INTERSECTIONS OF ARC-CLUSTER SETS FOR MEROMORPHIC FUNCTIONS

CHARLES L. BELNA*

1. Introduction

Let D and C denote the open unit disk and the unit circle in the complex plane, respectively; and let f be a function from D into the Riemann sphere Ω. An arc $\gamma \subset D$ is said to be an arc at $p \in C$ if $\gamma \cup\{p\}$ is a Jordan arc; and, for each $t(0<t<1)$, the component of $\gamma \cap\{z: t \leq|z|<1\}$ which has p as a limit point is said to be a terminal subarc of γ. If γ is an arc at p, the arc-cluster set $C(f, p, \gamma)$ is the set of all points $a \in \Omega$ for which there exists a sequence $\left\{z_{k}\right\} \subset \gamma$ with $z_{k} \rightarrow p$ and $f\left(z_{k}\right) \rightarrow a$.

We say that the function f has the n-arc property at $p \in C$, for some integer $n(n \geq 2)$, if there exist n arcs $\gamma_{1}, \cdots, \gamma_{n}$ at p for which the intersection of all n of the sets $C\left(f, p, \gamma_{j}\right)(j=1, \cdots, n)$ is empty; if, in addition, the arcs $\gamma_{1}, \cdots, \gamma_{n}$ can be chosen to be mutually disjoint, we say that f has the n-separated-arc property at p.

A point $p \in C$ at which f has the 2 -arc property is called an ambiguous point of f. Bagemihl's ambiguous point theorem ([1], p. 380, Theorem 2) states that the set of ambiguous points of an arbitrary function from D into Ω is countable.

Gresser ([3], p. 145, Theorem 2) has proved the existence of a meromorphic function in D having the 3 -separated-arc property at each point of a perfect subset of C. Hence, in view of Bagemihl's ambiguous point theorem, a meromorphic function in D having the 3 -arc property (or even the 3 -separated-arc property) at a point $p \in C$ need not have the 2 -arc property at p. However, we show that if a meromorphic function f in D has the 3 -arc property at a point p, then in a certain sense f is very close

[^0]to having the 2 -arc property at p. The other main result of this paper states that a meromorphic function f in D has the n-arc property (resp., the n-separated-arc property) at p for some integer $n(n>3)$ if and only if f has the 3 -arc property (resp., the 3 -separated-arc property) at p.

2. Preliminary Results

A region is any non-empty open connected subset of Ω; and a region G is a Jordan region if the boundary of G, denoted ∂G, is the union of a finite number (>0) of mutually disjoint Jordan curves. A continuum is any non-empty closed connected subset of Ω; and a proper continuum is any continuum properly contained in Ω.

Theorem 1. Let T be a countable subset of Ω and let K_{1}, \cdots, K_{n} be $n(n \geq 3)$ proper continua with $\cap_{j=1}^{n} K_{j}=\phi$. Then there exist n Jordan regions G_{1}, \cdots, G_{n} for which the following conditions hold:
(1) $K_{j} \subset G_{j}(j=1, \cdots, n)$,
(2) $\cap_{j=1}^{n} \bar{G}_{j}=\phi$ (the bar denotes closure),
(3) $\partial G_{j} \cap T=\phi(j=1, \cdots, n)$,
(4) card $\left[\partial G_{1} \cap \partial G_{2}\right]<\boldsymbol{\aleph}_{0}$
and
(5) $\quad \partial G_{1} \cap \partial G_{2} \cap \partial G_{3}=\phi$.

Proof. Let χ denote the chordal metric on Ω. There clearly exists a number $\varepsilon>0$ for which $\cap_{j=1}^{n}\left[K_{j}\right]_{\varepsilon}=\phi$ and $\left[K_{j}\right]_{\varepsilon} \neq \Omega(j=1, \cdots, n)$, where $\left[K_{j}\right]_{6}$ denotes the set of all points $a \in \Omega$ satisfying $\chi\left(a, K_{j}\right)<\varepsilon$. Using the Heine-Borel Theorem, for each $j=1, \cdots, n$ we obtain finitely many open spherical caps $S(j, 1), \cdots, S\left(j, n_{j}\right)$ having centers in K_{j} with

$$
K_{j} \subset \cup_{k=1}^{n_{j}} S(j, k) \subset \cup_{k=1}^{n_{j}} \bar{S}(j, k) \subset\left[K_{j}\right]_{\iota} .
$$

