ON THE DIMENSION OF MODULES AND ALGEBRAS, VI COMPARISON OF GLOBAL AND ALGEBRA DIMENSION

MAURICE AUSLANDER

Throughout this paper all rings are assumed to have unit elements. A ring Λ is said to be semi-primary if its Jacobson radical N is nilpotent and $\Gamma = \Lambda/N$ satisfies the minimum condition. The main objective of this paper is

Theorem I. Let Λ be a semi-primary algebra over a field K. Let N be the radical of Λ and $\Gamma = \Lambda/N$. If

$$\dim \Lambda < \infty$$
 and $(\Gamma: K) < \infty$,

Then

$$\dim \Lambda = \operatorname{gl.dim} \Lambda$$
.

Here dim Λ denotes the dimension of Λ as a K-algebra, i.e. dim $\Lambda = 1.\dim_{\Lambda^e} \Lambda$ where $\Lambda^e = \Lambda \otimes_K \Lambda^*$.

We do not know whether the condition $(\Gamma:K)<\infty$ follows from the condition that Λ is a semi-primary ring such that $\mathrm{gl.dim}\,\Lambda=\mathrm{dim}\,\Lambda<\infty$. The theorem has been previously proven in [3] and [4] under the stronger assumption $(\Lambda:K)<\infty$. In this case it was further shown that Γ is separable (i.e. $\mathrm{dim}\,\Gamma=0$). We do not know whether this is true without the assumption $(\Lambda:K)<\infty$.

1. Tensor product of semi-simple algebras

A semi-primary ring Λ with radical N is called *primary* if Λ/N is a simple ring.

PROPOSITION 1. Let Λ and Σ be rings and $\varphi: \Lambda \longrightarrow \Sigma$ a ring epimorphism. If Λ is a semi-primary ring with radical N, then Σ is a semi-primary ring with radical $\varphi(N)$.

Received February 29, 1956.

Proof: Since N is a nilpotent two-sided ideal in Λ , $\varphi(N)$ is a nilpotent two-sided ideal in Σ . The epimorphism $\varphi: \Lambda \longrightarrow \Sigma$ induces an epimorphism $\overline{\varphi}: \Lambda/N \longrightarrow \Sigma/\varphi(N)$. Since Λ/N is semi-simple, it follows that $\Sigma/\varphi(N)$ is semi-simple. Thus $\varphi(N)$ is the Jacobson radical of Σ , which shows that Σ is semi-primary.

The following proposition, which we state without proof, is due to Naka-yama and Azumaya (see [5], theorem 9).

PROPOSITION 2. Let Λ_1 and Λ_2 be simple K-algebras with centers C_1 and C_2 . Then $C_1 \otimes_K C_2$ is the center of $\Lambda_1 \otimes_K \Lambda_2$ and the two-sided ideals in $\Lambda_1 \otimes_K \Lambda_2$ are in a one-to-one lattice preserving correspondence with the ideals in $C_1 \otimes_K C_2$. Under this correspondence a two-sided ideal I in $\Lambda_1 \otimes_K \Lambda_2$ corresponds with the ideal $I \cap (C_1 \otimes_K C_2)$ in $C_1 \otimes_K C_2$ and an ideal I in $C_1 \otimes_K C_2$ corresponds with the two-sided ideal $(\Lambda_1 \otimes_K \Lambda_2)$ I in $\Lambda_1 \otimes_K \Lambda_2$.

Proposition 3. Let Λ_1 and Λ_2 be semi-simple algebras over a field K with centers C_1 and C_2 . If $\Lambda_1 \otimes_K \Lambda_2$ is semi-primary, then each of the algebras $C_1 \otimes_K C_2$ and $\Lambda_1 \otimes_K \Lambda_2$ is a finite direct product of primary K-algebras.

Proof: Since Λ_1 and Λ_2 are finite direct products of simple K-algebras we have that $\Lambda_1 \otimes_K \Lambda_2$ is the finite direct product of K-algebras of the form $\Sigma_1 \otimes_K \Sigma_2$, where Σ_1 and Σ_2 are simple algebras which are direct summands of Λ_1 and Λ_2 . It follows from Proposition 1, that if $\Lambda_1 \otimes_K \Lambda_2$ is semi-primary, then so are the algebras $\Sigma_1 \otimes_K \Sigma_2$, which are homomorphic images of $\Lambda_1 \otimes_K \Lambda_2$. Thus it suffices to prove the proposition in the event that Λ_1 and Λ_2 are simple K-algebras.

