Seiya Sasao and Yutaka Ando
Nagoya Math. J.
Vol. 42 (1971), 23-29

KSO-GROUPS FOR 4-DIMENSIONAL CW-COMPLEXES

SEIYA SASAO AND YUTAKA ANDO

§ 0. In this paper we shall determine $K S O$-groups for 4-dimensional $C W$ complexes by their cohomology rings. We denote by $K S O(X)$ the group of orientable stable vector bundles over X. In 1959 A. Dold and H. Whitney [1] gave the classification of $S O(n)$-bundles over a 4 -complex. It seems, however, to the authors that group structures of them are unknown. We shall give another definition of the difference bundles defined in [1], and we determine the group structure of $K S O(X)$.
§ 1. For a finite 4 -dimensional $C W$-complex X, we denote by X_{3} its 3-skeleton, by X / X_{3} a complex obtained from X by contracting X_{3} to a point in X, and by $E X_{3}$ the suspension of X_{3}. The following exact sequence is obtained from Puppe's sequence.

$$
\begin{equation*}
\longrightarrow K S O\left(E X_{3}\right) \xrightarrow{j^{*}} K S O\left(X / X_{3}\right) \xrightarrow{p^{*}} K S O(X) \xrightarrow{i^{*}} K S O\left(X_{3}\right) \longrightarrow 0 . \tag{I}
\end{equation*}
$$

At first we define a map $W_{k}: K S O(X) \longrightarrow H^{k}\left(X ; Z_{2}\right)$ which assigns to each bundle over X its k-th Whitney class. The following lemma is well known.

Lemma 1-1. The homomorphism $W_{2}: K S O\left(X_{3}\right) \longrightarrow H^{2}\left(X_{3} ; Z_{2}\right)$ is an isomorphism.

Secondly we define a map $P_{1}: K S O(X) \longrightarrow H^{4}(X ; Z)$ which assigns to each element of $K S O(X)$ its first Pontrjagin class. Then we have

Lemma 1-2. ${ }^{1)}$ For any finite $C W$-complex X, the map $P_{1}: K S O(X) \longrightarrow H^{4}(X ; Z)$ is a group homomorphism.

Proof. If ξ and η are orientable stable vector bundles over X, we can take $\tilde{\xi}: X \longrightarrow B S O(m)$ and $\tilde{\eta}: X \longrightarrow B S O(n)$ as their classifying maps for

[^0]sufficiently large m and n. Then we set f the composite map $\mu \circ(\tilde{\xi} \times \tilde{\eta}) \circ \Delta$;
$$
\underset{\text { diagonal }}{\xrightarrow{\Delta}} X \times X \xrightarrow{\tilde{\xi} \times \tilde{n}} B S O(m) \times B S O(n) \xrightarrow[\text { Whitney sum }]{\mu} B S O(m+n),
$$
and we have
$$
\xi \oplus \eta=f^{*}\left(\gamma_{m+n}\right)
$$
where γ_{m+n} is a universal $(m+n)$-plane bundle over $B S O(m+n)$. So we have
\[

$$
\begin{aligned}
\xi \oplus \eta & =\Delta^{*}(\tilde{\xi} \times \tilde{\eta})^{*}\left(\gamma_{m} \times \gamma_{n}\right) \\
& =\Delta^{*}(\tilde{\xi} \times \tilde{\eta})^{*}\left(\pi_{1}^{*} \gamma_{m} \oplus \pi_{2}^{*} \gamma_{n}\right)
\end{aligned}
$$
\]

where $\pi_{1}: B S O(m) \times B S O(n) \longrightarrow B S O(m)$ and $\pi_{2}: B S O(m) \times B S O(n) \longrightarrow B S O(n)$ are projections.

