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INTERSECTIONS OF ARC-CLUSTER SETS

FOR MEROMORPHIC FUNCTIONS

CHARLES L. BELNA*

1. Introduction

Let D and C denote the open unit disk and the unit circle in the

complex plane, respectively; and let / be a function from D into the

Riemann sphere Ω. An arc 7<zD is said to be an arc at p^C if ΐΌ{p} is

a Jordan arc; and, for each t (0< t < 1), the component of TΠ{z: t^\z\<l]

which has p as a limit point is said to be a terminal subarc of ϊ. If ϊ is an

arc at p, the arc-cluster set C{f,p,ϊ) is the set of all points a^Ω for which

there exists a sequence {zk}ar with zk-+p and f(zk)-+a.

We say that the function / has the n-arc property at p<^C, for some

integer n (n^2) , if there exist n arcs ΐl9 ,rn at p for which the inter-

section of all n of the sets C(f,p,7ό) (j = 1, ,w) is empty; if, in addition,

the arcs Tu 9ΐn can be chosen to be mutually disjoint, we say that /

has the n-separated-arc property at p.

A point J J E C at which / has the 2-arc property is called an ambiguous

point of f. BagemihPs ambiguous point theorem ([1], p. 380, Theorem 2)

states that the set of ambiguous points of an arbitrary function from D into

Ω is countable.

Gresser ([3], p. 145, Theorem 2) has proved the existence of a mero-

morphic function in D having the 3-separated-arc property at each point

of a perfect subset of C. Hence, in view of Bagemihl's ambiguous point

theorem, a meromorphic function in D having the 3-arc property (or even

the 3-separated-arc property) at a point p e C need not have the 2-arc

property at p. However, we show that if a meromorphic function / in D

has the 3-arc property at a point p, then in a certain sense / is very close
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to having the 2-arc property at φ. The other main result of this paper

states that a meromorphic function f in D has the n-arc property (resp.,

the w-separated-arc property) at p for some integer n (n > 3) if and only if

/ has the 3-arc property (resp., the 3-separated-arc property) at p.

2. Preliminary Results

A region is any non-empty open connected subset of Ω; and a region

G is a Jordan region if the boundary of G, denoted dG9 is the union of a

finite number ( >0) of mutually disjoint Jordan curves. A continuum is any

non-empty closed connected subset of Ω\ and a proper continuum is any con-

tinuum properly contained in Ω.

THEOREM 1. Let T be a countable subset of Ω and let K19 ,Kn be

n (n:>3) proper continua with Πj-i-Kj = φ. Then there exist n Jordan regions

Gi, ,Gn for which the following conditions hold:

(1) KJCGJ (.7 = 1, . ,n) f

(2) Π%ιGj = φ (the bar denotes closure),

(3) dGjf)T=φ (/ = 1, - f n ) ,

(4) card {dG, Π δG2] < Ko

and

(5) dGiΠdGzΠdGt = φ.

Proof Let % denote the chordal metric on Ω. There clearly exists a

number ε > 0 for which Π^iίKj], = φ and [Kj]ε ψ Ω (j = 1, ,n), where

[Kj]ε denotes the set of all points a^Ω satisfying X(a,Kj)<ε. Using the

Heine-Borel Theorem, for each j = 1, , n we obtain finitely many open

spherical caps S(j, 1), , S{j, ns) having centers in Kj with

Since Kj is connected, each set

0 / = Vn

kLιS(j,k) (j = l, ,n)

is a region. Since for each j = 1, - 9n the set {SUΛ)YίLι is finite, we can

choose open spherical caps S*{j,k) (k = 1, , n ; ) with

S(j\ k) c S*(j, k) c S*(Λ fc) c [ ί y .

such that the region
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is a Jordan region and

{radius S*(l,ft)}Jii Π {radius S*(2,/b)} !̂ = φ.

From the latter condition it follows that

card [dθ?ndθ?]< Ko.

Consequently, we can rechoose (if necessary) some of the caps S*(3,fc)

(k = 1, , n3) so that

dS*(3,fc)n[dO?ndO?] = φ {k = 1, ,n3).

Furthermore, since T is countable, we can rechoose (if necessary) some of

the caps S*(j9 fc) so that

dS*{j,k)Γ\T = φ (j = 1, ,w; i = 1, ,w,).

If we now set Ĝ  = 0? (j = 1, , n) all five conditions of the theorem can

readily be verified and the proof is complete.

We say that the arcs Tl9 ,Tn at p^C are ordered arcs if for each

j = 1, ,n — 1 there exist an arc TJCLD and a point geC ( # ^ p) such that

(1) Tj\J{p,q} is a Jordan arc and (2) yj and rJ+1*are, relative to an observer

at φ, contained in the left and right components of D — τj9 respectively.

