2 of § 4 in 9] and [Theorem 3.4

of 2], we have

COROLLARY. A complete right semi-local ring A is linearly compact as a

right Λ-module in the discrete topology.

Finally we have the following result:

THEOREM 3. Let A be a right noetherian ring ivith a unit element 1, and Q

a two-sided ideal of A tvhich is a nucleus. If any right ideal I of A is closed
CO

ivith respect to the Q-adic topology, then we have Π MQS = (0) for any finitely
β = l

generated right A-module M.

Proof. We assume that Π MQS =t 0 and deduce a contradiction. We con-
- 1

sider the set © of all submodules S such that Π {M/S)Qi ^ 0. Let N' be a
TO

maximal element of S. Then by assumption we have N = Π (N' + MQb) # Nf.
s = l

Let M' be any submodule of M properly containing N'. Then M' Ώ N by the

maximality of N'. Let m be any element of MlN'. Then we have mA = A/Q{m)

where 0(m) = {λ e A \mλ — 0}. Since any submodule of mA contains the unique

minimal submodule Λ7/iV' of M/N' (this implies that M/N' is sub-directly irre-

ducible), A/Oiϊn) is subdirectly irreducible. Therefore there exists a positive

integer t such that Q^Oiϊn) since Q(m) is closed by assumption. This implies

that mQ1 = 0. Therefore there exists an integer 5 such that {M/N' )QS = 0 since

MIN1 is finitely generated. This contradicts our assumption N ^ Nf.

§ 2. Flatness of modules

Let A be a ring with a unit element 1 and M a (unitary) left yί-module.

Then the module M is said to be Λ-flat if Tor« (C, M) = 0 for all right Λ-modules

C and all n > 0.
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Let λ be an element of Λ, I a right ideal of A and M a left Λ-module.

Then we use the following notations:

Z for the ring of all integers,

IM for the Z-submodule of M generated by the set IM,

(/: λ) for {μ<ΞA\λμeίI) and

(IM: λ)M for { m e ΛfUme IM}.

THEOREM 4. Let A be α ring with α unit element 1. Then, for each left A-

module M, the following conditions are equivalent to each other:

(a) M is A-fiat,

(b) TonA (All M) = 0 for each right ideal I of A,

(c) i) For dwy r/ f̂eί ideals Λ <?m/ 7*2 0/ A, there holds the relation (Λ Π /2)M

= / i M Π / 2 M , awύ?

ii) For £#c/z element λ of A, there holds the relation (0 : λ)M- (0 : Λh/.υ

(d) (/ : λ)M= (IM : A)JW /or £<3C/J right ideal I and each element λ of A.

The equivalence of the conditions (a) and (b) is an exercise of 4 (see p. 123

of [4]) and the implication (d) =? (a) is proved by the same way as in [7], so

we prove only the implications ( a ) = ? ( c ) = ^ ( d ) .

To deduce i) of (c) from (a), it suffices to prove

LEMMA 5. Let h and h be right ideals of A and M a left A-module. If

Torf (Λ/Iι 4- /2, M) = 0 we have the relation (hC\h)M^LMΓ\ I2M.2)

This lemma follows immediately from the exact sequence:

(IiΓ\h)®M—>
I ί I

h®M—> Λ®M —>
I i I

-> A/h®M-> Λ/Iι + I2®M-» 0

where ® means ®A.

Proof of the implication (a) =»ii) of (c). From the natness of the module

My we deduce a commutative exact diagram

1( A. Hattori called this property of a module torsion-free in [6].
2) The proof of this lemma is a formal generalization of those of [Theorems 5 and 6

in 1, p. 311].
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O - > ( O : i ) 0 M - > Λ®M-» A 1(0 : λ)®M~> 0

0 — > (0 : ;)jf -> Λf > AM -> 0

where 0 means <g>Λ. From this diagram we have the required result (0 : λ)M

= (0 : λ)u by virtue of the well known "five lemma".

Proof of the implication (c) = * (d). It suffices to prove (7 : λ)MΏ. (TM : λ)M.

Let m be any element of (TM : λ)M. Then we have λm e A(/Λf : Λ)* = TMΠ AM

= (TΓ\ λA)M= λ(T : λ)M. Therefore there exists an element /ra' G (/ : A)M such

that

λm = λm', i.e. λ(m-m') =0.

This implies that m~mf^(0 : Λ)* = (0 : λ)Λf c (/ : A)Af. Thus we have

w e (7 : Λ)M, and this completes the proof of Theorem 4.

Remark. As an immediate consequence of Theorem 4, we have the follow-

ing corollary by combining [Theorem 2 or Corollary of 5] :

A commutative integral domain A is a Priifer ring if and only if there holds

the relation

(71Π72)7-/i7Π727,

for any ideals h, 72, and I of A?

REFERENCES

[1] Y. Akizuki and M. Nagata, Modern algebra (in Japanese), Ser. of Modern Math.,

Kyoritsu-Shuppan Co., Tokyo (1957).

[2] E. H. Batho, Non-commutative semi-local and local rings, Duke Math. J., 24 (1957),

pp. 163-172.

[3] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans, of the

Amer. Math. Soc, 59 (1946), pp. 54-106.

[4] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ., (1956).

[5] A. Hattori, On Prϋfer rings, Jour. Math. Soc. Japan, 9 (1957), pp. 381-385.

[6] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya

Math. J., this issue.

[7] C. Lech, Note on multiplicities of ideals, Arkiv for Math., B. 4, H. 1 (1960), pp. 63-86.

[8] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. XXXVII (1956).

[9] D. Zelinsky, Linearly compact modules and rings, Amer. J. of Math., 76 (1953), pp. 79-90.

Tokyo Metroporitan University

3> This result was suggested to the writer by T. Ishikawa.