We set $\alpha=\pi_{1}^{*} \gamma_{m}$ and $\beta=\pi_{2}^{*} \gamma_{n}$, and we will prove

$$
P_{1}(\alpha \oplus \beta)=P_{1}(\alpha)+P_{1}(\beta) .
$$

First, the following equations hold;

$$
\begin{aligned}
P_{1}(\alpha \oplus \beta) & =(-1) C_{2}((\alpha \underset{\boldsymbol{R}}{\otimes} \boldsymbol{C}) \oplus(\beta \underset{\boldsymbol{R}}{\otimes} \boldsymbol{C})) \\
& =(-1)\left\{C_{2}(\alpha \underset{\boldsymbol{R}}{\otimes} \boldsymbol{C})+C_{2}(\beta \underset{\boldsymbol{R}}{\otimes} \boldsymbol{C})+C_{1}\left(\alpha \underset{\boldsymbol{R}}{\left.\otimes \boldsymbol{C}) C_{1}(\beta \underset{\boldsymbol{R}}{\otimes} \boldsymbol{C})\right\},}\right.\right.
\end{aligned}
$$

where $C_{k}(\zeta)$ denotes the k-th Chern class of ζ. On the other hand $H^{2}(B S O(m) \times B S O(n) ; Z)=0$. So we proved

$$
P_{1}(\alpha \oplus \beta)=P_{1}(\alpha)+P_{1}(\beta)
$$

Now we have

$$
\begin{aligned}
P_{1}(\xi \oplus \eta) & =\Delta^{*}\left(\tilde{\xi} \times \tilde{\eta}^{*}\right)^{*}\left(P_{1}\left(\pi_{1}^{*} \gamma_{m}\right)+P_{1}\left(\pi_{2}^{*} \gamma_{n}\right)\right) \\
& =\Delta^{*}\left\{(\tilde{\xi} \times 0)^{*} P_{1}\left(\gamma_{m}\right)+\left(0 \times \tilde{\eta}^{*} P_{1}\left(\gamma_{n}\right)\right\}\right. \\
& =\Delta^{*}\left\{P_{1}\left(\pi_{1}^{*} \tilde{\xi}^{*} \gamma_{m}\right)+P_{1}\left(\left(\tilde{\pi}_{2}^{*} \tilde{\eta}^{*} \gamma_{n}\right)\right\}\right. \\
& =\Delta^{*}\left\{\tilde{\pi}_{1}^{*} P_{1}(\tilde{\xi})+\bar{\pi}_{2}^{*} P_{1}(\eta)\right\} \\
& =P_{1}(\xi)+P_{1}(\eta),
\end{aligned}
$$

where 0 is a constant map and $\bar{\pi}_{1}: X \times X \longrightarrow X$ and $\bar{\pi}_{2}: X \times X \longrightarrow X$ are projections.

Thus we proved

$$
P_{1}(\xi \oplus \eta)=P_{1}(\xi)+P_{1}(\eta)
$$

for each orientable stable vector bundles ξ and η over X.
Lemma 1-3. The homomorphism $P_{1}: K S O\left(X / X_{3}\right) \longrightarrow H^{4}\left(X / X_{3} ; Z\right)$ is a monomorphism, the image of P_{1} coincides with $2 H^{4}\left(X / X_{3} ; Z\right)$, and the following diagram is commutative up to sign.

Proof. These are well known results.
§ 2. We take two elements η_{1} and η_{2} in $K S O(X)$ which satisfy $W_{2}\left(\eta_{1}\right)=$ $W_{2}\left(\eta_{2}\right)$. As $i^{*}\left(\eta_{1}\right)=i^{*}\left(\eta_{2}\right)$ in the sequence (I), we can take ξ in $K S O\left(X / X_{3}\right)$ such that $p^{*}(\xi)=\eta_{1}-\eta_{2}$. The homotopy type of X / X_{3} is a finite wedge sum of 4 -spheres. So we find α_{ξ} uniquely in $H^{4}\left(X / X_{3} ; Z\right)$ which satisfies $P_{1}(\xi)=2 \alpha_{\xi}$. We can regard α_{ξ} as an element of $H^{4}\left(X, X_{3} ; Z\right)$. We define $d\left(\eta_{1}, \eta_{2}\right)$ to be the image of α_{ξ} by the inclusion homomorphism $j: H^{4}\left(X, X_{3} ; Z\right) \longrightarrow H^{4}(X ; Z)$. The following lemma assures the uniqueness of $d\left(\eta_{1}, \eta_{1}\right)$.

