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ON HOLOMORPHIC FAMILIES OF HOLOMORPHIC MAPS

DONALD ORTHD

Let D be the unit disk { 2 : ] z | < l } in the complex plane C with

boundary 3D and closure D9 and denote by R the image of the canonical

embedding r~>r-\- iO of the real line into C. The symbol ε will be used

throughout to denote a complex parameter; the unit disk in the complex

ε-plane will be denoted by Dp. A C1+α map <& \ dDxDp-+D (0<a<ϊ) is

called a holomorphic family of Cί+a curves if

1° <K= ^\dDx{ε} is a C1+α Jordan curve in C for every

2° <£l = <£p\{t]xDp is a holomorphic function for every t<=3D;

, ε)
c o n t i n u o u s

Denote by Ωt the simply-connected region in C bounded by

We are interested in the existence of holomorphic maps / : Dx DP-±C

which map Dx{ε] conformally onto Ω€ for every ε^Dp (/ is then said to

be associated with <£*). The following theorem will be proved.

THEOREM 1. Let <& :dDxDp-±C be a holomorphic family of C 1 + α curves.

If f is a holomorphic map associated with <£*, then there exists a C1+a homeomor-

phism g : dD-^dD for which

for all (t,ε)^dDxDp, where f on the right hand side denotes the continuous exten-

sion of f to DxDp.

Now <g* can always be normalized by the condition that for some

εo^Dp, ^ ε o is the boundary value of a conformal map of Dx{ε0] onto Ωe(>

(for let gεo be such a conformal map, the existence of which is ensured by
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the Riemann mapping theorem, and replace ^ ( ί , ε ) with

with projection π : dDxDp-*dD). If & is normalized in this sense, setting

ε = ε0 in (*) shows that g : dD-*dD is the boundary value of a conformal

map cf D onto itself. Consequently, we have

COROLLARY 1. Let & : dDx DP->C be a normalized holomorphic family of

Cί+a curves. Then there is a holomorphic map f : DxDp-±C associated with &

if and only if ^ itself is the boundary value of a holomorphic map associated with

i f .

We may write

ί f ( M ) = !!<*(*)£*,
k=0

where if ^ is normalized at ε = 0, co(t) is the boundary value of a confor-

mal map of D onto Ωo.

COROLLARY 2. Let <& : dDxDp-±C be a holomorphic family of C1+a curves

normalized at ε = 0. If there is a holomorphic map f associated with <£?, then

necessarily each coefficient ck(t)9 k>0, in the above expansion of & is the boundary

value of a holomorphic function on D.

EXAMPLE 1. For [εl sufficiently small, ^ ( ί , ε ) = t + εi is a holomorphic

family of C1+α curves normalized at ε = 0, where t is the complex conjugate

of t. By corollary 2. there is no holomorphic map associated with <^.

S.E. Warschawski [6] has proved a general perturbation theorem which

yields the following related result. If we restrict our attention to εe/2 and

replace condition 2° on & with

2/o both <^(ί,ε) and d<gTU, ε) h a v e « τ a y i o r » expansions at ε = 0
OI

of order m9

then there always exists a continuous map / : Dx(Dpf)R)-*C which maps

Bx{ε] conformally onto Ωε for every ε and which has a "Taylor" expansion

at ε = 0 of order m. In particular, if <£> depends real analytically on the

parameter ε then there exists real analytic / associated with &. This real

analytic case was also proved by D. Zeitlin [7] (there are minor differences

between these two results of a technical nature). His method involves

proving that the solution F(t9ε) of a certain extension of the well-known
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Gershgorin integral equation into the complex domain is a holomorphic

function in ε for εe{7, U being a certain open neighborhood of 0 in Dp.

For every ε<=Uf)R, F{t,ε) gives the mapping function of Ω£ onto D in the

usual manner. An open question is the relationship of F on all of U to,

when it exists, a holomorphic map / associated with the holomorphic family

of curves whose restriction to dDx{DpΠR) is the given real analytic family

of curves.

The proof of theorem 1 goes as follows. Let <ĝ  : dDx Dp-+C be a

holomorphic family of C1+α curves and f:DxDp-+C a holomorphic map

associated with <g*. Define #* : dDxDp->C2 and f:DxDp-*Cz by the rules

#( f ,ε ) = (ίf(*,e),6) and f(t,e) = (f(t,ε),ε). Let Ω =

Then / : DxDp-±Ω is a biholomorphic map and (/"MA

where /, = f\Dx{ε}. As is wellknown, fe = f\Dx{ε] has a homeomorphic

extension to Dx{ε] for every ε&Dp. It will be shown (lemma 2.) that

/ " l o < ^ : { Π x ^ p ^ ^ x ^ is a holomorphic map for every txdD. This is

the central point in the proof of the theorem, for now write

where / ' : dDxDp-*dD is a continuous map; such an / ' clearly exists. Ac-

cording to lemma 2., (f'\{t}xDp) : {t]xDp-+dD is a holomorphic map for

every t^3D and is consequently constant in ε for every f edZλ Therefore

there is a homeomorphism g : BD-^dD for which fr{t,έ) = #U), which implies

that Φ{t,ε) = f{g(t),ε), and so ίf(ί,ε) = f(g{t),ε). That # is a C1+α map

follows from Kellogg's theorem by normalizing & at some εo^Dp, and the

proof of theorem 1. is complete.

