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A NOTE ON HECKE OPERATORS AND THETA-SERIES

YOSHIYUKI KITAOKA

As typical examples of modular forms there are theta series and Eisenstein

series. We can easily see the behaviour of the Hecke operator on the Eisen-

stein series but it is very difficult to know that on the theta series. In this

paper we give the necessary and sufficient condition in order that &{τ, A) | 7V>

— λS(τ,A) is a cusp form, where A is an even positive 2kx2k matrix, -9(τ,A)
— 2 e*iA[ϊ]τ^ a n j χ i s s o m e constant. Combining this result with a theo-

rem of Siegel, we investigate furthermore a relation between the Eisenstein

series and the theta series for prime level, and prove that the space spanned

by the certain linear combinations of the theta series is closed with respect

to all Hecke operators. At the same time we extend the theorem of Siegel

to the case of k = 1, 2, and by using this we characterize analytically ima-

ginary quadratic fields with a single class in each genus.

Notations. Let A be an even2) positive 2kx2k matrix with level N and

determinant D; then we denote by F{τ9A) the function

J E(At) '

where At runs over all representatives of the classes in the genus of A,

is the order of the unit group of Al9 M(A) = Σ W(A > a n d -9{τ9Aι) =

v* aniAfeit it i s shown in [3] that -9{τ9At) is a modular form of type

(—k,N,ε) in the sense of Hecke:

^( aτ ί Λ > ^ 0 = εW(cτ + d^TjAt) for ^ j)<=Γ0{N)

where ε(<i) = ( J )> ((-*") is Kronecker symbol). In this paper, the

symbols 4̂, JV, Z) and ε will always have same meanings as here.

Received August 17, 1970.
x) The definition of the Hecke operator Tn used here is as in [1],

2) all entries are integrers and all diagonal entries are even integers.
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On the other hand we denote by G(a, b A) the generalized Gaussian

sum YJ e , where ζ runs over all representative vectors in Z2kmod
$ mod b

bZ2k and it should be recalled that {bτ + d)-k$( aJ + * , Λt) = f - ^ / D " 1 X

x G(β,δ;i) at τ = too for (^ ^ ε Γ ( l ) .

THEOREM 1. Zeί A έtf α/z ez /̂z positive 2k x 2& matrix with level N and

determinant D, and put ε{m) = f ^ ' \ Then, for a natural number n relatively

prime to N, the following two conditions are equivalent:

(A) £(τ,A)\ Tn - ( Σ e U ) ί * " W ί f-4) is a cusp form, where Tn is the Heche
t\n

operator (with level N)>

(B) either i) Σ ε ( / ) ^ " 1 = 03) or ii) e(n) = 1 and G(l,c; A) = G(n,c; A)

jfer β?y> /?oz£;̂ r c dividing N of a prime number.

t\n

Proof Put /(r) = $(τ,A)\Tn-Cpε(t)tk'ι)3(τf A). When a = (J J) is an

element of Γ(l), f\σ(τ) = (cτ + rf)-*/( f t ^ ) = ^ i

#{τ,A)\σ9 where ( J Jj) is an element of Γ(l) with

If σ is an element of Γ0{N)9 f\σ[τ) = ε(d)f(τ). Hence / = 0 at all cusps

equivalent to too with respect to Γ0(N). Since a set of left coset represen-

tatives Li = (γ1 γ) for Γ0(N) in Γ(l) can be chosen so that r4 divides iV,

we can assume c\N and c ̂  JV. Then /|σ(foo) = (^sfί)^"1) X ΓVB""XX

ci;i4) —c"*G(β,c;-A)). If Σ ε ( 0 ^ " 1 = 0, the theorem is clear and so

we can assume Y\ε{t)tk~ι φθ. Here we can take an integer a0^a
t\n

with (a09 en) = 1 since (a, N, en) = 1, and then cΊkG(al9 a; A) = (cn)~kG{a0, en; A)

and c~kG(a, c A) = c~kG{a0, c A) follow from the periodiciy of the Gaussian

sum, that is, if / == ll9 m = mi mod N, (l9m) = (lί9 πii) — 1 and rnmi ψ 0, then

nΓ*G(l9tn; A) = mHkG(lumι; A). Put S(aQ9c) = (cn)~kG(aQ9cn; A) - c~kG(aQ9c; A);

then f\σ{ico)={^e(t)tk'ι)i-k

1/D'1S{a09c) and S(«0,c) = 0 if and only if S(l,c)=0

since (ao,cn) = 1. Since here (c,n) = 1 and n~~kG{c9n; A) = ε(n),

S(l, c) = c-kG(n9 c Λ)^-fcG(c, n A)- c"fcG(l, c i4)

= e(n)c-kG(n9 c A ) - c " 7 c G ( l , c A ) .

3) For k>2, ΣsW^φO.
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If the condition (A) holds, then S(l, c) = 0 so that especially S(l, 1) = 0, i.e.