Lemma 2-1. For every ξ in $\operatorname{KSO}\left(E X_{3}\right), P_{1}(\xi)$ is contained in $2 H^{4}\left(E X_{3} ; Z\right)$. Conversely, for any α in $H^{4}\left(E X_{3} ; Z\right)$ and any β in $H^{2}\left(E X_{3} ; Z_{2}\right)$, there exists an element ξ in $\operatorname{KSO}\left(E X_{3}\right)$ so that $W_{2}(\xi)=\beta$ and $P_{1}(\xi)=2 \alpha$.

Proof. At first we consider the Bockstein exact sequence;

$$
\longrightarrow H^{4}\left(E X_{3} ; Z\right) \xrightarrow{(2)} H^{4}\left(E X_{3} ; Z\right) \xrightarrow{i_{1}} H^{4}\left(E X_{3} ; Z_{2}\right) \longrightarrow .
$$

Then we have $i_{1}\left(P_{1}(\xi)\right)=\left(W_{2}(\xi)\right)^{2}=0$. So $P_{1}(\xi)$ is contained in $2 H^{4}\left(E X_{3} ; Z\right)$.
Conversely, if we take any element ξ_{1} in $\operatorname{KSO}\left(E X_{3}\right)$ as $W_{2}\left(\xi_{1}\right)=\beta$, then we can find α_{1} so that $P_{1}\left(\xi_{1}\right)=2 \alpha_{1}$. By the method of A . Dold and H . Whitney [1] we can take an element ξ in $\operatorname{KSO}\left(E X_{3}\right)$ so that $\tilde{d}\left(\xi, \xi_{1}\right)=\alpha-\alpha_{1} .{ }^{2)}$ And the equalities

$$
P_{1}(\xi)-P_{1}\left(\hat{\xi}_{1}\right)=2 \tilde{d}\left(\xi, \xi_{1}\right)=2\left(\alpha-\alpha_{1}\right)
$$

[^1]imply
$$
P_{1}(\xi)=2 \alpha-2 \alpha_{1}+P_{1}\left(\xi_{1}\right)=2 \alpha-2 \alpha_{1}+2 \alpha_{1}=2 \alpha .
$$

Lemma 2-2. The cohomology class $d\left(\eta_{1}, \eta_{2}\right)$ is well defined.
Proof. We ascertain that the cohomology class $j\left(\alpha_{\xi}\right)$ is independent of the choice of a bundle ξ. We take ξ^{\prime} so that $p^{*}(\xi)=\eta_{1}-\eta_{2}=p^{*}\left(\xi^{\prime}\right)$. These equalities imply that in the sequence (I) there exists $\xi^{\prime \prime}$ in $\operatorname{KSO}\left(E X_{3}\right)$ so that $\xi-\xi^{\prime}=j^{*}\left(\xi^{\prime \prime}\right)$. As $P_{1}(\xi)-P_{1}\left(\xi^{\prime}\right)=P_{1} \circ j^{*}\left(\xi^{\prime \prime}\right)=\tilde{j} \circ P_{1}\left(\xi^{\prime \prime}\right)$, where \tilde{j} is as in Lemma 1-3, Lemma 2-1 shows that there exists $\alpha_{\xi^{\prime \prime}}$ in $H^{4}\left(E X_{3} ; Z\right)$ such that $2 \alpha_{\xi}-2 \alpha_{\xi^{\prime}}=\tilde{j} \circ P_{1}\left(\xi^{\prime \prime}\right)=\tilde{j}\left(2 \alpha_{\xi^{\prime \prime}}\right)=2 \tilde{j}\left(\alpha_{\xi^{\prime \prime}}\right)$. The group $H^{4}\left(X / X_{3} ; Z\right)$, however, is torsion free, and hence the equality $\alpha_{\xi}-\alpha_{\xi^{\prime}}=\tilde{j}\left(\alpha_{\xi^{\prime \prime}}\right)$ holds. As $j\left(\alpha_{\xi}\right)-$ $j\left(\alpha_{\xi^{\prime}}\right)=j \circ \tilde{j}\left(\alpha_{\xi^{\prime \prime}}\right)=j \delta E\left(\alpha_{\xi^{\prime \prime}}\right)=0$, we have the equation $j\left(\alpha_{\xi}\right)=j\left(\alpha_{\xi^{\prime}}\right)$.