Since K_{j} is connected, each set

$$
0_{j}=\cup_{k=1}^{n_{j}} S(j, k)(j=1, \cdots, n)
$$

is a region. Since for each $j=1, \cdots, n$ the set $\{S(j, k)\}_{k=1}^{n_{j}}$ is finite, we can choose open spherical caps $S_{*}(j, k)\left(k=1, \cdots, n_{j}\right)$ with

$$
S(j, k) \subset S_{*}(j, k) \subset \bar{S}_{*}(j, k) \subset\left[K_{j}\right]_{\varepsilon}
$$

such that the region

$$
0_{j}^{*}=\cup_{k=1}^{n_{j}} S_{*}(j, k)
$$

is a Jordan region and

$$
\left\{\text { radius } S_{*}(1, k)\right\}_{k=1}^{n_{1}} \cap\left\{\text { radius } S_{*}(2, k)\right\}_{k=1}^{n_{2}}=\phi .
$$

From the latter condition it follows that

$$
\operatorname{card}\left[\partial 0_{1}^{*} \cap \partial 0_{2}^{*}\right]<\boldsymbol{\aleph}_{0}
$$

Consequently, we can rechoose (if necessary) some of the caps $S_{*}(3, k)$ ($k=1, \cdots, n_{3}$) so that

$$
\partial S_{*}(3, k) \cap\left[\partial 0_{1}^{*} \cap \partial 0_{2}^{*}\right]=\phi\left(k=1, \cdots, n_{3}\right)
$$

Furthermore, since T is countable, we can rechoose (if necessary) some of the caps $S_{*}(j, k)$ so that

$$
\hat{\partial} S_{*}(j, k) \cap T=\phi\left(j=1, \cdots, n ; k=1, \cdots, n_{j}\right) .
$$

If we now set $G_{j}=0_{j}^{*}(j=1, \cdots, n)$ all five conditions of the theorem can readily be verified and the proof is complete.

We say that the arcs $\gamma_{1}, \cdots, r_{n}$ at $p \in C$ are ordered arcs if for each $j=1, \cdots, n-1$ there exist an arc $\tau_{j} \subset D$ and a point $q \in C(q \neq p)$ such that (1) $\tau_{j} \cup\{p, q\}$ is a Jordan arc and (2) γ_{j} and γ_{j+1} are, relative to an observer at p, contained in the left and right components of $D-\tau_{j}$, respectively. Then we say that the arc γ at p is between the ordered arcs γ_{1} and γ_{2} at p provided: if α is an arc in D for which $\alpha \cup \gamma_{1} \cup \gamma_{2} \cup\{p\}$ is a Jordan curve with interior domain Δ, then there exists a terminal subarc γ^{\prime} of γ with $\gamma^{\prime} \subset \Delta \cup \gamma_{2}$.

Theorem 2. Let f be meromorphic in D, let G_{1} and G_{2} be Jordan regions with

$$
\hat{o} G_{j} \cap\left[\left\{f(z): f^{\prime}(z)=0\right\} \cup\{\infty\}\right]=\phi(j=1,2),
$$

and let r_{1}, r_{2} be a pair of ordered arcs at $p \in C$ with $C\left(f, p, \gamma_{j}\right) \subset G_{j}(j=1,2)$. Then either p is an ambiguous point of f or there exists an arc γ at p between γ_{1} and γ_{2} with

$$
C(f, p, \gamma) \subset\left(G_{1} \cap G_{2}\right) \cup \hat{o} G_{1} .
$$

Proof. There is no loss of generality in assuming that $\overline{f\left(\gamma_{j}\right)} \subset G_{j}(j=1,2)$. Choose a Jordan arc $\alpha \subset D$ for which $\alpha \cup \gamma_{1} \cup \gamma_{2} \cup\{p\}$ is a Jordan curve Γ,
and let Δ be the interior domain of Γ. Denote by Λ the set of components λ of $\Delta \cap f^{-1}\left(\partial G_{1}\right)$ which satisfy $\bar{\lambda} \cap \gamma_{2} \neq \phi$. Then each component $\lambda \in \Lambda$ is a homeomorphic image of the open interval $(0,1)$.

