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1. Introduction. In this note, we treat the problem to determine the con-

formal structure of the closed surface by the structure of the differentiable

function algebra as the normed algebra with a certain norm.

A similar investigation is found in Myers [1]. He concerns himself with

determining the Riemannian structure of the compact manifold using a certain

normed algebra of differentiable functions.

We have shown in [2] the fact that the Royden's ring as a topological

ring determines the quasiconformal structure of the Riemann surface. Thus it

is natural to inquire whether the Roydens ring as a normed ring characterizes

the Riemann surface or not. This problem is positively answered for closed

surfaces by reduction to the following: A topological mapping behveen tivo

surfaces with the annular maximal dilatation^ 1 is a conformal2 mapping.

2. Royden's ring, We denote by R an open or closed Riemann surface

and by M(R) its Royden's ring, i.e., the normed ring of all bounded continuous

functions on R which are absolutely continuous in the sense of Tonelli3) with

finite Dirichlet integrals. The norm of / in M(R) is given by

( l ) II/I! = I!/IU

where \\f\U denotes the uniform norm sup( |/(P) | P e R). Then M(R) is a

complete normed ring with respect to the norm (1).

We denote by Cn Γ\ M(R) the incomplete normed subring of M(R) consist-

ing of ail Cn-ίunctions in M(R). The following holds (cf. [2]).

LEMMA 1. C" Γ\ M(R) is dense in M(R) in = 1, 2, . . . ).

Received March 16, 1959.
1 } The definition will be given in §3.
2 ) Here and hereafter the term conformal includes both of the direct and the indirect

one.
3 ) A function f{x, y) on [a, b; c, d] is called absolutely continuous in the sense of Tonelli

if f(x,y) is absolutely continuous in #e [a, b] for almost every fixed values y& [c, d] and
the corresponding fact holds if x and y are interchanged and further fx and f,, are locally
integrable. The notion is carried over Riemann surfaces using local parameters.

1



2 MITSURU NAKAI

Let A be an annulus which is contained in a simply connected domain D

in R and whose boundary consists of two simple closed curves Co and &. We

assume that the simply connected domain (Co) C D bounded by Co includes Ci.

Define a continuous function fA(P) on R as follows: fA(P) = 0 if P e R— (Co),

= 1 if P ^ ( C i ) , the closure of the simply connected domain (Ci) in D

bounded by Cu and fA(P) is harmonic in (Co) — (Ci). Clearly .Λ is contained

in M{R). We shall call fΛ the fundamental function with the fos£ A Denote

by Fp the totality of fundamental functions in M(R) whose bases contain the

fixed point P in R. The linear space with real coefficients generated by FP will

be denoted by F§. We notice that the functions in FP is harmonic at P.

Let z~x+iy be a local parameter at P. We define

), Λ(P),

Then Ίflf, z is a linear subspace of 4-dimensional real linear space R4. For this

space we can show the following:

LEMMA 2. 9Jl?,* = R4.

Proof. Let z be valid in a simply connected domain D in R. Then P is

represented a + ib in terms of z. Let (ε, ^) be a pair of real numbers such that

an annulus 5(e,ηfrlfr2) = {Q n < I Λ-hί^-he + ίT? - z ( Q ) I < r2} is contained in D

with its closure and that P e B ( u > r ] ( f 2 ) . The totality of such pairs (e, -η) con-

tains a punctured disc E in the U, ̂ )-plane: 0 < ί ε + i-η I < min (I z{Q) - z(P)\

Q*ΞdD).4) Let f(Q) be the fundamental function with the base B{c,τ,rur2/.

Then

f(Q) = /̂ (log r2 - log I « + ib + ε + i η - «(©) I),

β = l/(logr2-logn),

for Q in -B,εtη.rlfrt). Hence we get

(/«(P),Λy(P),Λ(P),Λ(P))

which shows that 9Jί?,2 contains the linear subspace W which is generated by

ε2), 2ε^, - ε ( ε 2 - f ^ 2 ) , - ?(ε2 4- -η2)) \ (ε, -η) <Ξ E).

4) For the set D, we denote by dD the boundary of D.
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It is easy to see, choosing e and -η suitably, that W contains unit vectors

(1, 0, 0, .0), . . . , (0, 0, 0. 1) and hence Ή%,z is of 4 dimension. This completes

the proof.