Then we say that the arc T at p is between the ordered arcs ϊλ and T2 at p

provided: if a is an arc in D for which a\JTi\JY2O[p} is a Jordan curve

with interior domain J, then there exists a terminal subarc ΐ' of T with

THEOREM 2. Let f be meromorphic in D, let Gx and G2 be Jordan regions

with

dGjΠ[{f(z):f/(z) = 0}U{^}] = Φ U = 1,2),

and let ΐl9 T2 be a pair of ordered arcs at p e C with C{f,p,7j)c:Gj {j = 1,2).

Then either p is an ambiguous point of f or there exists an arc ϊ at p between ϊx

and ϊ2 with

C{f9p9r)a{G1ΠG2)UdG1.

Proof There is no loss of generality in assuming that /(Γ; )cGj {j = 1,2).

Choose a Jordan arc aczD for which αUΓiUΓgUtp} is a Jordan curve Γ,
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and let Δ be the interior domain of Γ. Denote by A the set of components

λ of Jn/'^dGi) which satisfy λf]T2¥
sΦ Then each component λ^Λ is a

homeomorphic image of the open interval (0,1).

Consider the following cases: (I) There exists a terminal subarc ϊ'2 of

r2 such that 7*2ΓU = φ for each e A

(la) fiΐβcGx. Then for γ = γ2 we have

C{f,pJ)dG1f)G2(z{G1nG2)\JdGί.

(Ib) ArίKΩ-d. Then

and p is an ambiguous point of / . (II) For each terminal subarc 7'2 of

T2 there exists a component λ^Λ with τ2 Πλφφ. Then, since / is a local

homeomorphism on f~ι{dGιi9 λf)aψφ for at most finitely many

Consequently, there exists an arc 7 at p with

u λ)9
λ(ΞΛ

and it follows that

C(/, pf r) c (G2 n GJ u sd = (d n G2) u ad.

Thus we have established the theorem in both cases (I) and (II), and the

theorem is proved.

We say that the arcs Yl9 T2 at peC are intersecting arcs if every neigh-

borhood of p contains a point of the intersection 7ΊnΓ2. We now give an

analogue of Theorem 2 for intersecting arcs.

THEOREM 2*. Let f be meromorphic in D, let Gλ and G2 be Jordan regions

with

dGjΠί{f(z) : /'(*) = 0}U{oo}] = φ (j = 1,2),

and let ΐl9 T2 be a pair of intersecting arcs at p^C with C{f,pJό)<zG5 (j = 1,2).

Then there exists an arc ϊ at p with

C(/,p,r)c(dnG 8 )uad.

Proof. As in the proof of Theorem 2, we assume that f{ΐj)<zGj (/=1,2).

Set Q = r1nr2 and note that /(Q)cd(ΊG 2. Let z%zr be a pair of points in

Q for which the open subarc r of ϊ2 between z and zr satisfies τΠQ = φ.
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Let r* be the closed subarc of Tx joining z to z1'. Then τUr* is a Jordan

curve, and we let Δ denote its interior domain.

Let A denote the set of components λ of Jn/ 'H^GJ satisfying λΠτ^φ.

Then, since ^,2/e/"1(G1ΠG2), it is easy to see that there exists a Jordan arc

pz%z, joining z to zr such that

pz,zrd[τΠf-1(G1)']Ό(λΌΛλ).

It follows that

•! = (G.ΠG^ΌdG,.

Set M =• ΌpZtZ, where the union is taken over all pairs z,zr^Q for which

the open subarc r of ϊ2 between z and z' satisfies τf]Q = φ. Since QUMU(p}

is locally connected, it follows ([4], p. 27, Theorem 4.1) that there exists an

arc T at p with TciQUM. Then, since

f(7)ci(G1nG2)ΌdGl9

the proof is complete.

3. The n-Separated-Arc Property

THEOREM 3. If f is meromorphic in D, then f has the n-separated-arc

property {n > 3) at p e C if and only if f has the 3-separated-arc property at φ.

Proof If / has the 3-separated-arc property at p, then it is obvious

that / has the n-separated-arc property at p for all n {n>3). Thus, we

need only prove that if / has the n-separated-arc property (n>3) at p,

then / has the (n — l)-separated-arc property at p.

Suppose ΐl9 * ,Tn are n ordered arcs at φ for which the intersection

of all n of the sets C(f,p,Tj) (j = 1, ,n) is empty; and, to avoid the

trivial case, assume that the intersection of any n — 1 of them is non-empty.

