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ON HOLOMORPHIC FAMILIES OF HOLOMORPHIC MAPS

DONALD ORTHYV

Let D be the unit disk {z:]z] <1} in the complex plane C with
boundary 8D and closure D, and denote by R the image of the canonical
embedding -7+ {0 of the real line into €. The symbol & will be used
throughout to denote a complex parameter; the unit disk in the complex
e-plane will be denoted by D,. A C** map & : dDXxD,—D (0<a<1) is
called a holomorphic family of C'** curves if

1° & =% |oDx{e} is a C'** Jordan curve in C for every e€D,;
2° & =&|{t}xD, is a holomorphic function for every ¢t€aD;

3° % is continuous in ¢ and e.

Denote by 9. the simply-connected region in C bounded by & (8Dx{e}).

We are interested in the existence of holomorphic maps f:DxD,—C
which map Dx{e} conformally onto 2, for every eeD, (f is then said to
be associated with ). The following theorem will be proved.

TrEOREM 1. Leét & :9DXD,—~C be a holomorphic family of C'*¢ curves.
If f is a holomorphic map associated with &, then there exists a C'** homeomor-
phism g :9D—aD for which

(%) &(t,e) = flg(t),€)

Jor all (t,e)edDX D,, where f on the right hand side denotes the continuous exten-
sion of f to DXD,.

Now & can 'always be normalized by the condition that for some
&€ D,, &., is the boundary value of a conformal map of Dx{¢} onto 2,
(for let g,, be such a conformal map, the existence of which is ensured by
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the Riemann mapping theorem, and replace & (¢,¢) with & (zo( &7,)  og.,(2), €)
with projection z : DX D,—dD). If & is normalized in this sense, setting
e=¢, in (¥) shows that g:dD—3D is the boundary value of a conformal
map cf D onto itself. Consequently, we have

CoROLLARY 1. Let & :9DxD,—C be a normalized holomorphic family of
C*e curves. Then there is a holomorphic map f: DX D,—C associated with &
if and only if & uself is the boundary value of a holomorphic map associated with
z .

We may write
Z(t,6) = 1 alt)e,

where if & is normalized at ¢ =0, ¢,(¢) is the boundary value of a confor-
mal map of D onto 2,

COROLLARY 2. Let & :9DXD,—C be a holomorphic family of C'*® curves
normalized at € = 0. If there is a holomorphic map f associated with &, then
necessarily each coefficient cy(t), k>0, in the above expansion of & is the boundary
value of a holomorphic function on D.

ExamprLE 1. For |e] sufficiently small, &(¢,¢) = ¢ + ¢f is a holomorphic
family of C'*¢ curves normalized at ¢ = 0, where 7 is the complex conjugate
of t. By corollary 2. there is no holomorphic map associated with & .

S.E. Warschawski [6] has proved a general perturbation theorem which
yields the following related result. If we restrict our attention to eR and
replace condition 2° on & with

2/° both &(t,¢) and %(:’8) have “Taylor” expansions at € =0

of order m,

then there always exists a continuous map f: Dx(D,NR)—C which maps
Dx{¢e} conformally onto 2, for every ¢ and which has a “Taylor” expansion
at € =0 of order m. In particular, if & depends real analytically on the
parameter ¢ then there exists real analytic f associated with . This real
analytic case was also proved by D. Zeitlin [7] (there are minor differences
between these two results of a technical nature). His method involves
proving that the solution F(¢,e) of a certain extension of the well-known
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Gershgorin integral equation into the complex domain is a holomorphic
function in ¢ for eeU, U being a certain open neighborhood of 0 in D,.
For every eeUNR, F(t,¢) gives the mapping function of 2., onto D in the
usual manner. An open question is the relationship of F on all of U to,
when it exists, a holomorphic map f associated with the holomorphic family
of curves whose restriction to aDx(D,NR) is the given real analytic family
of curves.

The proof of theorem 1 goes as follows. Let & :9DxD,—C be a
holomorphic family of C'*¢ curves and f:DxD,—C a holomorphic map
associated with . Define & : aDx D, —~ C? and f: Dx D, - C* by the rules
Z(t,e) = (F(t,e),e) and f(t,e) = (f(t,e),6). Let 2= {(z,6):2€92, e D,}.
Then f: DX D,— 2 is a biholomorphic map and (F~*]2,x {&})(z, &) = (f."'(2), &),
where f, = f|Dx{e}. As is wellknown, f, = f]Dx{e} has a homeomorphic
extension to Dx{e} for every e=D,. It will be shown (lemma 2.) that
flo & {t}x D, > DX D, is a holomorphic map for every txaD. This is
the central point in the proof of the theorem, for now write

Flo@(t,€) = (f'(t,8),¢),

where f':9DxD,—dD is a continuous map; such an f’ clearly exists. Ac-
cording to lemma 2., (f'[{t}xD,): {t}xD,—>dD is a holomorphic map for
every t€3D and is consequently constant in ¢ for every t=aD. Therefore
there is a homeomorphism ¢ : 9D— 8D for which f/(¢,¢) = g(¢), which implies
that &(t,¢) = f(g(t),¢), and so Z(t,¢) = f(g(¢),e). That g is a C'*e map
follows from Kellogg’s theorem by normalizing & at some ¢,&D,, and the
proof of theorem 1. is complete.