Let K be a compact domain in R whose boundary consists of a finite number

of closed Jordan curves. First, for a function / in C ι Π M(R), the function πκf

is defined as follows: πκ/=f in R-K and πκf is the harmonic function in K

with boundary values / on 3K. Then by Dirichlet principle and the maximum

principle of harmonic functions, we get the following

(2) || πκf\\* 11/11.

By Green's formula, we also have the equality.

(3) Din = Dΐ.πκ/1 + Dίf- πκfl.

Thus KK is a linear operator of Cι Γ\M{R) into M(R) and, using Lemma 1

and the inequality (2), we see that πκ can be extended to the whole M{R)

preserving the relations (2) and (3). We shall call πκ the harmonizer on M(R)

with respect to K. Summing up these, we get

LEMMA 3. The harmonizer πκ is a linear operator with πκ πκ = πκ of

M(R) into M(R) possessing the following properties:

(a) πκf=f in R— K and πκ.f is harmonic in K,

(b) (2) and (3) hold for all f in M(R),

( c ) 7r*/=0 if and only iff=0 in R-K.

3. Maximal dilatation. Let T be a topological mapping of a Riemann

surface Rι onto another surface R2. The annular maximal dilatation K*(T)

of T is defined by the following

(4) jRΓ*(Γ)=inf U λ~ι mod A έ mod TA έ λ mod A).

Here A runs over all annuli with boundary consisting of two Jordan closed

curves in Ri and mod A denotes the modulus of A. It is clear that 1 ^ K*(T)

^ oo. It is known that KA\T) <=kK{T) i=kenKHT) holds, where K(T) denotes the

maximal dilatation in the sense of Pfluger-Ahlfors, i.e., the one using quadri-

laterals instead of annuli in (4). It is well known that K(T) = 1 if and only

if T is a conformal mapping. We shall prove the corresponding fact for K*(T).

THEOREM 1. A topological mapping T of Ri onto R2 is conformal if and

only if K*(T) =1.
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Proof. First we show that / e FTP implies /° T e F?1. For this aim, we

have only to prove that / ° T is harmonic on Aι if / is in FψPt where Aι is the

inverse image of the base A* of/ by T. Let z = x + iy and w-u-j-iv be uni-

formizers valid in neighbourhoods of Aι and Λ2, respectively. Let ψiiτesp. ψϊι)

be a conformal mapping of a circular ring AT (resp. A2) onto A\ (resp. a circu-

lar ring A*).

Putting T* = ψ2 ° T ° ψi and considering T* as a topological mapping of

Af onto At, we see that #*(Γ*) = 1. Thus we may assume At : n < 12*I <ru

AΪ : ri < \ιv*\ < r2. Let A* be divided into At\ and Ati by a concentric circle

/* and let Atu Ati and It be their images under Γ*. As we have

mod Λ2* = mod A * = mod Ati 4- mod Aw,

and

mod i4?i = mod Atk (k = 1, 2),

we get

mod A2* = mod A*i + mod i42*,

which shows /2* is the concentric circle with the same radius as /*. Hence we

see that

(5) ί Γ V I = |2*|.

Since, obviously, f(ψ2l(w*)) is a harmonic measure of \w*\ -Tι with respect to

At, we have

(β) Aφ Hw*)) = iogik/\w*\)9

where μ and k are suitable constants. By using (5) and (6),

/ o T(z) = / o φϊ1 o Γ* o ψ-\z) = log (ft/| Γ* o ̂ Γ

which shows / ° T is harmonic in Λi.

Next we show that u and # are in class C\ where ^(2) and ^(2) are the

local equations of T : w- Tz = u(z) 4- iv(z). Let a point z-x + iy be fixed.

Putting, for example,

Δu- Δu{Δx) = uix+ Δx, y) - u(x, y),

we get, for/ in F?h
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(7) ]x

{f° T(x+Jx,y)-f° T(x,y))

-~+fv{u + ΘΔu} v + ΘΛv) jχ , 0 ^ θ ^

Now we can see that

.,. Δυ . f.— Δυ .
— oo < h r n —r- <=k h m —j~ <

Δ : c _>0 "X Δx^Q ΔX

Contrary to the assertion, assume that there exists a sequence {Δxn) -* 0 such

that l im-~~~- = oo. By Lemma 2, there exists / in F?l satisfying (fu(Tz)>
n->co ΔXn

fv(Tz)) = (1, 1) or ( - 1, 1). As / and / ° T are harmonic at Tz and z, respec-

tively, we arrived at the following contradiction: lim ——A—-- = - oo and at
n->oo ΔXn

the same time - °o. Thus Γίϊn - , - < oo. Similarly, we get lim —^ > - oo.
Δχ-+o Δx • - - ΔX

