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KSO-GROUPS FOR 4-DIMENSIONAL CW-COMPLEXES
SEIYA SASAO AND YUTAKA ANDO

§0. In this paper we shall determine KSO-groups for 4-dimensional CW -
complexes by their cohomology rings. We denote by KSO(X) the group of
orientable stable vector bundles over X. In 1959 A. Dold and H. Whitney
[1] gave the classification of SO(n)-bundles over a 4-complex. It seems,
however, to the authors that group structures of them are unknown. We
shall give another definition of the difference bundles defined in [1], and we
determine the group structure of KSO(X).

§1. For a finite 4-dimensional CW-complex X, we denote by X, its
3-skeleton, by X/X; a complex obtained from X by contracting X; to a
point in X, and by EX; the suspension of X;. The following exact
sequence is obtained from Puppe’s sequence.

(I)  —> KSO(EX,) —— KSO(X/X;) —> KSO(X) —> KSO(X;) —> 0.

At first we define a map W;: KSO(X)—— H¥X; Z,) which assigns to
each bundle over X its k-th Whitney class. The following lemma is well
known.

Lemma 1-1.  The homomorphism Wy: KSO(X,) —> H¥X;; Z,) is an isomorph-
sm.

Secondly we define a map P,: KSO(X)—> HYX; Z) which assigns to
each element of KSO(X) its first Pontrjagin class. Then we have

Lemma 1-2.9 For any finite CW-complex X, the map P,: KSO(X)—> HYX;Z)
is a group homomorphism.

Proof. 1If & and 5 are orientable stable vector bundles over X, we can
take &: X——> BSO(m) and 7:X—>BSO(n) as their classifying maps for

1 This lemma and its proof are suggested to the authors by the referee, and the original
lemma was proved under the condition that dim X=<4.
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sufficiently large m and »n. Then we set f the composite map po(€ x #)od;

.
X-15 x x x5 BSO(m)x BSO(n) —> BSO(m + n),

diagonal Whitney sum
and we have
¢ @ N = f*(rm+n)

where 7,., i1s a universal (m + n)-plane bundle over BSO(m + n). So we
have

E@n = AE X 7)MTm X Ta)
= 4%E X 7X@ ® 7375)

where z,: BSO(m) x BSO(n) —> BSO(m) and r,: BSO(m) x BSO(n) —> BSO(n)
are projections.
We set a = =¥r,, and 8= }7,, and we will prove

Pi(a @ B) = Pia) + Py(B).

First, the following equations hold;
Pila® p) = (— 1)Cy((a S? C)D (B (;? C)
= (= D{Cy(a %) C)+ Cy(B @ C) + Cya g:) C)C.(B IQ:) o)

where Cy&) denotes the %-th Chern class of ¢. On the other hand
H*BSO(m) x BSO(n); Z)=0. So we proved

P(a ® B) = Pi(a) + Pi(B).

Now we have

P @ 1) = 4%E X 7)*(Py(xTy) 4+ Py(a375)
= 4*{(€ x O)*Py(Ty) + (0 X #)*Py(T5)}
= A Py(7tE*7y) 4+ Pi75777))
= 4*{ziPy(§) + m3Pi(n)}
= Py(§) + Pi(n),

where 0 is a constant map and 7;: XX X—> X and 7,: X x X—> X are

projections.
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Thus we proved
Py(§ D) = Py(§) + Pin)
for each orientable stable vector bundles & and 3 over X.

Lemma 1-3.  The homomorphism P,: KSO(X]X;) —> H4X|X;; Z) is a mono-
morphism, the tmage of P, coincides with 2HYX|X;; Z), and the following diagram

is commutative up to sign.

P E
KSO(EX,) —> H{EX,; Z) —> H¥(X,; Z)

T

KSO(X|Xy) —> HYX|Xy; Z) —> H'(X, X,; ).

Progf. These are well known results.

§2. We take two elements 7, and 5, in KSO(X) which satisfy Wy(y,)=
Wa(ns).  As i*(n) = i*(n,) in the sequence (I), we can take & in KSO(X/X;)
such that p*(&) = 9, —7,. The homotopy type of X/X; is a finite wedge sum
of 4-spheres. So we find a; uniquely in H4X/X,; Z) which satisfies P,(§)=2a.
We can regard e, as an element of HYX, X;; Z). We define d(y,7,) to
be the image of «; by the inclusion homomorphism j: H4X, X;; Z) — HY(X;Z).
The following lemma assures the uniqueness of d(7;,7,).