The properties of $d\left(\eta_{1}, \eta_{2}\right)$ are following;
Lemma 2-3. (1) If $W_{2}\left(\eta_{1}\right)=W_{2}\left(\eta_{2}\right)$ for η_{1} and η_{2} in $K S O(X)$, then $d\left(\eta_{1}, \eta_{2}\right)=0$ if and only if $\eta_{1}=\eta_{2}$.
(2) For η_{1} in $\operatorname{KSO}(X)$ and α in $H^{4}(X ; Z)$, there exists an element η_{2} in $K S O(X)$ so that $W_{2}\left(\eta_{1}\right)=W_{2}\left(\eta_{2}\right)$ and $d\left(\eta_{1}, \eta_{2}\right)=\alpha$.
(3) $P_{1}\left(\eta_{1}\right)-P_{1}\left(\eta_{2}\right)=2 d\left(\eta_{1}, \eta_{2}\right)$, if $W_{2}\left(\eta_{1}\right)=W_{2}\left(\eta_{2}\right)$.
(4) $d\left(\eta_{1}, \eta_{2}\right)+d\left(\eta_{2}, \eta_{3}\right)=d\left(\eta_{1}, \eta_{3}\right)$.
(5) $d\left(n \eta_{1}, n \eta_{2}\right)=n d\left(\eta_{1}, \eta_{2}\right)$.
(6) $\quad W_{4}\left(\eta_{1}\right)-W_{4}\left(\eta_{2}\right)=d\left(\eta_{1}, \eta_{2}\right)_{2} .{ }^{3)}$

Proof. (1) If $d\left(\eta_{1}, \eta_{2}\right)=0$, there exists ξ in $K S O\left(X / X_{3}\right)$ such that $P_{1}(\xi)=2 \alpha_{\xi}$, where α_{ξ} is in $\delta H^{3}\left(X_{3} ; Z\right)$. So we have $P_{1}(\xi)=\delta\left(2 \beta_{\xi}\right)$ where β_{ξ} is in $H^{3}\left(X_{3} ; Z\right)$. By Lemmas $1-3$ and $2-1$ we can take ξ^{\prime} in $K S O\left(E X_{3}\right)$ so that $P_{1}\left(\xi^{\prime}\right)=2\left(E^{-1} \beta_{\xi}\right)$. As the homomorphism $P_{1}: K S O\left(X / X_{3}\right) \longrightarrow H^{4}\left(X / X_{3} ; Z\right)$ is a monomorphism, the equation $j^{*}\left(\xi^{\prime}\right)=\xi$ is obtained from $P_{1} \circ j^{*}\left(\xi^{\prime}\right)=2 \alpha_{\xi}=P_{1}(\xi)$. Thus we proved that $\eta_{1}=\eta_{2}$. The proofs of other properties are similar, so they are omitted.
§3. To begin with we represent cohomology groups of X so that they satisfy the following properties i) - ii):

$$
H^{2}\left(X ; Z_{2}\right)=\sum_{i=0} \sum_{j=1}^{s_{t}} Z_{2}\left[x_{i j}\right]+\sum_{k=1}^{s} Z_{2}\left[x_{k}\right],
$$

[^2]\[

$$
\begin{aligned}
H^{4}\left(X ; Z_{2}\right) & =\sum_{i=1}^{r_{0}} Z_{2}\left[\tilde{y}_{i}\right]+\sum_{i=1} \sum_{j=1}^{r_{i}} Z_{2}\left[\tilde{z}_{i j}\right], \\
H^{4}(X ; Z) & =\sum_{i=1}^{r_{0}} Z\left[y_{i}\right]+\sum_{i=1} \sum_{j=1}^{r_{i}} Z_{2^{i}}\left[z_{i j}\right] \\
+ & \sum_{p: \text { odd prime }} \sum_{i=1} \sum_{j=1}^{t_{i}} Z_{p^{i}}\left[v_{p i j}\right] .
\end{aligned}
$$
\]