By Theorem 1 there exist Jordan regions Gj {j = 1, , n) for which

(1)

(2)

(3)

and

(4)
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We assume that p is not an ambiguous point of / , in which case there

would be nothing to prove. Due to conditions (1) and (3) we can apply

Theorem 2 to obtain arcs σ; {j = 1, ,n — 1) at p between the corres-

ponding arcs ϊj and Tj+1 such that

C ( / , p, σj) c {Gj Π G i + 1 ) U dGj.

Since the arcs Tl9 ,ΐn are ordered, for each j = 1, ,n — 1 we can

choose a terminal subarc σ* of <τ, in such a way that the arcs σ*, , <τ*-!

are mutually disjoint. Then with the aid of conditions (2) and (4) we obtain

the relations

n 5:}C(/, p, α?) c n 5=}[(G, n G i + 1

That is, / has the (n — l)-separated-arc property at p as was to be shown.

THEOREM 4. Z £̂ / be meromorphic in D. If f has the 3-separated-arc

property at p^C, then there exist disjoint arcs σx and σz at p for which

card

Proof. Suppose Tl9T29Tz are ordered arcs at p with

C(f, p, rx) n C(/ f p, rt)

If p is an ambiguous point of / , we are finished; hence we assume that p

is not an ambiguous point of / . By Theorem 1 there exist Jordan regions

Gu G29 Gz for which

(1) C{f,p,rj)<zG, (i = 1,2,3).

(2) G1Γ\G2ΠG3 = φ9

(3) dGjΠUAz) : f'(z) = 0}U{<χ>}] = φ (j = 1,2,3)

and

(4)

By Theorem 2 there exist arcs σj (j = 1,2) at p between the correspond-

ing arcs ΐj and ΐj+1 such that

Since the arcs Tl9 ϊ2, ϊ3 are ordered, we may assume that σ1Γ\σ2 = φ- Then,

using condition (2) we obtain the relations
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i)n C(f, p, σ2)a[(G1 n G2) u a σ j n ί(G2 n G 8 )

and, in view of condition (4), the proof is complete.

Remark. In effect, Gresser ([3], p. 145, proof of Theorem 2) has proved

the existence of a meromorphic function μ in D with the following property:

there exists a triangle in Ω with sides 5!, s2, s3 and a perfect subset C of C

such that for each point p^C there exist three mutually disjoint chords

Pi, P2, i°3 at p with

C(μ,p,pJ) = Sj (.7 = 1,2,3).

The function μ serves as an illustrative example of Theorem 4 in that

C(μ9p,p1)nC(μ,p,p2)nC(μ,p,p3) = φ

and, for i ψ j ,

card [C(//,p,/oi)nC(jM,pfiί>i)] = 1.

4. The n-Arc Property

By following the same line of proof as in the proofs of Theorems 3 and

4 with Theorem 2* playing the role of Theorem 2, we establish the follow-

ing results.

THEOREM 5. If f is meromorphic in D, then f has the n-arc property {n > 3)

at p e C if and only if f has the o-arc property at p.

THEOREM 6. Let f be meromorphic in D. If f has the 3-arc property at

, then there exist arcs σx and σ2 at p for which

card [C(/, p, σ,) Π C(f, p, σ2)] < Ko.

Remark. Theorem 6 is exemplified by the modular function m mapping

D onto the universal covering surface of Ω— {0,l,°o}. Bagemihl, Piranian

and Young ([2], p. 30, proof of Theorem 3) have shown that for each peC

there exist three arcs (any two of which are intersecting arcs) ΐ19 ΐ2, Γ3 at p

such that

C(m, p, Tλ) Π C(m, p, ϊ2) Π C{m, p, T3) = φ

and, for i ψ ,
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card [C(m, p, r«) Π C(w, p, r,)] ^ 4.

If we set Π(/,p) = nC(/,p,Γ) where the intersection is taken over all

arcs ΐ at p, the next result follows from Theorems 5 and 6 and the fact

that Π(/, p) = φ implies that / has the n-arc property at p for some integer

n (n^>2).

THEOREM 7. Let f be meromorpkic in D. If U{f,p) = φ, then f has the

3-arc property at p and there exist arcs σx and σ2 at p for which

card [C(/, jp, *,) n C(/, p, σ2)] < Ko.

5. Open Quest ions

1. Does there exist a meromorphic function in D which has the 3-arc

property at a point j)GC but does not have the 3-separated-arc property at

j»?

2. Does the modular function m have the 3-separated-arc property at

each point of C?

3. If the answer to Question 2 is in the negative, does there exist a

meromorphic function in D having the 3-separated-arc property at each

point of C?
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