Let N be the radical of $\Lambda_1 \otimes_K \Lambda_2$. Since $(\Lambda_1 \otimes_K \Lambda_2)/N$ is semi-simple, it satisfies the minimum condition. Hence we have by Proposition 2 that $(C_1 \otimes_K C_2)/N \cap (C_1 \otimes_K C_2)$ satisfies the minimum condition. Since N is the maximal nilpotent two-sided ideal in $\Lambda_1 \otimes_K \Lambda_2$, it follows from Proposition 2 that $N \cap (C_1 \otimes_K C_2)$ is the maximal nilpotent ideal in $C_1 \otimes_K C_2$. Therefore $(C_1 \otimes_K C_2)/N \cap (C_1 \otimes_K C_2)$ is semi-simple. Since $N \cap (C_1 \otimes_K C_2)$ is nilpotent, every set of orthogonal idempotents in $(C_1 \otimes_K C_2)/N \cap (C_1 \otimes_K C_2)$ can be "lifted" to an orthogonal set of idempotents in $C_1 \otimes_K C_2$. From this and the commutativity of $C_1 \otimes_K C_2$, it follows that $C_1 \otimes_K C_2$ is a finite direct product of primary K-algebras.

Let $C_1 \otimes_K C_2 = \Sigma_1 + \ldots + \Sigma_n$ (direct product) where each Σ_i is a primary K-algebra with radical N_1 and let $\Gamma_i = \Sigma_i/N_i$. Since C_2 is a field we have for

each i the exact sequence

$$0 \longrightarrow N_i \otimes_{\mathcal{C}_2} \Lambda_2 \longrightarrow \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_2 \longrightarrow \Gamma_i \otimes_{\mathcal{C}_2} \Lambda_2 \longrightarrow 0.$$

Since C_1 is a field, we deduce from the above exact sequence the exact sequence

$$(*) \qquad 0 \longrightarrow \Lambda_1 \otimes_{\mathcal{C}_1} N_i \otimes_{\mathcal{C}_2} \Lambda_2 \longrightarrow \Lambda_1 \otimes_{\mathcal{C}_1} \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_2 \longrightarrow \Lambda_1 \otimes_{\mathcal{C}_1} \Gamma_i \otimes_{\mathcal{C}_2} \Lambda_2 \longrightarrow 0.$$

By Proposition 2, we have that the center of $\Lambda_1 \otimes_{c_1} \Gamma_i \otimes_{c_2} \Lambda_2$ is $C_1 \otimes_{c_1} \Gamma_i \otimes_{c_2} C_2 = \Gamma_i$ which is a field. Thus by Proposition 2, $\Lambda_1 \otimes_{c_1} \Gamma_i \otimes_{c_2} \Lambda_2$ has only the trivial two-sided ideals.

Now $\Lambda_1 \otimes_K \Lambda_2 = \Lambda_1 \otimes_{\mathcal{C}_1} \mathcal{C}_1 \otimes_K \mathcal{C}_2 \otimes_{\mathcal{C}_2} \Lambda_2 = \Lambda_1 \otimes_{\mathcal{C}_1} (\Sigma_1 + \ldots + \Sigma_n) \otimes_{\mathcal{C}_2} \Lambda_2 = \sum_{i=1}^n \Lambda_1 \otimes_{\mathcal{C}_i} \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_3$. Since each $\Lambda_1 \otimes_{\mathcal{C}_1} \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_2$ is a homomorphic image of $\Lambda_1 \otimes_K \Lambda_2$, we have by Proposition 1, that each $\Lambda_1 \otimes_{\mathcal{C}_1} \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_2$ is semi-primary. It follows from the fact that each N_i is a nilpotent two-sided ideal that each $\Lambda_1 \otimes_{\mathcal{C}_1} N_i \otimes_{\mathcal{C}_2} \Lambda_2$ is a nilpotent two-sided ideal in $\Lambda_1 \otimes_{\mathcal{C}_1} \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_2$. Hence we deduce from (*) and Proposition 1 that $\Lambda_1 \otimes_{\mathcal{C}_1} \Gamma_i \otimes_{\mathcal{C}_2} \Lambda_2$ satisfies the minimum condition and is thus simple. Therefore each $\Lambda_1 \otimes_{\mathcal{C}_1} \Sigma_i \otimes_{\mathcal{C}_2} \Lambda_2$ is a primary K-algebra, which establishes that $\Lambda_1 \otimes_K \Lambda_2$ is a direct product of primary K-algebras.

