KSO-GROUPS FOR 4-DIMENSIONAL CW-COMPLEXES

SEIYA SASAO AND YUTAKA ANDO

- § 0. In this paper we shall determine KSO-groups for 4-dimensional CW-complexes by their cohomology rings. We denote by KSO(X) the group of orientable stable vector bundles over X. In 1959 A. Dold and H. Whitney [1] gave the classification of SO(n)-bundles over a 4-complex. It seems, however, to the authors that group structures of them are unknown. We shall give another definition of the difference bundles defined in [1], and we determine the group structure of KSO(X).
- § 1. For a finite 4-dimensional CW-complex X, we denote by X_3 its 3-skeleton, by X/X_3 a complex obtained from X by contracting X_3 to a point in X, and by EX_3 the suspension of X_3 . The following exact sequence is obtained from Puppe's sequence.

$$(\mathbf{I}) \longrightarrow KSO(EX_3) \xrightarrow{j^*} KSO(X/X_3) \xrightarrow{p^*} KSO(X) \xrightarrow{i^*} KSO(X_3) \longrightarrow 0.$$

At first we define a map W_k : $KSO(X) \longrightarrow H^k(X; \mathbb{Z}_2)$ which assigns to each bundle over X its k-th Whitney class. The following lemma is well known.

LEMMA 1-1. The homomorphism $W_2: KSO(X_3) \longrightarrow H^2(X_3; Z_2)$ is an isomorphism.

Secondly we define a map $P_1: KSO(X) \longrightarrow H^4(X; \mathbb{Z})$ which assigns to each element of KSO(X) its first Pontrjagin class. Then we have

LEMMA 1-2.1) For any finite CW-complex X, the map $P_1: KSO(X) \longrightarrow H^4(X; Z)$ is a group homomorphism.

Proof. If ξ and η are orientable stable vector bundles over X, we can take $\tilde{\xi}: X \longrightarrow BSO(m)$ and $\tilde{\eta}: X \longrightarrow BSO(n)$ as their classifying maps for

¹⁾ This lemma and its proof are suggested to the authors by the referee, and the original lemma was proved under the condition that dim $X \le 4$.

sufficiently large m and n. Then we set f the composite map $\mu \circ (\tilde{\xi} \times \tilde{\eta}) \circ \Delta$;

$$X \xrightarrow{\delta} X \times X \xrightarrow{\tilde{\xi} \times \tilde{\eta}} BSO(m) \times BSO(n) \xrightarrow{\mu} BSO(m+n),$$
 diagonal

and we have

$$\xi \oplus \eta = f^*(\gamma_{m+n})$$

where r_{m+n} is a universal (m+n)-plane bundle over BSO(m+n). So we have

$$\begin{split} \xi & \oplus \eta = \varDelta^*(\tilde{\xi} \times \tilde{\eta})^*(\Upsilon_m \times \Upsilon_n) \\ & = \varDelta^*(\tilde{\xi} \times \tilde{\eta})^*(\pi_1^* \Upsilon_m \oplus \pi_2^* \Upsilon_n) \end{split}$$

where π_1 : $BSO(m) \times BSO(n) \longrightarrow BSO(m)$ and π_2 : $BSO(m) \times BSO(n) \longrightarrow BSO(n)$ are projections.

We set $\alpha = \pi_1^* \gamma_m$ and $\beta = \pi_2^* \gamma_n$, and we will prove

$$P_1(\alpha \oplus \beta) = P_1(\alpha) + P_1(\beta)$$
.