ε(n) = 1 and for c\N, S(l, c) = c~kG{n, c; A) - c'kG(l9c; A) = 0, that is, the

condition (B) holds, Conversely let the condition (B) hold; then S(l, c) = 0

if c is a power dividing N of a prime number. Moreover, noting that if

Ui,/2) = 1, then (lJ2)-kG{m,l1l2;A)= Γ1

kG{ml2,lί;A)Γ2

kG(mlί,l2; A), we can

see S(l,c) = 0 if c|iV. This completes the proof.

COROLLARY 1. i) If N is a prime number, then the assertions (A) and (B)

hold if and only if either Y\ε{t)tk~x = 0 or ε{n) — 1.
t\n

ii) If N= ViVi' ' 'Prf where pl9p2, , p r are different prime numbers and

the character ε is trivial, then the assertions (A) and (B) hold.

iii) If n is a quadratic residue modN, then the assertions (A) and (B) hold.

Proof. The assertion i) follows from G(a, N; A) = ikNk-JJ)ε{a)9 where a

is relatively prime to N.

For the assertion ii), we can assume φλ as c in (B) of Theorem 1.

Put σ = fn j j with nd—bc = 1 and let d = 0 mod p2 Pr then σ Γ ^λ

is an element of Γ0(N) and so #(τ,-Λ)|<r = &(τ, A)\( n(ι) Comparing now

the values at /oo, we get G{l,c;A) = G{n,c',A). From this the assertion ii)

follows.

For the assertion iii), we have, by the reciprocity law (Hilfssatz 32 in

M), S(l, c) = 0 if and only if

-*4.~*£ mod 1 A~*£ mod 1

and now the later is true by our assumption and so the assertion (A) holds,

too.

COROLLARY 2. For a natural number n relatively prime to N, F(τ,A) is an

eigenfunction for the Heche operator Tn {level N) if and only if the assertion (B)

holds, and if so, the eigenvalue is γ\ε{t)tk~ι.
t\n

Proof. The assertion follows directly from Theorem 1 and Lemma 1

which is stated next to Theorem 2.

It should be remarked that Corollary 2 means that the Dirichlet series

associated to the linear combination F{τ,A) of some theta series has an
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Euler product relative to p which satisfies the condition (B) in Theorem 1

and Corollary 1 gives a sufficient condition in the special case.

THEOREM 2. Assume that N is a prime number p. If fc;>2 and Dφpk,

then the two dimensional space spanned by F(τ,A) and F{τ,pA~ι) is closed under

the operations of all Hecke operators [level p). If either ft = 2 and D = p2 or

ft = 1, then F{τ9A) is an eigenfunction for all Hecke operators (level p).

Proof. F{τ,A) and F(τ, pA'1) are modular forms of type (—ft, p, ε), where

ε is the character defined by ε(d) = ( ^ )• If ^ ^ Pk$ t n e n t n e values

at the cusp 0 of F(τ,A) and F(τ, pA'1) are different. This shows that

F{τ, A) and F[τ, pA'1) are linearly independent since F{τ,A) = F{τ, pA'1) = 1

at too. Therefore from Lemma 1 the space spanned by F{τ,A) and F{τ, pA'1)

is the space spanned by Eisenstein series with the character ε and dimension

—k i.e. of type (—ft, p, ε). This space is mapped into itself by all Hecke

operators. But, if either ft = 2, and D — p2, or ft = 1, then Eisenstein series

of type (—ft, p, ε) is unique up to constants. This completes the proof.

LEMMA 1. When A is an even positive 2ft x 2ft matrix with level N and deter-

minant D, then F(τ,A) is an Eisenstein series.

Proof. For ft^3 this lemma is proved by Siegel in [4], So, we assume

ft = 1 or 2 and prove the lemma by using an idea of Maass in [2]. Put

F(τ, s) = l + iV5""1 Σ G ( 2 ^ ; A ) (bτ - 2a)~k\bτ - 2a\~s,
b>0

where a runs over the set of integers relatively prime to b and b runs over

all natural numbers. If Res>l, F{τ,s) is absolutely convergent. Similarly

to the case ft^3 treated in [4] we can easily see that

F(τ,s) = l - 2 - s + - L 2] a ( α , s ) # ( « ) Σ {hτ-. a)-k\bτ - a\~\
β>0 b=βmod4D

Ca,b) = l

where H(-J-) = (^γfτ/'D'1G(a9β; A), δ{a,s) = 1 if a is even and δ{a,s) = 2's

if a is odd. This shows that F{τ, s) is an Eisenstein series at 5 = 0 in the

sense of Hecke.

On the other hand, Poisson's summation formula implies
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F(τ, s) = l + 2-*-«ίV0-1 Σ Σ - s i r Σ G(2j, b ^ - ' " H r ^ A -§-, ft),
(.7,20=1

where

^ ( 5 'W ) f c ) = SI (χ + wnx + wγ dx

Here, the following properties of An(s, w, k) are obtained in the usual analy-

tical way:

i) An(s, w, k) is entire in 5 for n ψ 0.

ii) An(s,w,k) = O(e~δ\n\) for some <5>0, as | ^ | - > o o , uniformly in s on

every compact set.