Remark. It should be noted that while the hypothesis of Proposition 3 is satisfied if $(\Lambda_1:K)<\infty$, it can also be satisfied without any finiteness restrictions on the linear dimension of the algebras. For example, let Λ_1 be a pure transcendental field extension of K and Λ_2 an arbitrary algebraic extension of K. Then $\Lambda_1\otimes_K\Lambda_2$ is a semi-primary K-algebra. On the other hand, it can be shown that if C is a commutative semi-simple K-algebra such that $C\otimes_K C$ is semi-primary, then $(C:K)<\infty$. Thus if Λ_1 and Λ_2 are semi-simple K-algebras with $C_1=C_2$, we have by Proposition 3 that $\Lambda_1\otimes_K\Lambda_2$ being semi-primary implies that $(C:K)<\infty$.

2. Tensor product of semi-primary algebras

Lemma 4. Let $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ be an exact sequence of left Λ -modules such that

$$1.\dim_{\Lambda} A < \sup(1.\dim_{\Lambda} A', 1.\dim_{\Lambda} A'').$$

Then $1.\dim_{\Lambda} A'' = 1 + 1.\dim_{\Lambda} A'$.

Proof: Let $n = 1.\dim_{\Lambda} A$, which is finite by hypothesis. Then $\operatorname{Ext}_{\Lambda}^{p}(A, C) = 0$ for p > n and all left Λ -modules C. Thus by the homology sequence for

the functor Ext we have that $\operatorname{Ext}_{\Lambda}^{p}(A', C) \approx \operatorname{Ext}_{\Lambda}^{p+1}(A'', C)$ for p > n. Thus if $\operatorname{l.dim}_{\Lambda}A' > n$ we are done. If $\operatorname{l.dim}_{\Lambda}A' = n$, then $\operatorname{l.dim}_{\Lambda}A'' \leq n+1$. But then by hypothesis $\operatorname{l.dim}_{\Lambda}A''$ would have to be greater than or equal to n+1. From the exactness of the sequence $\operatorname{Ext}_{\Lambda}^{n}(A', C) \longrightarrow \operatorname{Ext}_{\Lambda}^{n+1}(A'', C) \longrightarrow 0$ we see that if $\operatorname{l.dim}_{\Lambda}A' < n$, then $\operatorname{l.dim}_{\Lambda}A'' \leq n$, which is impossible.

Theorem 5. Let Λ_1 and Λ_2 be semi-primary algebras over a field K. Let N_i be the radical of Λ_i and let $\Gamma_i = \Lambda_i/N_i$, i = 1, 2. If $\Gamma_1 \otimes_K \Gamma_2$ is semi-primary, then $\Lambda_1 \otimes_K \Lambda_2$ is semi-primary. If further

gl. dim
$$\Lambda_1 \otimes_{\mathcal{K}} \Lambda_2 < \infty$$

then

$$\operatorname{gl.dim} \Lambda_1 \otimes_K \Lambda_2 = \operatorname{gl.dim} \Lambda_1 + \operatorname{gl.dim} \Lambda_2 = \operatorname{l.dim}_{\Lambda_1 \otimes_K \Lambda_2} \Gamma_1 \otimes_K \Gamma_2.$$

Proof: Consider the exact sequence

$$0 \longrightarrow R \longrightarrow \Lambda_1 \otimes_K \Lambda_2 \longrightarrow \Gamma_1 \otimes_K \Gamma_2 \longrightarrow 0$$

where $R = N_1 \otimes_K \Lambda_2 + \Lambda_1 \otimes_K N_2$. Since R is nilpotent and $\Gamma_1 \otimes_K \Gamma_2$ is semi-primary, it follows that $\Lambda_1 \otimes_K \Lambda_2$ is semi-primary.