First, the following equations hold;

$$\begin{split} P_1(\alpha \oplus \beta) &= (-1)C_2((\alpha \bigotimes_{\boldsymbol{R}} \boldsymbol{C}) \oplus (\beta \bigotimes_{\boldsymbol{R}} \boldsymbol{C})) \\ &= (-1)\{C_2(\alpha \bigotimes_{\boldsymbol{R}} \boldsymbol{C}) + C_2(\beta \bigotimes_{\boldsymbol{R}} \boldsymbol{C}) + C_1(\alpha \bigotimes_{\boldsymbol{R}} \boldsymbol{C})C_1(\beta \bigotimes_{\boldsymbol{R}} \boldsymbol{C})\}, \end{split}$$

where $C_k(\zeta)$ denotes the k-th Chern class of ζ . On the other hand $H^2(BSO(m) \times BSO(n); Z) = 0$. So we proved

$$P_1(\alpha \oplus \beta) = P_1(\alpha) + P_1(\beta)$$
.

Now we have

$$\begin{split} P_{1}(\xi \oplus \eta) &= \varDelta^{*}(\tilde{\xi} \times \tilde{\eta})^{*}(P_{1}(\pi_{1}^{*}\Upsilon_{m}) + P_{1}(\pi_{2}^{*}\Upsilon_{n})) \\ &= \varDelta^{*}\{(\tilde{\xi} \times 0)^{*}P_{1}(\Upsilon_{m}) + (0 \times \tilde{\eta})^{*}P_{1}(\Upsilon_{n})\} \\ &= \varDelta^{*}\{P_{1}(\bar{\pi}_{1}^{*}\tilde{\xi}^{*}\Upsilon_{m}) + P_{1}(\bar{\pi}_{2}^{*}\tilde{\eta}^{*}\Upsilon_{n})\} \\ &= \varDelta^{*}\{\bar{\pi}_{1}^{*}P_{1}(\xi) + \bar{\pi}_{2}^{*}P_{1}(\eta)\} \\ &= P_{1}(\xi) + P_{1}(\eta), \end{split}$$

where 0 is a constant map and $\bar{\pi}_1: X \times X \longrightarrow X$ and $\bar{\pi}_2: X \times X \longrightarrow X$ are projections.

KSO-GROUPS 25

Thus we proved

$$P_{1}(\xi \oplus \eta) = P_{1}(\xi) + P_{1}(\eta)$$

for each orientable stable vector bundles ξ and η over X.

LEMMA 1-3. The homomorphism P_1 : $KSO(X/X_3) \longrightarrow H^4(X/X_3; Z)$ is a monomorphism, the image of P_1 coincides with $2H^4(X/X_3; Z)$, and the following diagram is commutative up to sign.

$$\begin{split} KSO(EX_3) & \xrightarrow{P_1} H^4(EX_3\,;\,Z) \xrightarrow{\cong} H^3(X_3\,;\,Z) \\ & \downarrow j^* & \downarrow \tilde{j} & \downarrow \delta \\ KSO(X/X_3) & \xrightarrow{P_1} H^4(X/X_3\,;\,Z) \xrightarrow{\cong} H^4(X,X_3\,;\,Z). \end{split}$$

Proof. These are well known results.

§ 2. We take two elements η_1 and η_2 in KSO(X) which satisfy $W_2(\eta_1) = W_2(\eta_2)$. As $i^*(\eta_1) = i^*(\eta_2)$ in the sequence (I), we can take ξ in $KSO(X/X_3)$ such that $p^*(\xi) = \eta_1 - \eta_2$. The homotopy type of X/X_3 is a finite wedge sum of 4-spheres. So we find α_{ξ} uniquely in $H^4(X/X_3; Z)$ which satisfies $P_1(\xi) = 2\alpha_{\xi}$. We can regard α_{ξ} as an element of $H^4(X, X_3; Z)$. We define $d(\eta_1, \eta_2)$ to be the image of α_{ξ} by the inclusion homomorphism $j: H^4(X, X_3; Z) \longrightarrow H^4(X; Z)$. The following lemma assures the uniqueness of $d(\eta_1, \eta_1)$.