Again choosing / in Fτl such that (fu(Tz), MTz)) = (1, 0), we get from (7)

and from the above argument that

,. Δu Bfo T , Λ
lim --T-- = — ^ - — [ z ) .
ΔX^Q ΔX oX

Hence ux(z) and similarly vx(z) must exist. From (7) it follows that

(7)' -ξ-fo T(z) =Mu, υ)ux{z) +Mu, υ)vχ(z).
oX

By the similar argument as used in showing the existence of lim -•—, the
Δχ-*0 ΔX

continuity of ux and vx can be easily proved. We get the existence and the

continuity of uy and υy> similarly.

Applying the similar argument to (7)', we have the existence of uxx, uxy,

VχX and vxy and their continuity and also for uyy and vyy.

Finally we obtain

(8) Δ ( / o T(z)) =fuu(Tz)(ux + uy - υ2

x- v2

y) uyυy

where Δ is Laplacian. By Lemma 2, we get

(9)

Ux + Uv = V'χ + Vy, UXVχ + UyVy- 0,

which implies the Cauchy-Riemann relation for (u, v) or (u, - υ) which shows

that Tz is a direct or an indirect conformal mapping. This completes the proof
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of Theorem 1.

4. Algebras of differentiable functions. Here we state our main result

in this note.

THEOREM 2. Two closed Riemann surfaces Ri and R2 are confotmally

equivalent if and only if their Roydens rings M(Ri) and M(R2) are isometric-

ally isomorphic.

In other words, the normed ring theoretic structure of Roydens ring de-

termines the conformal structure of the closed surface.

Proof. The necessity of our condition is evident. So we'have only to

show that an isometric isomorphism a of M(Ri) onto M{R2) is induced by a

direct or indirect conformal mapping T of R2 onto Rt.

Let R* be the character space of M(Rj), i.e., the totality of homomorphisms

of M(Rj) onto the complex number field preserving the positiveness. Then

there exists a natural correspondence T of R* onto /?* induced by a : TX(f)

= 7Λfβ) for Xe R?, feM(Ri). But, for compact spaces /?*, it is easy to see

that Rί = Rk. Here we consider P e ^ a s a character defined by P(f) = / ( P )

for / e M{Rk). Moreover the topology of Rk as a Riemann surface is coincident

with the weak* topology σ(Rk, M(Rk)) of Rk = Rk. Thus, by definition it is

clear that T is a topological mapping.

Let A2 be an annulus with boundary consisting of two Jordan curves. Let

TA2 = Aj. We shall prove that mod Aι = mod As, or K*( T) = 1.

For the aim, we notice that

(10) II/ΊU = 11/11. for/in M(Rι).

In fact, 11/11. = sup (U I Λe=S(/)), where S(/) is the sjperfrβ of / in M(A),

that is, the totality of complex numbers such that /— A is not inversible. Clearly,

SI/) = S(/ σ ), so (10) follows. Thus by the isometricity of a with respect to the

norm (1), we get

(11) DZf°l = DZfl.

Let f2 be the fundamental function with the base Λ2 and put 7\-fl \

Obviously, πAJ\ =/i is a fundamental function with the base Ai. Putting f2 =/Γ,

we have πAJ2=f2. By (3) and (11), it holds
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Dίfjl = DZfil = DC/2] ̂  DC**/,] = DC/,] = DC/Π

= DC/J ^ DCTΓ^/I] = DC/J.

Thus we get DC/J = DC/2]. As mod Ay = 2τr/DC/y], we get mod Ai = mod i42

or K*(T) = 1.

By Theorem 1, the topological mapping T is conformal. This completes

the proof of Theorem 2.

COROLLARY. TWO closed Riemann surfaces Rx and R« are conformally

equivalent if and only if Cn(Ri) and Cn(R'>) are isometrically isomorphic, where

Cn{Rj) denotes the incomplete normed ring of all functions in the class Cn with

the norm (1). Here n is an arbitrary positive integer.

Proof. Let a be an isometric isomorphism of Cn(Rι) onto Cn(/?2). Then

by Lemma 1, a can be extended to the isometric isomorphism of M(Rι) onto

M(Ri). Thus Rι and R2 are conformally equivalent.

The converse is obvious. This completes the proof.
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