Here [] denotes a generator of the group, and following properties are satisfied.
i) $\left[x_{k}\right]^{2}=0 ;\left[x_{0 j}\right]^{2}=\left[\tilde{y}_{j}\right], j=1, \cdots, s_{0} ;\left[x_{i j}\right]^{2}=\left[\tilde{z}_{i j}\right], i=1, \cdots, j=1, \cdots, s_{i}$.
ii) $\left[\tilde{y}_{i}\right]=i_{1}\left[y_{i}\right],\left[\tilde{z}_{i j}\right]=i_{1}\left[z_{i j}\right]$, where $i_{1}: H^{4}(X ; Z) \longrightarrow H^{4}\left(X ; Z_{2}\right)$.

Lemma 3-1. There exists η_{k} in $K S O(X)$ so that $W_{2}\left(\eta_{k}\right)=\left[x_{k}\right]$ and $2 \eta_{k}=0$ $(1 \leqq k \leqq s)$.

Proof. As $\left[x_{k}\right]^{2}=0$, we have $P_{1}(\xi) \equiv 0(\bmod 2)$ for any ξ in $K S O(X)$ which satisfies $W_{2}(\xi)=\left[x_{k}\right]$. And Lemma 2-3 shows that there exists η_{k} in $K S O(X)$ so that $W_{2}\left(\eta_{k}\right)=\left[x_{k}\right]$ and $P_{1}\left(\eta_{k}\right)=0$. On the other hand the qualities

$$
2 d\left(2 \eta_{k}, 0\right)=P_{1}\left(2 \eta_{k}\right)=2 P_{1}\left(\eta_{k}\right)=0
$$

imply that $d\left(2 \eta_{k}, 0\right)$ is of order 2. And the equalities

$$
d\left(2 \eta_{k}, 0\right)_{2}=W_{4}\left(2 \eta_{k}\right)=\left(W_{2}\left(\eta_{k}\right)\right)^{2}=\left[x_{k}\right]^{2}=0
$$

hold, so we have $d\left(2 \eta_{k}, 0\right)=0$. This shows that $2 \eta_{k}=0$.
We know that the reduction mod 2 of the first Pontrjagin class is a squaring of the second Whitney class. Consequently, we can ignore elements in $H^{4}(X ; Z)$ which are divisible by 2 , because we proved (3) of Lemma 2-3. We have the following

Lemma 3-2. There exists an element $\eta_{i j}$ in $K S O(X)$ so that

$$
\begin{aligned}
& W_{2}\left(\eta_{i j}\right)=\left[x_{i j}\right] \\
& P_{1}\left(\eta_{i j}\right)= \begin{cases}{\left[y_{j}\right]} & (i=0), \\
{\left[z_{i j}\right]} & (i \geqq 1) .\end{cases}
\end{aligned}
$$

Moreover we can determine the order of $\eta_{i j}$ as follows;
If $i=0, P_{1}\left(l \eta_{i j}\right)=l\left[y_{j}\right]$ for any integer l.

If $i \geqq 1, d\left(2^{i+1} \eta_{i j}, 0\right)=2 d\left(2^{i} \eta_{i j}, 0\right)=P_{1}\left(2^{i} \eta_{i j}\right)=2^{i} P_{1}\left(\eta_{i j}\right)=2^{i}\left[z_{i j}\right]=0$.
If $i \geqq 2, d\left(2^{i} \eta_{i j}, 0\right)=2 d\left(2^{i-1} \eta_{i j}, 0\right)=P_{1}\left(2^{i-1} \eta_{i j}\right)=2^{i-1}\left[z_{i j}\right] \neq 0$.
If $i=1, d\left(2 \eta_{i j}, 0\right)_{2}=W_{4}\left(2 \eta_{i j}\right)=W_{2}\left(\eta_{i j}\right)^{2}=\left[x_{i j}\right]^{2}=\left[\tilde{z}_{i j}\right] \neq 0$.
By Lemma 1-3 we can determine the map j^{*} in the sequence (\mathbf{I}). So we have