Lemma 2-1. For every ξ in $KSO(EX_3)$, $P_1(\xi)$ is contained in $2H^4(EX_3; Z)$. Conversely, for any α in $H^4(EX_3; Z)$ and any β in $H^2(EX_3; Z_2)$, there exists an element ξ in $KSO(EX_3)$ so that $W_2(\xi) = \beta$ and $P_1(\xi) = 2\alpha$.

Proof. At first we consider the Bockstein exact sequence;

$$\longrightarrow H^{4}(EX_{3};\,Z) \xrightarrow{(2)} H^{4}(EX_{3};\,Z) \xrightarrow{i_{1}} H^{4}(EX_{3};\,Z_{2}) \longrightarrow .$$

Then we have $i_1(P_1(\xi)) = (W_2(\xi))^2 = 0$. So $P_1(\xi)$ is contained in $2H^4(EX_3; Z)$.

Conversely, if we take any element ξ_1 in $KSO(EX_3)$ as $W_2(\xi_1) = \beta$, then we can find α_1 so that $P_1(\xi_1) = 2\alpha_1$. By the method of A. Dold and H. Whitney [1] we can take an element ξ in $KSO(EX_3)$ so that $\tilde{d}(\xi, \xi_1) = \alpha - \alpha_1$. And the equalities

$$P_1(\xi) - P_1(\xi_1) = 2\tilde{d}(\xi_1, \xi_1) = 2(\alpha - \alpha_1)$$

²⁾ Here $\tilde{d}(\xi, \xi_1)$ is the difference bundle defined by A. Dold and H. Whitney [1].

imply

$$P_1(\xi) = 2\alpha - 2\alpha_1 + P_1(\xi_1) = 2\alpha - 2\alpha_1 + 2\alpha_1 = 2\alpha_1$$

Lemma 2-2. The cohomology class $d(\eta_1, \eta_2)$ is well defined.

Proof. We ascertain that the cohomology class $j(\alpha_{\xi})$ is independent of the choice of a bundle ξ . We take ξ' so that $p^*(\xi) = \eta_1 - \eta_2 = p^*(\xi')$. These equalities imply that in the sequence (I) there exists ξ'' in $KSO(EX_3)$ so that $\xi - \xi' = j^*(\xi'')$. As $P_1(\xi) - P_1(\xi') = P_1 \circ j^*(\xi'') = \tilde{j} \circ P_1(\xi'')$, where \tilde{j} is as in Lemma 1-3, Lemma 2-1 shows that there exists $\alpha_{\xi''}$ in $H^4(EX_3; Z)$ such that $2\alpha_{\xi} - 2\alpha_{\xi'} = \tilde{j} \circ P_1(\xi'') = \tilde{j}(2\alpha_{\xi''}) = 2\tilde{j}(\alpha_{\xi''})$. The group $H^4(X/X_3; Z)$, however, is torsion free, and hence the equality $\alpha_{\xi} - \alpha_{\xi'} = \tilde{j}(\alpha_{\xi''})$ holds. As $j(\alpha_{\xi}) - j(\alpha_{\xi'}) = j \circ \tilde{j}(\alpha_{\xi''}) = j \delta E(\alpha_{\xi''}) = 0$, we have the equation $j(\alpha_{\xi}) = j(\alpha_{\xi'})$.

The properties of $d(\eta_1, \eta_2)$ are following;

Lemma 2-3. (1) If $W_2(\eta_1) = W_2(\eta_2)$ for η_1 and η_2 in KSO(X), then $d(\eta_1, \eta_2) = 0$ if and only if $\eta_1 = \eta_2$.