0 for n < 0,

iii) An(0,w,k)= (9]k

i-*Δ0) nk-le2Hwn for n > o#

ί — i> for k = 1,
iv) ^40(0, w, fc) = j

ί 0 for fc = 2.

Now we put Tn(s) = Σ Cjn+] with Cn(δ) = Σ G{2j,b\ A)e~2"iJΊΓ. Since
& = 1 ^ jvaoάb

(Hilfssatz 27 in [4]), we can show first

-1 Σ
« = — 00

for Λ e s > l , where Tn(s) = ΠUP(n,s) with ^(w, s) = Σ S."K N e x t > hΎ
v 1=0 P

using Hilfssatz 13 in [4], we see that Cn(pι) = 0 if pι~1^(2n)2 and / ^ l , be-

cause CΛ(j)
1) = f ^ ^ ^ . ^ n l - ^ M V l A n ) ) for /^>1 with the

number Aq(A, ή) of solutions mod q of A[g] = n mod q. Hence Tn{s) = Π
JlnN

(l — εffi ) π ί/Jw, 5), Where ε{p) = ( ^ ~ 1 ^ \ and by a simple calcula-
\ ph+s /p\2nN \ P /

tion we get | Π C / ^ s ) ! <(2n)4 Π p4 and Π Λ - - i ί g L V 1 = Od/Twf) for
p\2nN p\2nN p\2nN\ P /

s > — -7T-, and so
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8+-L

This shows Tn{s) = 0{\n\ 2 ) for s > — ε with some ε > 0. Noting Tn(0) =

Π UP{n, 0) = Π aP{A9 n) in the notation in [4], we have Γn(0) = 2jr~Vΐ5~ft1~%Λ
Ί> P

oo

for n l>l , where F(τ,A) = Y\ane
Hnτ. Thus, from the properties i), ii), iii),

n=0

iv) of An[s9 w, k)9 we get finally

This completes the proof of Lemma 1.

As an application of Lemma 1 we have lastly

THEOREM 3. Let K be an imaginary quadratic field, then there is a single

class in each genus in K if and only if <9(τ) = Σ e2HN{a)t is an Eisenstein series,

where a runs over all integers in K and N{a) is the norm of a.

Proof Let A be the even positive matrix associated with the quadratic

form 2N(xωι + yω2)9 where [ωί9 ω2] is an integral basis of the maximal order

in K. Since then #(r) and F(τ,A) have the same values at all cusps, it is

seen that ${τ) — F{τ9 A) holds if and only if &(τ) is an Eisenstein series.

Therefore, the assertion of the theorem follows from the following Lemma

2, because the theta series in the definition of F{τ, A) are a part of #(r, C<),

(QeS), in the notation of Lemma 2.

LEMMA 2. Let S be a set of ideal classes in K such that

i) either each ideal class in K or its inverse class is contained in S9

ii) the product of any two different ideal classes in S is not the principal ideal

class,

2πi ffiO2πi ffi r
On the other hand, put -θ(τ9 CJ = J^e ( / i ) , where Ci is an ideal class in

«ε/(

K and Ji is an ideal in Ci. Then #(r, CJ, (C^S), are linearly independent.

Proof We may take as Jt a prime ideal with the prime norm pi9

Since p^ is an element in Ji9 f̂  ?I = Pi for a — Pi^Ji9 but for any ideal

class Cj in S different from Q there is no a in Jj which satisfies \j(°ί v = Pί

From the uniqueness of the Fourier-series expansion, this assures that #(r, C<),

(Ci&S), are linearly independent.
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Remark 1. If either the ckaracter ε is not trivial and ft ^ 2 or if the

level is not one and ft;>3, then the theta series -9(τ,A) is not a common

eigenfunction of all Hecke operators.

Remark 2. The condition ii) in (B) in Tehorem 1 can be stated in

terms of those quantities which are used in the classical definition of genus

of quadratic forms. For example, if ft = 1 and D is the absolute value of

the discriminant of an imaginary quadratic field, then ii) is equivalent to:

( — ) = 1 for any odd prime factor p of D,

and n Ξ= 1 mod 4, W Ξ I or 3 mod 8, or n ^ + l mod 8, according as D = 4

mod 16, D== 8 mod 32, or Z) = 24 mod 32.

Remarks on Theorem 2. If k ;> 2, D ψ plz and the character ε is not

trivial, then F(τ,A) — pkD~1F{τ,pA~ί) is a common eigenfunction of all Hecke

operators (level p). If ft ^ 2 and the character ε is trivial, then F{τ9A) is

a common eigenfunction of all Hecke operators Tn with (n, p) = 1. In the

classical case of ft = 1 and D = p == 3 mod 4, the Dirichlet series associated to

F(τ, A) is the Dedekind zeta function of Q(i/—p ) and it has Euler product

and the above results may be considered as an extension of the classical

case.
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