It should be clear from the local nature of lemma 2. that theorem 1.

admits readily to generalizations. A few of these are presented after the

proofs of lemmas 1. and 2.

§1. Choose any point ^(io,So)e bdy Ω and let n = n(t09ε0) be the

inward normal to ^ £ 0 at <^{to,εQ), i.e. nQΩεo. Denote by W(a,r) = WtQ,ε0(a9r)

the wedge in Ω,o with radius r and interior angle a at the vertex ^{t^ε),

and which is symmetric about the normal n, i.e. W(a,r) = {z&ΩεQ: dist(z,w)

<\z — <g^(ί0,ε0)Isin(α/2) and 0<\z —<gp(tθ9εo)\<r}. Also, for zeβ ε o denote

by <§;= §JftOf.o : Dp-+C2 the holomorphic map (ίfto(ε) - <g*(f0, e0) + 2,ε).

Clearly, for each 2<=££0 there is an open neighborhood U = Uz of ε0 in Dp
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such that ^ ( ί / ) c β , Lemma 1. will show that there are wedges W{a9r)

for which Uz may be chosen independent of z^W{a9r).

LEMMA 1. For every a(0< a < π) there is an r>0 and an open neighborhood

U of ε0 in Dp such that 4fβ(U)^Ω for all z^W(a9r).

Proof It is well-known [4] that since <ĝ 0 is a C1+α curve, for every β

(0 < β < τr/2) there is a connected subarc Γ = Γβ of dD containing t0 in its

interior such that the chord joining ^(to,£o) and ^( ί , ε 0 ) makes an angle

smaller than β with the tangent line to &Q(dD) at <^(tQ9εo) ^ o r e v e r Y t^Γ.

It follows from the conditions on the map <g* that there is an open neigh-

borhood Uι of ε0 such that the same is true for every <g=J with ε^Ux when

β is replaced by 2/3. Choose β so that π — 4β > a.

Now it is also known that r > 0 may be chosen so that l^(i,6 0) —
c^p(t09£0)\ >2r for every t^dD\Γ9 and it follows again from the conditions

on ^ that there is an open neighborhood U2 of ε0 such that \<£p(t9ε) —
(£p{t09έ)\>r for every t^3D\Γ and every εef/2.

Let U = UιΠU2. If <ίfz(e)<ΞbdyΩ for some εe£7 there must be a t<ΞdD

such that #J(ε) = #?(ε), or equivalently ^ 0 ( ε ) — ̂ ( / , ε 0 ) + « = <K(ε). Since

^ U , e ) = <g?(ε)= <K(f), we have

(**) ^ ( ε ) ε W ^ < ^ > ^ ( ί o , £ ) - ^( ί o ,ε o ) + « = i f (f,β).

Suppose that ί e Γ . By the choice of Γ, since εeί/, and since from

(**) it follows that z — ̂ (t09ε0) = ^(t9ε) — ̂ ( ί o , ε ) , we have dist(z,w)>

12 - ^{tQ9 ε0) I sin(π/2 - 2j3). But π/2 - 2/3 > α/2, and so dist (2, n) > \ z-^it^ ε0) j

sin(α/2). Therefore z$W{a,r). Now suppose that t$Γ. Then by the choice

of r, since εe£7, and by (**) as above we have \z — <gp(tO9εo)\> r, and

so 2$W(α,r). Consequently, Φz{έ) ^bdyΩ for some S G [ / implies that

, r), and the lemma is proved.

LEMMA 2. f~ιo <£>t {t}xDp-+3DxDp is a holomorphic map for every

Proof Choose (to,eo)&dDxDp; by lemma 1, there is a sequence of

points {zk : k = 1929 }QΩ,0 and an open neighborhood U of ε0 for which

& while zk-^^(tQ9ε0) as k->oo. Therefore / " ^ #? f c :U-+DxDp is a
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well-defined holomorphic map for every k = 1,2, . Since f\Dx{ε] is a

homeomorphism for every ε^Dp, the map f~ιo <^0 is also defined; clearly

the sequence ί/"1© § ^ : k = 1,2, } converges pointwise to Z""1© <ĝ 0 on U.