- (2) For η_1 in KSO(X) and α in $H^4(X; Z)$, there exists an element η_2 in KSO(X) so that $W_2(\eta_1) = W_2(\eta_2)$ and $d(\eta_1, \eta_2) = \alpha$.
 - (3) $P_1(\eta_1) P_1(\eta_2) = 2d(\eta_1, \eta_2), \quad \text{if } W_2(\eta_1) = W_2(\eta_2).$
 - (4) $d(\eta_1, \eta_2) + d(\eta_2, \eta_3) = d(\eta_1, \eta_3)$.
 - (5) $d(n\eta_1, n\eta_2) = nd(\eta_1, \eta_2)$.
 - (6) $W_4(\eta_1) W_4(\eta_2) = d(\eta_1, \eta_2)_2.3$

Proof. (1) If $d(\eta_1, \eta_2) = 0$, there exists ξ in $KSO(X/X_3)$ such that $P_1(\xi) = 2\alpha_{\xi}$, where α_{ξ} is in $\delta H^3(X_3; Z)$. So we have $P_1(\xi) = \delta(2\beta_{\xi})$ where β_{ξ} is in $H^3(X_3; Z)$. By Lemmas 1-3 and 2-1 we can take ξ' in $KSO(EX_3)$ so that $P_1(\xi') = 2(E^{-1}\beta_{\xi})$. As the homomorphism $P_1: KSO(X/X_3) \longrightarrow H^4(X/X_3; Z)$ is a monomorphism, the equation $j^*(\xi') = \xi$ is obtained from $P_1 \circ j^*(\xi') = 2\alpha_{\xi} = P_1(\xi)$. Thus we proved that $\eta_1 = \eta_2$. The proofs of other properties are similar, so they are omitted.

§ 3. To begin with we represent cohomology groups of X so that they satisfy the following properties i) - ii:

$$H^{2}(X; Z_{2}) = \sum_{i=0}^{s} \sum_{j=1}^{s_{i}} Z_{2}[x_{ij}] + \sum_{k=1}^{s} Z_{2}[x_{k}],$$

³⁾ $d(\eta_1, \eta_2)_2$ is the reduction mod 2 of $d(\eta_1, \eta_2)$.

KSO-GROUPS 27

$$egin{aligned} H^4(X;\, Z_2) &= \sum\limits_{i=1}^{r_0} Z_2[\widetilde{y}_i] + \sum\limits_{i=1}^{r_i} \sum\limits_{j=1}^{r_i} Z_2[\widetilde{z}_{ij}], \ H^4(X;\, Z) &= \sum\limits_{i=1}^{r_0} Z[y_i] + \sum\limits_{i=1}^{r_i} \sum\limits_{j=1}^{r_i} Z_2^i[z_{ij}] \ &+ \sum\limits_{v:\,\, ext{odd prime}} \sum\limits_{i=1}^{r_i} \sum\limits_{j=1}^{t_i} Z_p^i[v_{pij}]. \end{aligned}$$

Here [] denotes a generator of the group, and following properties are satisfied.

- i) $[x_k]^2 = 0$; $[x_{0j}]^2 = [\tilde{y}_j]$, $j = 1, \dots, s_0$; $[x_{ij}]^2 = [\tilde{z}_{ij}]$, $i = 1, \dots, j = 1, \dots, s_i$.
- ii) $[\tilde{y}_i] = i_1[y_i], [\tilde{z}_{ij}] = i_1[z_{ij}], \text{ where } i_1: H^4(X; Z) \longrightarrow H^4(X; Z_2).$

LEMMA 3-1. There exists η_k in KSO(X) so that $W_2(\eta_k) = [x_k]$ and $2\eta_k = 0$ $(1 \le k \le s)$.

Proof. As $[x_k]^2 = 0$, we have $P_1(\xi) \equiv 0 \pmod{2}$ for any ξ in KSO(X) which satisfies $W_2(\xi) = [x_k]$. And Lemma 2-3 shows that there exists η_k in KSO(X) so that $W_2(\eta_k) = [x_k]$ and $P_1(\eta_k) = 0$. On the other hand the qualities

$$2d(2\eta_k, 0) = P_1(2\eta_k) = 2P_1(\eta_k) = 0$$

imply that $d(2\eta_k, 0)$ is of order 2. And the equalities

$$d(2\eta_k, 0)_2 = W_4(2\eta_k) = (W_2(\eta_k))^2 = [x_k]^2 = 0$$

hold, so we have $d(2\eta_k, 0) = 0$. This shows that $2\eta_k = 0$.