The inequality

gl. dim
$$\Lambda_1 + \text{gl.dim } \Lambda_2 \leq \text{gl.dim} (\Lambda_1 \otimes_K \Lambda_2)$$

follows from [1] Theorem 16. The inequality

$$1.dim_{\Lambda_1 \otimes_K \Lambda_2} \Gamma_1 \otimes_K \Gamma_2 \leq gl.dim \Lambda_1 + gl.dim \Lambda_2$$

follows from the general inequality

$$1.\dim_{\Lambda_1\otimes_K\Lambda_2}A_1\otimes_KA_2 \leq 1.\dim_{\Lambda_1}A_1 + 1.\dim_{\Lambda_2}A_2$$

(See [2], Chapter XI, 3.2).

Assume $1.\dim_{\Lambda_1}\otimes_{\kappa\Lambda_2}\Gamma_1\otimes_{\kappa}\Gamma_2=m< n=\mathrm{gl.dim}\,\Lambda_1\otimes_{\kappa}\Lambda_2$. There exists then by [1], Corollary 11, a simple $\Lambda_1\otimes_{\kappa}\Lambda_2$ -module A such that $1.\dim_{\Lambda_1}\otimes_{\kappa\Lambda_2}A=n$. Since R is nilpotent, RA=0 and it follows that A is also a simple $\Gamma_1\otimes_{\kappa}\Gamma_2$ -module. By Proposition 3 we know that $\Gamma_1\otimes_{\kappa}\Gamma_2$ is a direct product of primary rings. Thus A is isomorphic with a left ideal I in $\Gamma_1\otimes_{\kappa}\Gamma_2$ (See [1], Proposition 15). Then $1.\dim_{\Lambda_1}\otimes_{\kappa\Lambda_2}I<1.\dim_{\Lambda_1}\otimes_{\kappa\Lambda_2}\Gamma_1\otimes_{\kappa}\Gamma_2$. Thus by Lemma 4 we deduce from the exact sequence

$$0 \longrightarrow I \longrightarrow \Gamma_1 \otimes_K \Gamma_2 \longrightarrow (\Gamma_1 \otimes_K \Gamma_2)/I \longrightarrow 0$$

that $1.\dim (\Gamma_1 \otimes_K \Gamma_2)/I = 1 + 1.\dim_{\Lambda_1 \otimes_{K\Lambda_2}} I = 1 + n$, a contradiction.

Remark. It should be noted that Theorem 5 is false without the assumption $\operatorname{gl.dim} \Lambda_1 \otimes_K \Lambda_2 < \infty$. Indeed, let Λ be a finite inseparable field extension of K. Then $\operatorname{gl.dim} \Lambda = 0$. By Proposition $3 \Lambda \otimes_K \Lambda$ is a direct product of semi-primary K-algebras. Since $\Lambda \otimes_K \Lambda$ is not semi-simple, $\operatorname{gl.dim} \Lambda \otimes_K \Lambda = \infty$ (See [1], Proposition 15).

3. Proof of Theorem I.

By [3], Proposition 9, we have that

$$\dim (\Lambda) = \operatorname{gl.dim} \Lambda \otimes_K \Gamma^*$$
.

Since $(\Gamma^*:K)=(\Gamma:K)<\infty$, it follows that $(\Gamma\otimes_K\Gamma^*:K)<\infty$. Thus we have that $\Gamma\otimes_K\Gamma^*$ is a semi-primary K-algebra. Since by hypothesis gl.dim $\Lambda\otimes_K\Gamma^*$ = dim $\Lambda<\infty$, we have applying Theorem 5 that

gl. dim
$$\Lambda \otimes_{\kappa} \Gamma^* = \text{gl. dim } \Lambda + \text{gl. dim } \Gamma^* = \text{gl. dim } \Lambda$$
.

Therefore dim $\Lambda = gl. \dim \Lambda$.

BIBLIOGRAPHY

- [1] M. Auslander, On the dimension of modules and algebras (III), global dimension, Nagoya Math. J., 9 (1955), 67-77.
- [2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [3] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv., 28 (1954), 310-319.
- [4] M. Ikeda, H. Nagao and T. Nakayama, Algebras with vanishing n-cohomology groups, Nagoya Math. J. 7 (1954), 115-131.
- [5] T. Nakayama and G. Azumaya, On irreducible rings, Ann. of Math. 48 (1947), 949-965.

University of Michigan