The lemma now follows from Vitali's theorem.

§ 2. Generalizations. (Ahlfors [1] has shown the existence of a holo-

morphic map / from a bordered Riemann surface with finite genus and a
π

finite number of boundary components onto a full covering surface S—>D

of the unit disk. N. Ailing [2] has shown that πof\U is a covering map of

D near 3D for some open neighborhood U of dX. Theorems 2.-4. can be

thought of as concerning holomorphic families of such maps.)

Let X and Y be open Riemann surfaces such that Xhas a C1+α boundary

dX, and let V be a connected analytic set in some open set in Cn. Let

^ : aXxF-^F be a C1+α map satisfying

1° for every local coordinate t on dX for which f1 describes dX locally

as a C1+α curve, ^of1 is a holomorphic family of C1+α curves on Y ( ^ is

then said to be locally a holomorphic family of C1+α curves on Y)

2° for every <g? = <^|dXx{ε}, <K(dXx{ε}) is the boundary of an open

Riemann surface Ωs.

Theorem 2. is the most straightforward generalization of theorem 1.

which can be proved.

THEOREM 2. Denote the set {(y,ε) : y^Ωε, ε e F } by Ω, There exists a

holomorphic map f : Ω ->• X which maps 3Ωεx{ε} into dX for every S E F if and

only if there is a C1+a map g : dX-^dX for which

for all x<=dX and all

More generally, one has

THEOREM 3. Let C be an arc on dX, <jg* : CxV-±Y locally a holomorphic

family of C1+a curves on Y, and ΩεQY a bordered Riemann surface with ^{Cx{ε})^dΩε

for every ε e F . Define Ω as in theorem 2. There is a holomorphic map f : Ω-+X

which maps <^(Cx{ε})x{ε} into dX for every ε e 7 if and only if there is a Cί+a

map g : C-^dX for which
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for all #eC and all ε e F .

Proof. All that must be shown is that theorem 1. remains true when

Dp is replaced with the connected analytic set V. First of all, lemmas 1.

and 2. carry over just as they were presented when Dv is replaced by a

polydisk in Ck. This means that theorem 1. is true when Dp is replaced

by a connected component VΊ of the set of regular points of V; let gt be

the map of theorem 1. for Vt. In fact (*) holds on ClγVi and the usual

continuity argument shows that gi = g5 when ClvViΓ\ClvVj¥= 0. The theorem

is therefore proved since V is connected and V = U{ClvVi : fe/}.

THEOREM 4. Let X, Y, <& : CxV-+Y and {Ωε : S E F ) be given as in

theorem 3. If f : Xx V -» F «• # holomorphic map satisfying

a) f(dXx{ε})QdΩε for every

έ) / e = / |Xx{ε} zV # covering map of Ω, near dΩs for some open neighborhood

of dXx{ε] in Xx{ε}, again for every ε e F , then there exists a Cί+a map

g : C-+dX for which

for all a e C and all

By viewing theorems 1.-4. from another point of view one gets mapping

theorems for complex manifolds. Theorem 5. below is one such result,

although clearly not the most general one.

Let P be a polydisk in Cn~ι(n > 1) and let C be a subarc of 3D. Given

a holomorphic family of Cί+a curves <g=7/ :CxP->C and holomorphic maps

<K : P-+C for each v = 2, , m{m>n), define <g* : C x P - > C m by the rule

for all ί ε C and all ε e P . We may assume without loss in generality that

<g^|Cx{0} is the boundary value of a holomorphic function on UΠD for

some open set UQC. Let Ω be a domain in Cm for which

THEOREM 5. If there is a holomorphic map f: Ω-+ DxP for which

/{^{CxP^^dDxP, then necessarily ^ is the boundary value of a holomorphic

map <£> :UΠDxP-+Ω for some open set UQCn.

Proof This theorem is a straightforward generalization of corollary l.
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In view of this theorem one may ask for conditions orudί2 of a given

domain Ω under which there exists a subarc C of dD and a map <^: CxP-ϊdΩ

like the one described above. In this direction we have a Levi-type condi-

tion.