We know that the reduction mod 2 of the first Pontrjagin class is a squaring of the second Whitney class. Consequently, we can ignore elements in $H^4(X; \mathbb{Z})$ which are divisible by 2, because we proved (3) of Lemma 2-3. We have the following

Lemma 3-2. There exists an element η_{ij} in KSO(X) so that

$$W_2(\eta_{ij}) = \llbracket x_{ij}
brace \qquad (i \ge 0),$$
 $P_1(\eta_{ij}) = egin{cases} \llbracket y_j
brace & (i = 0), \ \llbracket z_{ij}
brace & (i \ge 1). \end{cases}$

Moreover we can determine the order of η_{ij} as follows;

If
$$i = 0$$
, $P_1(l\eta_{ij}) = l[y_j]$ for any integer l .

If
$$i \ge 1$$
, $d(2^{i+1}\eta_{ij}, 0) = 2d(2^{i}\eta_{ij}, 0) = P_1(2^{i}\eta_{ij}) = 2^{i}P_1(\eta_{ij}) = 2^{i}[z_{ij}] = 0$.

If
$$i \ge 2$$
, $d(2^i \eta_{ij}, 0) = 2d(2^{i-1} \eta_{ij}, 0) = P_1(2^{i-1} \eta_{ij}) = 2^{i-1} [z_{ij}] \ne 0$.

If
$$i = 1$$
, $d(2\eta_{ij}, 0)_2 = W_4(2\eta_{ij}) = W_2(\eta_{ij})^2 = [x_{ij}]^2 = [\tilde{z}_{ij}] \neq 0$.

By Lemma 1–3 we can determine the map j^* in the sequence (I). So we have

Lemma 3-3. i) $KSO(X/X_3) = \sum_{i=1}^{r_0} Z[\tilde{y}_i] + \sum_{i=1}^{r_i} \sum_{j=1}^{r_i} Z[\tilde{z}_{ij}] + \sum_{p: \text{ odd prime }} \sum_{i} \sum_{j=1}^{t_i} Z[\tilde{v}_{pij}] + \sum_{i} Z[u_i], \ j \circ P_1(\tilde{y}_i) = 2[y_i], \ j \circ P_1(\tilde{z}_{ij}) = 2[z_{ij}], \ and \ j \circ P_1(\tilde{v}_{pij}) = 2[v_{pij}] \ for a natural homomorphism <math>j: H^4(X/X_3; Z) \longrightarrow H^4(X; Z), \ and \ u_i \ is \ a \ bundle \ which corresponds to a 4-cell homologicaly trivial.$

ii) $p^*(KSO(X/X_3)) = \sum_{i=1}^{r_0} Z[\tilde{y}_i'] + \sum_{i=1}^{r_i} \sum_{j=1}^{r_i} z_{z^i} [\tilde{z}_{ij}'] + \sum_{p: \text{ odd prime }} \sum_{i} \sum_{j=1}^{t_i} Z_{p^i} [\tilde{v}_{pij}'],$ where \tilde{y}' denotes $p^*(\tilde{y})$.

The element $d(\tilde{z}_{ij}',2\eta_{ij})$ is defined since $W_2(\tilde{z}_{ij}')=0=W_2(2\eta_{ij})$ for $1\leq j\leq s_i$. We have

$$d(\tilde{z}_{ij}', 2\eta_{ij})_2 = W_4(\tilde{z}_{ij}') - W_4(2\eta_{ij}) = W_4(\tilde{z}_{ij}') - W_2(\eta_{ij})^2 = [\tilde{z}_{ij}] - [\tilde{z}_{ij}] = 0.$$