Lemma 3-3. i) $\quad K S O\left(X / X_{3}\right)=\sum_{i=1}^{r_{0}} Z\left[\tilde{y}_{i}\right]+\sum_{i=1} \sum_{j=1}^{r_{i}} Z\left[\tilde{z}_{i j}\right]+\sum_{p: \text { odd }} \sum_{\text {prime }} \sum_{i} \sum_{j=1}^{t_{i}}$ $Z\left[\tilde{v}_{p i j}\right]+\sum_{i} Z\left[u_{i}\right], j \circ P_{1}\left(\tilde{y}_{i}\right)=2\left[y_{i}\right], j \circ P_{1}\left(\tilde{z}_{i j}\right)=2\left[z_{i j}\right]$, and $j \circ P_{1}\left(\tilde{v}_{p i j}\right)=2\left[v_{p i j}\right]$ for a natural homomorphism $j: H^{4}\left(X / X_{3} ; Z\right) \longrightarrow H^{4}(X ; Z)$, and u_{i} is a bundle which corresponds to a 4 -cell homologicaly trivial.
ii) $p^{*}\left(K S O\left(X \mid X_{3}\right)\right)=\sum_{i=1}^{r_{0}} Z\left[\tilde{y}_{i}{ }^{\prime}\right]+\sum_{i=1} \sum_{j=1}^{r_{i}} z_{2^{i}}\left[\tilde{z}_{i j}{ }^{\prime}\right]+\sum_{p: \text { odd prime }} \sum_{i} \sum_{j=1}^{t_{i}} Z_{p^{i}}\left[\tilde{v}_{p i j}{ }^{\prime}\right]$, where \tilde{y}^{\prime} denotes $p^{*}(\tilde{y})$.

The element $d\left(\tilde{z}_{i j^{\prime}}{ }^{\prime}, 2 \eta_{i j}\right)$ is defined since $W_{2}\left(\tilde{z}_{i j}{ }^{\prime}\right)=0=W_{2}\left(2 \eta_{i j}\right)$ for $1 \leqq j \leqq s_{i}$. We have

$$
d\left(\tilde{z}_{i j}{ }^{\prime}, 2 \eta_{i j}\right)_{2}=W_{4}\left(\tilde{z}_{i j}{ }^{\prime}\right)-W_{4}\left(2 \eta_{i j}\right)=W_{4}\left(\tilde{z}_{i j^{\prime}}{ }^{\prime}\right)-W_{2}\left(\eta_{i j}\right)^{2}=\left[\tilde{z}_{i j}\right]-\left[\tilde{z}_{i j}\right]=0 .
$$

Hence we can choose an element $\beta_{i j}$ in $H^{4}(X ; Z)$ such that $d\left(\tilde{z}_{i j}{ }^{\prime}, 2 \eta_{i j}\right)=2 \beta_{i j}$. Then $4 \beta_{i j}=2 d\left(\tilde{z}_{i j}^{\prime}, 2 \eta_{i j}\right)=P_{1}\left(\tilde{z}_{i j}\right)-P_{1}\left(2 \eta_{i j}\right)=2\left[z_{i j}\right]-2\left[z_{i j}\right]=0$. Lemma 2-3 shows that we can take $\eta_{i j}{ }^{\prime}$ so that $d\left(\eta_{i j}{ }^{\prime}, \eta_{i j}\right)=\beta_{i j}$. Then we have $d\left(\tilde{z}_{i j}{ }^{\prime}, 2 \eta_{i j}{ }^{\prime}\right)=0$, and $P_{1}\left(\eta_{i j}{ }^{\prime}\right)=\left[z_{i j}\right]+2 \beta_{i j}, 4 \beta_{i j}=0$. This shows that $\tilde{z}_{i j}{ }^{\prime}=2 \eta_{i j}{ }^{\prime}$. Thus we may use $\eta_{i j}{ }^{\prime}$ in place of $\eta_{i j}$.