Consider the following cases: (I) There exists a terminal subarc γ_{2}^{\prime} of γ_{2} such that $\gamma_{2}^{\prime} \cap \bar{\lambda}=\phi$ for each $\lambda \in \Lambda$.
(Ia) $f\left(\gamma_{2}^{\prime}\right) \subset \bar{G}_{1}$. Then for $\gamma=\gamma_{2}$ we have

$$
C(f, p, \gamma) \subset \bar{G}_{1} \cap G_{2} \subset\left(G_{1} \cap G_{2}\right) \cup \partial G_{1} .
$$

(Ib) $f\left(\gamma_{2}^{\prime}\right) \subset \Omega-G_{1}$. Then

$$
C\left(f, p, \gamma_{1}\right) \cap C\left(f, p, \gamma_{2}\right)=\phi
$$

and p is an ambiguous point of f. (II) For each terminal subarc γ_{2}^{\prime} of γ_{2} there exists a component $\lambda \in \Lambda$ with $\gamma_{2}^{\prime} \cap \bar{\lambda} \neq \phi$. Then, since f is a local homeomorphism on $f^{-1}\left(\partial G_{1}\right), \quad \bar{\lambda} \cap \alpha \neq \phi$ for at most finitely many $\lambda \in \Lambda$. Consequently, there exists an arc γ at p with

$$
r \subset\left[r_{2} \cap f^{-1}\left(G_{1}\right)\right] \cup\left(\bigcup_{\lambda \in A}^{\cup} \bar{\lambda}\right),
$$

and it follows that

$$
C(f, p, \gamma) \subset\left(G_{2} \cap \bar{G}_{1}\right) \cup \partial G_{1}=\left(G_{1} \cap G_{2}\right) \cup \partial G_{1}
$$

Thus we have established the theorem in both cases (I) and (II), and the theorem is proved.

We say that the arcs γ_{1}, γ_{2} at $p \in C$ are intersecting arcs if every neighborhood of p contains a point of the intersection $\gamma_{1} \cap \gamma_{2}$. We now give an analogue of Theorem 2 for intersecting arcs.

Theorem 2*. Let f be meromorphic in D, let G_{1} and G_{2} be Jordan regions with

$$
\partial G_{j} \cap\left[\left\{f(z): f^{\prime}(z)=0\right\} \cup\{\infty\}\right]=\phi \quad(j=1,2),
$$

and let γ_{1}, γ_{2} be a pair of intersecting arcs at $p \in C$ with $C\left(f, p, \gamma_{j}\right) \subset G_{j}(j=1,2)$. Then there exists an arc γ at p with

$$
C(f, p, \gamma) \subset\left(G_{1} \cap G_{2}\right) \cup \partial G_{1}
$$

Proof. As in the proof of Theorem 2, we assume that $\overline{f\left(r_{j}\right)} \subset G_{j}(j=1,2)$. Set $Q=\gamma_{1} \cap \gamma_{2}$ and note that $\overline{f(Q)} \subset G_{1} \cap G_{2}$. Let z, z^{\prime} be a pair of points in Q for which the open subarc τ of γ_{2} between z and z^{\prime} satisfies $\tau \cap Q=\phi$.

Let τ_{*} be the closed subarc of γ_{1} joining z to z^{\prime}. Then $\tau \cup \tau_{*}$ is a Jordan curve, and we let Δ denote its interior domain.

Let Λ denote the set of components λ of $\Delta \cap f^{-1}\left(\partial G_{1}\right)$ satisfying $\bar{\lambda} \cap \tau \neq \phi$. Then, since $z, z^{\prime} \in f^{-1}\left(G_{1} \cap G_{2}\right)$, it is easy to see that there exists a Jordan arc $\rho_{z, z^{\prime}}$ joining z to z^{\prime} such that

$$
\rho_{z, z^{\prime}} \subset\left[\tau \cap f^{-1}\left(G_{1}\right)\right] \cup\left(\bigcup_{\lambda \in A}^{\cup \bar{\lambda}) .}\right.
$$

It follows that

$$
\overline{f\left(\rho_{z, z^{\prime}}\right)} \subset\left(G_{2} \cap \bar{G}_{1}\right) \cup \hat{\partial} G_{1}=\left(G_{1} \cap G_{2}\right) \cup \partial G_{1} .
$$

Set $M=\cup \rho_{z, z}$, where the union is taken over all pairs $z, z^{\prime} \in Q$ for which the open subarc τ of γ_{2} between z and z^{\prime} satisfies $\tau \cap Q=\phi$. Since $Q \cup M \cup\{p\}$ is locally connected, it follows ([4], p. 27, Theorem 4.1) that there exists an arc γ at p with $\gamma \subset Q \cup M$. Then, since

$$
\overline{f(\gamma)} \subset\left(G_{1} \cap G_{2}\right) \cup \partial G_{1},
$$

the proof is complete.

3. The n-Separated-Arc Property

Theorem 3. If f is meromorphic in D, then f has the n-separated-arc property $(n>3)$ at $p \in C$ if and only if f has the 3-separated-arc property at p.