Hence we can choose an element β_{ij} in $H^4(X; Z)$ such that $d(\tilde{z}_{ij}', 2\eta_{ij}) = 2\beta_{ij}$. Then $4\beta_{ij} = 2d(\tilde{z}_{ij}', 2\eta_{ij}) = P_1(\tilde{z}_{ij}) - P_1(2\eta_{ij}) = 2[z_{ij}] - 2[z_{ij}] = 0$. Lemma 2-3 shows that we can take η_{ij}' so that $d(\eta_{ij}', \eta_{ij}) = \beta_{ij}$. Then we have $d(\tilde{z}_{ij}', 2\eta_{ij}') = 0$, and $P_1(\eta_{ij}') = [z_{ij}] + 2\beta_{ij}$, $4\beta_{ij} = 0$. This shows that $\tilde{z}_{ij}' = 2\eta_{ij}'$. Thus we may use η_{ij}' in place of η_{ij} .

The above results are summarized as follows:

Elements of KSO(X)	Number	Order
η_k	$1 \leq k \leq s$	2
$\eta_{ij}{'}$	$1 \leq i, 1 \leq j \leq s_i$	2i+1
$\eta_{oj}{'}$	$1 \leq j \leq s_0$	∞
${\widetilde{y}_j}'$	$s_0 < j \leq r_0$	∞
$ ilde{ar{z}}_{ij}'$	$1 \leq i, \ s_i < j \leq r_i$	2^i
${\widetilde{v}}_{pij}{}'$	$1 \leq i, p \neq 2$	p^i

Now if we use the sequence (I), we can easily prove that KSO(X) is an abelian group generated by the above elements. Thus we have

KSO-GROUPS 29

THEOREM.

$$\begin{split} KSO(X) &= \sum_{1}^{s} Z_{2} + \sum_{i=1}^{s} \sum_{j=1}^{s_{i}} Z_{2^{i+1}} + \sum_{1}^{r_{0}} Z \\ &+ \sum_{i=1}^{s} \sum_{j=s_{i}+1}^{r_{i}} Z_{2^{i}} + \sum_{p: \text{ odd prime}} \sum_{i} \sum_{1}^{t_{i}} Z_{p^{i}}, \end{split}$$

where s, s_i , r_i and t_i are as in the first part of this section.

COROLLARY 1. If Y is a 3-dimensional CW-complex, then we have that $KSO(EY) \cong H^1(Y; \mathbb{Z}_2) + H^3(Y; \mathbb{Z}).$

COROLLARY 2. If M is an orientable, closed, topological 4-manifold, we have; $KSO(M) \cong H^2(M; \mathbb{Z}_2) + \mathbb{Z}$, if $S_q^2 H^2(M; \mathbb{Z}_2) = 0$,

and

$$KSO(M) = \sum_{1}^{r} Z_2 + Z \quad (r = \dim H^2(M; Z_2) - 1), \ \ if \ \ S_q^2 H^2(M; Z_2) \neq 0.$$

COROLLARY 3. If M is a non-orientable, closed, topological 4-manifold, we have that

$$KSO(M) \cong H^2(M; \mathbb{Z}_2) + \mathbb{Z}_2, \text{ if } S_q^2 H^2(M; \mathbb{Z}_2) = 0$$

and

$$KSO(M) = \sum_{1}^{r} Z_2 + Z_4$$
 $(r = \dim H^2(M; Z_2) - 1)$, if $S_q^2 H^2(M; Z_2) \neq 0$. We give a few examples.

X	$P_2(C)$	$P_4(R)$	$S^2{ imes}S^2$	$S^{3} \overset{2^{i}}{\cup} e^{4} \ (i \geqq 1)$
KSO(X)	Z	Z_4	$Z+Z_2+Z_2$	Z_{2^t}

REFERENCE

[1] A. Dold and H. Whitney, "Classifications of oriented sphere bundles over a 4-complex," Ann. of Math., 69 (1959), 667-677.

Department of Mathematics
Tokyo Institute of Technology