It should be clear from the local nature of lemma 2. that theorem 1.
admits readily to generalizations. A few of these are presented after the
proofs of lemmas 1. and 2.

§1. Choose any point Z(fy,&)€ bdy 2 and let n = n(f,,&,) be the
inward normal to &, at & (¢, &), i.e. n<S2,,. Denote by W(a,r)=W,, (e, 7)
the wedge in @., with radius » and interior angle « at the vertex &(¢,,¢),
and which is symmetric about the normal zn, ie. W(a,r) = {z€Q,,: dist(z,n)
<z — Z(ty &) sin(e/2) and 0 < [z — F(¢,,8)|<r}. Also, for zeQ,, denote
by & = Zty.e: Dy~ C? the holomorphic map (&.() — Z(to, &) + 2,¢).
Clearly, for each z,, there is an open neighborhood U =1U, of ¢, in D,
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such that Z((U)c®. Lemma 1. will show that there are wedges W(a,7)
for which U, may be chosen independent of z&W(a,7).

LemMMA 1. For every a(0 < a <m) there is an r >0 and an open neighborhood
U of ¢, in D, such that FZU)ce Jor all zeW(a,r).

Proof. It is well-known [4] that since &, is a C'*® curve, for every B
(0 < B<<z/2) there is a connected subarc I' =T, of D containing #, in its
interior such that the chord joining &(¢,,&,) and &(f,&,) makes an angle
smaller than g with the tangent line to &,(3D) at & (t,,¢&,) for every ter.
It follows from the conditions on the map & that there is an open neigh-
borhood U, of ¢, such that the same is true for every & with e=U, when
g is replaced by 28. Choose g so that = — 48> «.

Now it is also known that >0 may be chosen so that |&(¢,&,) —
& (to,€0)l > 27 for every t€oD\I, and it follows again from the conditions
on & that there is an open neighborhood U, of ¢, such that [&(¢,¢) —
&ty &)|>r for every t=oD\I" and every e€U,.

Let U=U,nU, If &(e)sbdy for some el there must be a t€aD

such that &) = Zi(e), or equivalently &3,(e) — & (t,&) + 2z = &i(e). Since
“(t,8) = &) = &(t), we have

() G EbdYNR &> Bt &) — B (t0 &) + 2 = E (¢, 8).

Suppose that ¢eI. By the choice of I', since ¢€U, and since from
(#x) it follows that z — &(ty,8,) = € (t,6) — € (¢4,6), we have dist(z,n)>
2 — & (1 &) | sin(n/2 — 28). But z/2 — 28 > «/2, and so dist (z,n) > [2—& (¢, &)]
sin(a/2). Therefore z&W(e,7). Now suppose that ¢t&I. Then by the choice
of 7, since eeU, and by () as above we have |z — &(f,¢&)|>7, and
so z¢ W(a,r). Consequently, &(e) € bdyQ for some e U implies that
2&EW (e, r), and the lemma is proved.

LemMMA 2.  f 0@ : {t}xD,—>3DxD, is a holomorphic map for every
teaD.

Proof. Choose (¢y,&)=0DXD,; by lemma 1, there is a sequence of
points {z,:k=1,2,---}<2, and an open neighborhood U of ¢, for which
%k(U)QQ while z,— & (t,, &) as k—> . Therefore f~lo &, : U~ DX D,is a
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well-defined holomorphic map for every k=1,2, ---. Since f|Dx{e} is a
homeomorphism for every e€D,, the map f-lo &, is also defined; clearly
the sequence {f~'o %, :k=1,2,+ -} converges pointwise to f~lo &, on U.
The lemma now follows from Vitali’s theorem.

§2. Generalizations. (Ahlfors [1] has shown the existence of a holo-
morphic map f from a bordered Riemann surface with finite genus and a

finite number of boundary components onto a full covering surface S ~5D
of the unit disk. N. Alling [2] has shown that zof|U is a covering map of
D near 9D for some open neighborhood U of 8X. Theorems 2.-4. can be
thought of as concerning holomorphic families of such maps.)