Proof. If f has the 3 -separated-arc property at p, then it is obvious that f has the n-separated-arc property at p for all $n(n>3)$. Thus, we need only prove that if f has the n-separated-arc property $(n>3)$ at p, then f has the $(n-1)$-separated-arc property at p.

Suppose $\gamma_{1}, \cdots, \gamma_{n}$ are n ordered arcs at p for which the intersection of all n of the sets $C\left(f, p, \gamma_{j}\right)(j=1, \cdots, n)$ is empty; and, to avoid the trivial case, assume that the intersection of any $n-1$ of them is non-empty. By Theorem 1 there exist Jordan regions $G_{j}(j=1, \cdots, n)$ for which
(1) $C\left(f, p, r_{j}\right) \subset G_{j}(j=1, \cdots, n)$,
(2) $\cap_{j=1}^{n} \bar{G}_{j}=\phi$,
(3) $\partial G_{j} \cap\left[\left\{f(z): f^{\prime}(z)=0\right\} \cup\{\infty\}\right]=\phi(j=1, \cdots, n)$
and
(4) $\partial G_{1} \cap \partial G_{2} \cap \partial G_{3}=\phi$.

We assume that p is not an ambiguous point of f, in which case there would be nothing to prove. Due to conditions (1) and (3) we can apply Theorem 2 to obtain $\operatorname{arcs} \sigma_{j}(j=1, \cdots, n-1)$ at p between the corresponding arcs γ_{j} and γ_{j+1} such that

$$
C\left(f, p, \sigma_{j}\right) \subset\left(G_{j} \cap G_{j+1}\right) \cup \partial G_{j} .
$$

Since the arcs $\gamma_{1}, \cdots, \gamma_{n}$ are ordered, for each $j=1, \cdots, n-1$ we can choose a terminal subarc σ_{j}^{*} of σ_{j} in such a way that the $\operatorname{arcs} \sigma_{1}^{*}, \cdots, \sigma_{n-1}^{*}$ are mutually disjoint. Then with the aid of conditions (2) and (4) we obtain the relations

$$
\begin{aligned}
\cap_{j=1}^{n-1} C\left(f, p, \sigma_{j}^{*}\right) & \subset \cap_{\left.\substack{n=1 \\
j-1}\left(G_{j} \cap G_{j+1}\right) \cup \partial G_{j}\right]} \\
& =\bigcap_{j=1}^{n-1} \partial G_{j}=\phi .
\end{aligned}
$$

That is, f has the ($n-1$)-separated-arc property at p as was to be shown.
Theorem 4. Let f be meromorphic in D. If f has the 3-separated-arc property at $p \in C$, then there exist disjoint arcs σ_{1} and σ_{2} at p for which

$$
\operatorname{card}\left[C\left(f, p, \sigma_{1}\right) \cap C\left(f, p, \sigma_{2}\right)\right]<\boldsymbol{\aleph}_{0} .
$$

Proof. Suppose $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are ordered arcs at p with

$$
C\left(f, p, \gamma_{1}\right) \cap C\left(f, p, \gamma_{2}\right) \cap C\left(f, p, \gamma_{3}\right)=\phi .
$$

If p is an ambiguous point of f, we are finished; hence we assume that p is not an ambiguous point of f. By Theorem 1 there exist Jordan regions G_{1}, G_{2}, G_{3} for which
(1) $C\left(f, p, \gamma_{j}\right) \subset G_{j}(j=1,2,3)$,
(2) $\bar{G}_{1} \cap \bar{G}_{2} \cap \bar{G}_{3}=\phi$,
(3) $\partial G_{j} \cap\left[\left\{f(z): f^{\prime}(z)=0\right\} \cup\{\infty\}\right]=\phi(j=1,2,3)$
and
(4) $\operatorname{card}\left[\partial G_{1} \cap \partial G_{2}\right]<\boldsymbol{\aleph}_{0}$.