Lemma 2-1. For every & in KSO(EX,), Py() is contained in 2H EX,; Z).
Conversely, for any « in HYEX;; Z) and any B in HYEXs; Z,), there exists an
element & in KSO(EX;) so that Wy(&) = B and Py(€) = 2a.

Proof. At first we consider the Bockstein exact sequence;

@) i
— s HYEX,; Z) —> HYEX,; Z) —> H{EXy; Z5) —> .

Then we have 7,(P,(§)) = (Wy(€))2= 0. So Py&) is contained in 2HYEX;; Z).

Conversely, if we take any element &, in KSO(EX,) as W;(&) = §, then
we can find «; so that P,(&,) = 2a,. By the method of A. Dold and H.
Whitney [1] we can take an element & in KSO(EX;) so that d(§, &) = a — ;.2
And the equalities

Py(&) — Py(§) = 217(5; &) = 2a — ay)

2) Here d(€,€,) is the difference bundle defined by A. Dold and H. Whitney [1].
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imply
P,(&) = 2a — 2a; + Py(&) = 2a — 2a; + 2a; = 2a.

Lemma 2-2.  The cohomology class d(ny,m,) is well defined.

Progf. We ascertain that the cohomology class j(e) is independent of
the choice of a bundle ¢&. We take ¢ so that p*(&) = 9, — 9, = p*(¢&’). These
equalities imply that in the sequence (I) there exists E" in KSO(EX,;) so
that & — & = j*§”). As Pi(§) — Py(&') = Pyo j*§") = jo Py(¢""), where j is as
in Lemma 1-3, Lemma 2-1 shows that there exists a;, in HYEX;; Z) such
that 2a; — 2ay = j o Py(§"') = j(2ae) = 2j(aers). The group HY(X/Xy; Z), how-
ever, is torsion free, and hence the equality a;—a;, = j(ae) holds.  As jla,) —
jlee) = j o jeters) = j3E(atess) = 0, we have the equation j(e) = j(ae).

The properties of d(x;,7.) are following;

LemMa 2-3. (1) If Wi(n)= Wa(n,) for n; and 7, in KSO(X), then d(y,,7,)=0
if and only if 5, = 7,.

2) For ny in KSOX) and a in HNX;Z), there exists an element 7, in
KSO(X) so that Wa(p,) = Wa(p,) and d(y,7,) = a.

3)  Pi(n1) — Pi(n) = 2d(9s,12), if Wa(n)) = Walna).

4)  d®1,72) + d(72,75) = d(1, 7).

5) d(nny, nns) = nd(n,,7,).

6)  Wiln1) — Wi(n2) = d(91,72)e.®

(
(
(3)
4)
(
(

Proof. (1) 1If d(y,%,)=0, there exists £ in KSO(X/X;) such that P,(¢)=2e,,
where a; is in §H3X;; Z). So we have Py(€) = 5(28;) where B is in H3X;; Z).
By Lemmas 1-3 and 2-1 we can take & in KSO(EX;) so that P,(&") = 2(E™8,).
As the homomorphism P,: KSO(X/X,;) —> HX/X,; Z) is a monomorphism, the
equation j*(&’) = £ is obtained from P,o j*(&') = 2a; = Py(£§). Thus we proved
that 9, = 9,. The proofs of other properties are similar, so they are omitted.

§3. To begin with we represent cohomology groups of X so that they
satisfy the following properties i) — ii):

H(X; Z) = 3 $\Zlwl + ) Ziw)

3) d(ny,7,); is the reduction mod 2 of d(yy,7,)-
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71

HUX; Z) = 32000+ 3 3204,

=1 j=

5 Zulzs]

i=1 j=1

HY(X; Z) = ;jlz[yu n

t;

20 23 Zpt vl

p: odd prime i=1 j=1
Here [ ] denotes a generator of the group, and following properties are
satisfied.
i) [ = 05 [2o; 2 =[F), F=1, -+, 5805 [ = [2i), i=1,¢c¢, F=1,+%,5,
ii) [7.] = ily.), [fu] = il[zij]’ where i;: HY(X; Z)—“>H4(X; Z,).
Lemma 3-1,  There exists 5, in KSO(X) so that Wiy = [#:] and 29,= 0

IZEZs).