Let X and Y be open Riemann surfaces such that X has a C'*¢ boundary
90X, and let V be a connected analytic set in some open set in C". Let
& :0XXV =Y be a C*e map satisfying

1° for every local coordinate ¢ on 6X for which ¢! describes X locally
as a C'** curve, @ ot~ is a holomorphic family of C'*¢ curves on YV (& is
then said to be locally a holomorphic family of C'*¢ curves on Y);

2° for every & = & |aX x{e}, Z(6Xx{e}) is the boundary of an open
Riemann surface Q..

Theorem 2. is the most straightforward generalization of theorem 1.
which can be proved.

THEOREM 2. Denote the set {(y,€) : yER., eV} by Q2. There exists a
holomorphic map f: Q=X which maps 92.x{¢e} into X for every eV if and
only if there is a C*** map g :0X—dX for which

foZ(w,€) = gla)

Sor all x€0X and all c€V.
More generally, one has

TrEOREM 3. Let C be an arc on 30X, & : CXV =Y locally a holomorphic
Samily of C**e curves on'Y, and Q,CY a bordered Riemann surface with & (C X {e}) SoR.
Jor every ecV. Define 2 as in theorem 2. There is a holomorphic map f: 2—~X
which maps & (Cx{e})x{e} into aX for every eV tf and only if there is a C'*e
map g:C—oX for which

foZ(x,€) = g(x)
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Sor all x€C and all ecV.

Proof. All that must be shown is that theorem 1. remains true when
D, is replaced with the connected analytic set V. First of all, lemmas 1.
and 2. carry over just as they were presented when D, is replaced by a
polydisk in €*. This means that theorem 1. is true when D, is replaced
by a connected component V; of the set of regular points of V; let g; be
the map of theorem 1. for V;. In fact (x) holds on C/yV; and the usual
continuity argument shows that g, = g; when ClyV;NClyV;+ §. The theorem
is therefore proved since V is connected and V = U{C[,V, : i}

THEOREM 4. Let X, Y, & :CXV =Y and {Q.:e€V} be given as in
theorem 3. If f: XXV =Y is a holomorphic map satisfying

a) feXx{e))co. for every eV
b)  f.= f1Xx{e} is a covering map of Q. near 39, for some open neighborhood
of aXx{e} in Xx{e}, again for every eV, then there exists a C'** map
g:C—d8X jor which

& (x,8) = flg(x),e)

Sor all x€C and all e€V.

By viewing theorems 1.-4. from another point of view one gets mapping
theorems for complex manifolds. Theorem 5. below is one such result,
although clearly not the most general one.

Let P be a polydisk in €*™*(»n >1) and let C be a subarc of 4D. Given
a holomorphic family of C'** curves &’ : CxP—C and holomorphic maps
&, P—~C for each y=2, -+, m(m>n), define & : CxP—~C™ by the rule

g(tye) = (%/(ts 8), %(6)9 c oty %m(e))

for all teC and all eeP. We may assume without loss in generality that
& |Cx{0} is the boundary value of a holomorphic function on UND for
some open set USC. Let 2 be a domain in €™ for which & (Cx P)can.

THEOREM 5. If there is a holomorphic map f:Q2-—DXP for which
(& (CxP)SoDXP, then necessarily & is the boundary value of a holomorphic
map & :UNDXP—Q for some open set USC™.

Proof. 'This theorem is a straightforward generalization of corollary 1.
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In view of this theorem one may ask for conditions on 92 of a given
domain 2 under which there exists a subarc C of 6D and a map & : CX P32
like the one described above. In this direction we have a Levi-type condi-
tion.

ProposiTioN 1. Let 2 be an open domain in C™(n>1) and suppose that
(20, €")E0R2, where & = (€3, « -+ +,&%)€C . In order that there exist an open neigh-
borkood U of (z4,€%), a polydisc P<C™, a subarc C of oD and an injective C***
map & : CxP—>3QNU satisfying the conditions in theorem 5. it is necessary that
there exist an open neighborhood U’ of (2,€°) and a C* map ¢ :U’ — R such that

1° {(2,8) : ¢(z,6) =0} = U'NaQ;

2° grad ¢ #+0 on U'N3Q;

3°  denoting (2,€) = (2,8, + * *,€,) by (€16 + + +,&,), then t:él.gé‘z_w =0 at
(61« + +,€)€EU'NOR implies that

n a2¢
,>j3=1 9e,0¢; w;w; = 0.