By Theorem 2 there exist $\operatorname{arcs} \sigma_{j}(j=1,2)$ at p between the corresponding arcs γ_{j} and γ_{j+1} such that

$$
C\left(f, p, \sigma_{j}\right) \subset\left(G_{j} \cap G_{j+1}\right) \cup \partial G_{j} .
$$

Since the arcs $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are ordered, we may assume that $\sigma_{1} \cap \sigma_{2}=\phi$. Then, using condition (2) we obtain the relations

$$
\begin{aligned}
C\left(f, p, \sigma_{1}\right) \cap C\left(f, p, \sigma_{2}\right) & \subset\left[\left(G_{1} \cap G_{2}\right) \cup \partial G_{1}\right] \cap\left[\left(G_{2} \cap G_{3}\right) \cup \partial G_{2}\right] \\
& =\partial G_{1} \cap \partial G_{2}
\end{aligned}
$$

and, in view of condition (4), the proof is complete.
Remark. In effect, Gresser ([3], p. 145, proof of Theorem 2) has proved the existence of a meromorphic function μ in D with the following property: there exists a triangle in Ω with sides s_{1}, s_{2}, s_{3} and a perfect subset C^{\prime} of C such that for each point $p \in C^{\prime}$ there exist three mutually disjoint chords $\rho_{1}, \rho_{2}, \rho_{3}$ at p with

$$
C\left(\mu, p, \rho_{j}\right)=s_{j}(j=1,2,3) .
$$

The function μ serves as an illustrative example of Theorem 4 in that

$$
C\left(\mu, p, \rho_{1}\right) \cap C\left(\mu, p, \rho_{2}\right) \cap C\left(\mu, p, \rho_{3}\right)=\phi
$$

and, for $i \neq j$,

$$
\operatorname{card}\left[C\left(\mu, p, \rho_{i}\right) \cap C\left(\mu, p, \rho_{j}\right)\right]=1
$$

4. The n-Arc Property

By following the same line of proof as in the proofs of Theorems 3 and 4 with Theorem 2* playing the role of Theorem 2, we establish the following results.

Theorem 5. If f is meromorphic in D, then f has the n-arc property ($n>3$) at $p \in C$ if and only if f has the 3-arc property at p.

Theorem 6. Let f be meromorphic in D. If f has the 3-arc property at $p \in C$, then there exist arcs σ_{1} and σ_{2} at p for which

$$
\operatorname{card}\left[C\left(f, p, \sigma_{1}\right) \cap C\left(f, p, \sigma_{2}\right)\right]<\boldsymbol{\aleph}_{0}
$$

Remark. Theorem 6 is exemplified by the modular function m mapping D onto the universal covering surface of $\Omega-\{0,1, \infty\}$. Bagemihl, Piranian and Young ([2], p. 30, proof of Theorem 3) have shown that for each $p \in C$ there exist three arcs (any two of which are intersecting arcs) $\gamma_{1}, \gamma_{2}, \gamma_{3}$ at p such that

$$
C\left(m, p, \gamma_{1}\right) \cap C\left(m, p, \gamma_{2}\right) \cap C\left(m, p, \gamma_{3}\right)=\phi
$$

and, for $i \neq j$,

$$
\operatorname{card}\left[C\left(m, p, \gamma_{i}\right) \cap C\left(m, p, \gamma_{j}\right)\right] \leq 4
$$

If we set $\Pi(f, p)=\cap C(f, p, \gamma)$ where the intersection is taken over all $\operatorname{arcs} \gamma$ at p, the next result follows from Theorems 5 and 6 and the fact that $\Pi(f, p)=\phi$ implies that f has the n-arc property at p for some integer $n(n \geq 2)$.

Theorem 7. Let f be meromorphic in D. If $\Pi(f, p)=\phi$, then f has the 3-arc property at p and there exist arcs σ_{1} and σ_{2} at p for which

$$
\operatorname{card}\left[C\left(f, p, \sigma_{1}\right) \cap C\left(f, p, \sigma_{2}\right)\right]<\boldsymbol{\aleph}_{0} .
$$

5. Open Questions

1. Does there exist a meromorphic function in D which has the 3-arc property at a point $p \in C$ but does not have the 3 -separated-arc property at p ?
2. Does the modular function m have the 3 -separated-arc property at each point of C ?
3. If the answer to Question 2 is in the negative, does there exist a meromorphic function in D having the 3 -separated-arc property at each point of C ?

References

[1] Bagemihl, F.: Curvilinear cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. U.S.A. 41, 379-382 (1955).
[2] , G. Piranian, and G.S. Young: Intersections of cluster sets. Bul. Inst. Politehn. Iasi (N.S.) 5, 29-34 (1959).
[3] Gresser, J.T.: On uniform approximation by rational functions with an application to chordal cluster sets. Nagoya Math. J. 34, 143-148 (1969).
[4] Whyburn, G.T.: Topological analysis. Princeton (1958).

Wright State University
Dayton, Ohio 45431 (USA)

[^0]: Received July 31, 1969.

 * This paper is based on part of the author's doctoral dissertation submitted to Michigan State University in March, 1969. The author wishes to thank Professor Peter Lappan who directed the research.