PROPOSITION 1. Let Ω be an open domain in Cn(n > 1) and suppose that

(20,ε°)edί2, where ε° = (ε<>, 9εm)&Cn~ι. In order that there exist an open neigh-

borhood U of (zo>s°), a polydisc PQC 7 1 " 1 , a subarc C of dD and an injective C 2 + α

map <£? '. CxP-*dΩf)U satisfying the conditions in theorem 5. it is necessary that

there exist an open neighborhood Ur of {z09 ε°) and a C2 map φ \Ur -±R such that

2° grad ψφO on U'ΠdΩ;

3° denoting (z,ε) = (z,ε2, , ε j by (εl9ε29 , ε j , then Σ ^ τ ~ ^ = 0 at
iz=.\ vε>i

(βi» ,εn)&UfΠdΩ implies that

n d2φ

Proof Given injective <ĝ , let p denote the coordinate function of ί̂ ""1;

it is known [5] that there is an open neighborhood V of (20>£°) and holo-

morphic functions fx : VΠΩ-+C, f2:Vΐ\{Cn\Ω)-±C with C2 extensions to

dΩΓ\V such that p{z,ε) = fi(z,ε)f2(z,ε) for all (z,ε)edJ2nF. The differentia-

bility properties of fλ and f2 on 5i2ΠF allow us to choose C2 functions Λ

and / 2 on 7 for which f1\VΓ\Ω = f1 and /2 |FΠ(CΛ\^) = U Define the

extension of p into V to be /1{z9ε)f2{z9ε) and £> : F->/2 by the rule <p(z9ε) —

\p{z9ε)\2 — 1. /i and / 2 can clearly be chosen so that 1° is satisfied, while

2° clearly holds for any choice of fλ and / 2 ; 3° is the result of a straight-

forward computation.

The next result has to do with "extending" differentiate families of

complex manifolds to holomorphic families. It will follow from theorem 1.

in a manner similar to that for theorems 1.-4. except that X instead of V

is to be viewed as the parameter space.
Q)

Let 5^—>X be a differentiate (i.e. CTO) family of complex structures

on the complex manifold V in the sense of Kodaira and Spencer [3], where

X is an open Riemann surface. This means that for every point v^^

there is an open neighborhood U of υ and a diffeomorphism Ψπ : U -> W x ω(U)

for some open set W in Cn such that
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1° ω = vqpΨu (pr2 is the canonical projection W X ω{U)-+ω(U))

2° ΨuW'u{Wx{x}) is biholomorphic for every xeω{U). If ω is a holo-
ω

morphic map ^ — > X is called a holomorphic family of complex structures

on V.

Two differentiable families of complex structures on V, say ω1 : ^ -> X

and <y2 ^ 2 -* ̂ > a r e said to be equivalent if there is a diffeomorphism

^ : ^ i - ^ ^ 2 satisfying

a ) a)! = G > 2 ° ^ ;

b) φ°Ψu\Φ~u{Wx{x}) is biholomorphic for every x^ω^U) and every pair

ί/,?^ of open neighborhoods and diίfeomorphisms respectively for ω1:^1->X

as described above.

Let Xo Q Xo Ω X be an open Riemann surface with diίferentiable

boundary dX0. ^ -^-+ X induces by way of the canonical injections X0-*X9

Xo -> X, and dX0 -> X differentiate families ω0 : ^ -> Xo> >̂o ^ o -> ̂ o and

^o : ^ o ^ ^ ^ o of complex structures on 7 which are called the restrictions of

the family ω : ^ -> X to Xo> ô> and 5Z0 respectively.

THEOREM 6. Let Xo and X be open Riemann surfaces with X0ΩX and

<o : 5 ^ -+X, ω : ^ ->• X differentiable families of complex structures on a complex

manifold V for which

1) the restriction ω0 : ^ - > Z 0 w Λ holomorphic family of complex structures

on V;

2) the restrictions ωδ

Q : jr*-+dX0 and ώδ

0 :^
δ

Q->dX0 are equivalent.

Then there is a differentiable map g : 3X0 -> dX0 such that

Lemmas 1. and 2. yield two other kinds of results. The first concerns

boundary values of holomorphic functions of one variable. For example,

every injective C1+α map h:dD-±C can be embedded in a normalized

holomorphic family of C1+α curves <ĝ  : dDxDp-+C; then the property that

/r 1 is the boundary value of a holomorphic function on the bounded do-

main with boundary h{BD) is equivalent to the existence of a holomorphic

map of Ω onto D, where Ω is defined for & as before. The second result

concerns partial differential equations.
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THEOREM 7. Let <ĝ  : dDx DP->C be a holomorphic family of C1+a curves

and ΩQC2 the domain described by & as before. Let fu f2 be complexvalued, C°°

functions-on Ω with compact support in Ω\^(dDxDp). If u is a C°° solution of

the system

du _ r du __ x

(in which case u will have a continuous extension to Ω\}^{dDxDp)) satisfying the

boundary condition that the topological dimension of uo^({t}xDp) is smaller than

or equal to 1 for every t&dD, then on <^(dDxDp) u is necessarily of the form

u{w) = go^f^iw),

where g : dD->C is a C1+a function.
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