(2

Proof. Given injective &, let p denote the coordinate function of & -1;
it is known [5] that there is an open neighborhood V of (z,,¢° and holo-
morphic functions f,:VnNR—>C, f,:VN(C™2)—C with C? extensions to
22NV such that p(z,&) = fi(2,€)faz,¢) for all (z,6)€02nV. The differentia-
bility properties of f, and f, on 2NV allow us to choose C* functions f,
and f, on V for which £,|[VnQ2=f, and £,|VNn(C™2)= f,. Define the
extension of p into V to be fy(z,€)fy(2,€) and ¢ : V= R by the rule ¢(z,¢)=
lo(z,e)|2—1. f, and f, can clearly be chosen so that 1° is satisfied, while
2° clearly holds for any choice of £, and f,; 3° is the result of a straight-
forward computation.

The next result has to do with “extending” differentiable families of
complex manifolds to holomorphic families. It will follow from theorem 1.
in a manner similar to that for theorems 1.-4. except that X instead of V
is to be viewed as the parameter space.

Let 7~ ~ 5 X be a differentiable (i.e. C*) family of complex structures
on the complex manifold V in the sense of Kodaira and Spencer [3], where
X is an open Riemann surface. This means that for every point vey”
there is an open neighborhood U of v and a diffeomorphism ¥y : U = W X o(U)
for some open set W in C* such that
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1° o = pge¥y (pr? is the canonical projection W Xao(U)—= o(U));

2° ¥yl¥5 (W x{x}) is biholomorphic for every zew(U). If o is a holo-
morphic map 5 X is called a holomorphic family of complex structures
on V.

Two differentiable families of complex structures on V, say o, : 7" =+ X
and o, : 7 ,— X, are said to be equivalent if there is a diffeomorphism
¢, > P, satistying

a) @1 = W00,

b) oWy ¥ (W x {«}) is biholomorphic for every x=w,(U) and every pair
U,¥y of open neighborhoods and diffeomorphisms respectively for o,: 77 ,—=X
as described above.

Let X, X, X be an open Riemann surface with differentiable
boundary §X,. 2~ - X induces by way of the canonical injections X, — X,
X,—~ X, and 8X,— X differentiable families o,: 3> X,, @ : 53— X, and
@) 1 77> 5X, of complex structures on V which are called the restrictions of
the family 0 : 7" > X to X,, X,, and 48X, respectively.

THEOREM 6. Let X, and X be open Riemann surfaces with X,cX and

0:7" =X, @:9 > X differentiable families of complex structures on a complex
manifold V for which

1) the resiriction @y : P73 X, is a holomorphic family of complex structures
onV;

2) the restrictions o) : 7% - 06X, and & : "2 > 8X, are equivalent.

Then there 1s a differentiable map g : 06X, 0X, such that

@) = goal.

Lemmas 1. and 2. yield two other kinds of results. The first concerns
boundary values of holomorphic functions of one variable. For example,
every injective C'** map h:9D—C can be embedded in a normalized
holomorphic family of C'*¢ curves & : dDx D,— C; then the property that
k7' is the boundary value of a holomorphic function on the bounded do-
main with boundary A(3D) is equivalent to the existence of a holomorphic
map of 2 onto D, where 2 is defined for & as before. The second result
concerns partial differential equations.
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THEOREM 7. Let & :0DXD,—C be a holomorphic family of C'*® curves
and QCC? the domain described by & as before. Let fi, f, be complexvalued, C*
JSunctions -on Q with compact support in D\ (@DxD,). If u is a C solution of
the system

u-r =g

(tn which case uw will have a continuous extension to QUE(GDXD,)) satisfying the
boundary condition that the topological dimension of uoz({t}xD,) is smaller than
or equal to 1 for every t<aD, then on & (@DxD,) u is necessarily of the form

u(w) = goZYw),

where g 10D —C is a C™*e function.

REFERENCES

[ 1] Ahlfors, L., Open Riemann surfaces and extremal problems on compact suregions, Comm. Math.
Helv. 24, 100-134 (1950).

[ 2] Alling, N., Extensions of meromorphic function rings over non-compact Riemann surfaces. I, Math.
Z. 89, 273-299 (1965).

[ 3] K. Kodaira and D.C. Spencer, On deformations of complex analytic structures I, II, Ann. of
Math. 67, 328-466 (1958).

[ 4] Muskhelishvili, N.I., Singular Integral Equations, Noordhoff, Groningen (1953).

[ 51 Réhrl, H., Uber das Riemann-Privalovsche Randwertproblem, Math. Ann. 151, 365-423 (1963).

[ 6 1 Warschawski, S.E., On a perturbation method in conformal mapping, (to appear).

[ 71 Zeitlin, D., Behavior of conformal maps under analytic deformation of the domain, Ph. D. thesis,
Univ. of Minnesota (1957).

University of California at San Diego
Princeton University








