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ON THE UPPER AND LOWER CLASS

FOR GAUSSIAN PROCESSES

WITH SEVERAL PARAMETERS

TAKAYUKI KAWADA

1. In the study on Holder-continuity of Brownian motion, A.N.Kol-

mogorov introduced the concept of upper and lower classes and presented

a criterion with the integral form to test whether some function belongs to

upper or lower class; the so-called Kolmogorov's test (I.Petrovesky [10]).

P.Levy considered the upper and lower class with regard to the uniform

continuity of Brownian motion. We shall recall the definition of the upper

and lower classes. We shall call φ(t) a function belonging to the upper

class with regard to the uniform continuity of Brownian motion x(t) if there

exists a positive number ε{w) such that, for almost all w,

11 — tf I ^ ε(w) implies

(1. 1) I * ( 0 - s ( O I ^ U - H 1 / 2 9>(1/U - t'\).

On the otherhand, we shall call φ{t) a function belonging to the

lower class with regard to the uniform continuity of Brownian motion x(t)

if, for almost all w and for any positive number δ, there exist a pair (t, t')

such that \t — t'\^δ and (1. 1) does not hold.*0

P.Levy showed that the function

φ{t) = c (2lθgf)1/2

belongs to the upper class if c > 1 and to the lower class if c < 1 (P. Levy

[8]). Further, K.L.Chung, P.Erdos and T.Sirao [3] proved that a continuous,

non-negative and non-decreasing function φ(t) belongs to upper or lower

class according as the integral

Received October 1, 1968
* } It turns out that every continuous positive and non-decreasing function belongs to

either upper class or lower class.
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is convergent or divergent. T.Sirao [11] extended these results to the case

of Brownian motion with several parameters of P.Levy (P.Levy [9]).

Recently T.Sirao and H.Watanabe [12] have studied Holder-continuity of a

class of Gaussian processes and obtained a similar criterion of upper and

lower classes. Their result is an extension of Yu.K. Belayev [1] in some

sense.

In this paper we shall try to extend the result of T.Sirao and H.Wata-

nabe [12] to the Gaussian processes with several parameters:

Consider the Gaussian processes [x{A,w)\ i e D ) such that

E{x(A)}=0,

(1. 2) E{x(A) x(B)} = \ W(0, A) + d*(0, B) - d*{A9 B)},

where

D = {A = (al9 a2, , aN); at e R, \at \ < 1, i = 1, 2, , N

0<a<l, d2(A,B) = Σ1 (at - btf and 0 - (0, , 0).
i = l

The right-hand side of (1. 2) becomes a positive definite kernel (R.

Gangolli [6]). From (1. 2) we have

(1.3) E{(x(A)-x(B)Y} = d>(A,B)

and this condition implies the continuity of almost all sample paths (X.

Fernique [5], R.M.Dudley [4]). We define, after P.Levy and T.Sirao, the

upper and lower class for the above Gaussian processes. Set

If there exists a positive number ε(w) such that, for almost all w, d{A,B)^ ε{w)

implies

(1. 4) [ x(A) - x(B) I < σ(Af B) φ(Ud(A, B)),

then φ{t) is called the function belonging to upper class with regard to the

uniform continuity of this process.

On the otherhand if, for almost all w and for any positive number δ,

there exists a pair {A, B) such that d{A, B)^δ and (1. 4) does not hold, then
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φ(t) is defined as the function belonging to lower class with regard to the

uniform continuity of the process. Denoting the upper and lower classes

with regard to uniform continuity as Uu and Lu respectively, we have;

THEOREM. Let φ(t) be a positive, continuous and non-decreasing function of

t e [e, oo). Set

(1.5) K{x\ = x α exp(-α;2/2)

and

(1.6)

Then φ(t) e Uu if I(φ) < oo

and φ(t) e Lu if I(φ) = oo.

As the consequence, we have the following:

COROLLARY. If we set for any positive number ε,

φάt, e) = [2N log / + ( ^ - + 1 + (-1)* β) log log t]V\ i = 1, 2,

then φx{t,e) e Lu, φ2(t,e) e Uu and φ^t.ϋ) e Lu.

If we set for any positive number ε and for any integer n^3,

9j(t,e) =

\^2N log t + ^-M_ + i^.log /+2(log /+• +log ί)+(2+(-l) i e)log

i = 3, 4,
where log / = log t, log t = log (log / ) ,

(1) («) (n-l)

ίAw 9β(ί, e) e Lu, φA{t, ε) e t/w αrcaί 98(ί,0) e Lw.

The contents of the paper are as follows; In section 2, we shall show

that it is enough to prove the theorem only for some restricted class of

functions, which have, roughly speaking, the same order with (log t)1/2.