The above results are summarized as follows:

Elements of $K S O(X)$	Number	Order
η_{k}	$1 \leqq k \leqq s$	2
$\eta_{i j}{ }^{\prime}$	$1 \leqq i, 1 \leqq j \leqq s_{i}$	2^{i+1}
$\eta_{o j}{ }^{\prime}$	$1 \leqq j \leqq s_{0}$	∞
$\tilde{y}_{j}{ }^{\prime}$	$s_{0}<j \leqq r_{0}$	∞
$\tilde{z}_{i j}{ }^{\prime}$	$1 \leqq i, s_{i}<j \leqq r_{i}$	2^{i}
$\tilde{v}_{p i j}{ }^{\prime}$	$1 \leqq i, p \neq 2$	p^{i}

Now if we use the sequence (I), we can easily prove that $K S O(X)$ is an abelian group generated by the above elements. Thus we have

Theorem.

$$
\begin{aligned}
K S O(X) & =\sum_{1}^{s} Z_{2}+\sum_{i=1} \sum_{j=1}^{s_{i}} Z_{2^{i+1}}+\sum_{1}^{r_{0}} Z \\
& +\sum_{i=1} \sum_{j=s_{i}+1}^{r_{i}} Z_{2^{i}}+\sum_{p: \text { odd prime }} \sum_{i} \sum_{1}^{t_{j}} Z_{p^{i}},
\end{aligned}
$$

where s, s_{i}, r_{i} and t_{i} are as in the first part of this section.
Corollary 1. If Y is a 3-dimensional CW-complex, then we have that

$$
K S O(E Y) \cong H^{1}\left(Y ; Z_{2}\right)+H^{3}(Y ; Z)
$$

Corollary 2. If M is an orientable, closed, topological 4-manifold, we have,-

$$
K S O(M) \cong H^{2}\left(M ; Z_{2}\right)+Z, \text { if } S_{q}^{2} H^{2}\left(M ; Z_{2}\right)=0
$$

and

$$
K S O(M)=\sum_{1}^{r} Z_{2}+Z \quad\left(r=\operatorname{dim} H^{2}\left(M ; Z_{2}\right)-1\right), \text { if } S_{q}{ }^{2} H^{2}\left(M ; Z_{2}\right) \neq 0
$$

Corollary 3. If M is a non-orientable, closed, topological 4-manifold, we have that

$$
K S O(M) \cong H^{2}\left(M ; Z_{2}\right)+Z_{2}, \text { if } S_{q}{ }^{2} H^{2}\left(M ; Z_{2}\right)=0
$$

and

$$
K S O(M)=\sum_{1}^{r} Z_{2}+Z_{4} \quad\left(r=\operatorname{dim} H^{2}\left(M ; Z_{2}\right)-1\right), \text { if } S_{q}{ }^{2} H^{2}\left(M ; Z_{2}\right) \neq 0
$$

We give a few examples.

X	$P_{2}(C)$	$P_{4}(R)$	$S^{2} \times S^{2}$	$S^{3} \cup e^{4}(i \geqq 1)$
$K S O(X)$	Z	Z_{4}	$Z+Z_{2}+Z_{2}$	$Z_{2^{i}}$

Reference

[1] A. Dold and H. Whitney, "Classifications of oriented sphere bundles over a 4-complex," Ann. of Math., 69 (1959), 667-677.

[^0]: 1) This lemma and its proof are suggested to the authors by the referee, and the original lemma was proved under the condition that $\operatorname{dim} \mathrm{X} \leqq 4$.
[^1]: 2) Here $\tilde{d}\left(\xi, \xi_{1}\right)$ is the difference bundle defined by A. Dold and H. Whitney [1].
[^2]: 3) $d\left(\eta_{1}, \eta_{2}\right)_{2}$ is the reduction $\bmod 2$ of $d\left(\eta_{1}, \eta_{2}\right)$.