Proof. As [%, =0, we have P& =0 (mod 2) for any ¢ in KSO(X)
which satisfies Wy(é) = [2;]. And Lemma 2-3 shows that there exists 7, in
KSO(X) so that Wy(p,)=[x,] and Py(9,)=0. On the other hand the qualities

2d(2n3, 0) = Py(2n;) = 2Pi(7) = 0
imply that d(2n,,0) is of order 2. And the equalities
d(27 0), = Wi(27e) = (Wa(n))* = [&:] = 0

hold, so we have d(29,0) = 0. This shows that 27, = 0.

We know that the reduction mod 2 of the first Pontrjagin class is a squar-
ing of the second Whitney class. Consequently, we can ignore elements in
HYX; Z) which are divisible by 2, because we proved (3) of Lemma 2-3.
We have the following

LemMA 3-2,  There exists an element 7,; in KSO(X) so that

Wal(n:5) = [@45] (i =0),
[yj] (i = O)r
Pi(n) = .
[245] (i=1).

Moreover we can determine the order of 7;; as follows;

If i =0, Py(I7;) = I[y,] for any integer /.
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If i=1, d(2i*'90) = 2d(2i77i1, 0) = P1(2i77ij) = 2iP1(771:j) = 2i[zz'j] = 0.

If i =2, d(2%;,0) = 2d(2¢71y,;,0) = Py(271y,;) = 2¢7[z,;] # 0.

If i=1, d(29,;,0).= Wi(29:5) = Wa(n:5)? = [ = [2;;1 % 0.

By Lemma 1-3 we can determine the map j* in the sequence (I). So
we have

) 7y t;
Lemma 3-3. i) KSO (X/X;) = ing[ﬁi] + igl ElZ[Z-J-] + " odd%ime ; jg

Z[0pi] + ;Z[uil JoP(#) = 2[yl, joPiZi) = 22yl and jo Py(¥,:5) = 2y for

a natural homomorphism j: H\X|X3; Z)—> HYX; Z), and u, is a bundle which

corresponds to a 4-cell homologicaly trivial.

¢

‘Z Z Zp‘ [iznj,]r

=1

i) pHESOXIX) = 3 210 + 3 RewlEa1+
where §' denotes p*().

The element d(Z;;, 27,;) is defined since Wy(Z;;/)=0= W,(2n;;) for 1<j<s,.
We have

p: odd prime

d(ZL‘jI’ 2771:,1')2 = WG(Z;') - VV;(Z%'J‘) = W4(§7:j,) - VVz(’?ij)z = [fij] - [Zj] = 0.

Hence we can choose an element B;; in HYX; Z) such that d(Z;/, 27.;) = 2B;;.
Then 48,;=2d(Z;;, 29:5)=Py(Z;;)—Py(21:;) = 2[#;;]1— 2[2:;5]1 = 0. Lemma 2-3 shows
that we can take 7;; so that d(n;/, 9:;) = B;;» Then we have d(Z;;/, 29;;/) = 0,
and Py(y;;’) = [2;1 + 2B:j, 4B:;; = 0. This shows that z,;/ = 27,;/. Thus we may
use 7;;/ in place of 7,;.

The above results are summarized as follows:

Elements of KSO(X) Number Order
T 1=k=s 2
i’ 1=i, 1sj=s; 2+
o5’ I1=j<s, 0
75’ So< =7, oo
Ziy 154, s <j<r; 2t
Upis” 1=i, p#+2 P’

Now if we use the sequence (I), we can easily prove that KSO(X) is
an abelian group generated by the above elements. Thus we have
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THEOREM.

KSOX)=3Z+ 3 312 + 312

i=1 j=1

+32 8z 3 wNz,,

i=1 j=s,+1 »: odd prime 7

where s, s;, v; and t; are as in the first part of this section.

CoroLLARY 1. IfY s a 3-dimensional CW-complex, then we have that

KSO(EY) = H\Y ; Z,) + HXY ; Z).
CoroOLLARY 2. If M is an orientable, closed, topological 4-manifold, we have ;
KSOM) = HXM; Z,) + Z, if S2HXM; Z,) = 0,

and

KSOM) = %r!Zg +Z (r=dim HAM; Z;) — 1), if S2H*M; Z,) + 0.

CoroLLARY 3. If M is a non-orientable, closed, topological 4-manifold, we
have that

KSO(M) = HXM; Z,) + Zsy if SHAM; Zy) = 0

and

KSO(M) = :222 +Z, (r=dim HYM; Z) — 1), if SPHYM; Z) + 0.

We give a few examples.

2i
X P,y(C) P,R) S2x S? l StUet (1 =1)
KSO(X) Z Z4 Z + Zg + Zz » Zgi
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