The first half of section 3 is devoted to define the sequence of events and

to order them with a numbering. This device is convenient throughout

the proof, in particular, in referring Borel-Cantelli lemma and K.L. Chung-

P. Erdos lemma. In the second half of section 3, Lemma 2 is stated, which

is the key lemma in the proof of the theorem. Since many other lemmas
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are necessary for the proof of Lemma 2, it is postponed in section 5. The

proof of theorem will be completed in section 4.

The author is greatly indebted to Professors T. Sirao and H. Watanabe

who proposed the problem with several suggestions and communicated their

result [12].

2. Let F be the class of functions:

F={f(t); fW^fW^Mt), for t^e]

where fx{t) = {2N log * + (-M- - 2) log ^ tf/2

and f2(t) = \2N log t + (-**L + 2) log t f*.

A computation shows that

(2.1) /(Λ) = oo and 7(/ 2 )<oo.

Then we have

LEMMA 1. The theorem holds under the general situation if it is valid only

for f{t) e F, i.e. it suffices to prove it only for f{f) e F.

Proof For a function φ(t) cited in theorem, set

Φ(t) = (φ{t) V Λ(/)) Λ Λ(0*}.

We see easily that φ{t) e F.

1: 7(9?) < 00. For any monotone increasing sequence {tm} it holds

for all sufficiently large m

(2.2) Htm)>f1(tm).

In fact, if there exists a monotone increasing sequence {tm} such that for

any m φ{tm) ^Λ( ί m ) , it yields a contradiction as follows. Set

f ^ (2ί. V ee).

Evaluate the integral

a\/b=max(a,b), άf\b=min(α,b)
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which is not greater than I{φ). Since K[x] is monotone decreasing for

x ^ ί—— — l) , we have by the assumption that

which contradicts the assumption, I(φ) < oo. Hence, for large t, we obtain

(2. 2), which implies

(2. 3) φ(t) < φ(t).

Moreover, we have

(2. 4) I(φ) < oo.

Real ly, separat ing the d o m a i n of in tegra t ion of I(φ) in to two p a r t s ; {t; <P<f2)

a n d {t; <p^f2], it holds

where both in the right-hand side are finite. Therefore, from (2. 3) we can

conclude φ{t) e Uu if we can show that (2. 4) implies φ(t) e ί/tt.

2: /(p) = oo. In this case I(φ) = oo. Actually, if there exists a

monotone increasing sequence {tn} for which φ(tn) < fx(tn) holds for all

sufficiently large n, the fact I{φ) -^ oo is similarly shown as well as in the

Case 1. On the other hand, if fx{t) < φ{t) for large t, then we have

φ(t) ^ φ{t). Using the monotone property of the function K[x] for

x ^ (—— — 1 j , we evaluate by Lemma 5 (a) below

= oo.

Thus we have I{φ) = oo in either case. In the sequel it suffices to prove
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that φ(t) e Lu implies <p(t) e ZΛ The assumption φ(t) e LM implies that for

almost all w and every positive εί9 a pair (A, 5) can be found such that

d(A,B)< εj and

(2. 5) I x{A, w) - α ( 5 , w) \ > σ{A9 B) - φ{lld{A9 B))

happens. On the other hand, since /(/ 2 )<°° and f2{t)^F9 we know

f2(t) e Uu in view of the assumption of Lemma 1. This means that for

almost all w, there exists ε2{w) > 0 such that if d{A, B) < ε2(w), then

(2. 6) I x(A, w) - x(B, w) I ̂  σ(A, B). /2(l/rf(i4,5)).

From (2. 5) and (2. 6) we obtain that for d(An, Bn) < ε(w) for all large n it

holds

φ(lld(An,Bn))<f2(lld(An,Bn)).

Relying on the definition of φ{t) we have for d(A,B)<ε(w)

φ(lld(An9Bn))^φ(lld(AnfBn)),

which implies φ(t) e Lu.

3. We define the point-sets as follows, which are really the set of

partition-point of D. Using these point-sets, the sequence of events will be

defined. Several evaluations for upper and lower classes will be developed

by these terms.

Let p take integers; p — [^3/<x]*) = 1, 2, 3, Set the point-sets

for each p:

B™ = {B; B = (kj2p) e D, h - ± 1, ± 2\ i = 1, 2, , N}

L(p)= {L; L = (IJ2P)9 /<=<), ± 1 , ± 2 , . i = 1 , 2 , , N]

A(p)= {A; A = B+LtΞD9 B e B(p\ LELL(P\ H3vp^d(A9B)^Hvp}9

Q(p'd'={Q; Q = (m<t-e-dcl2p)9 mT=0, ± 1 , >9±edc

9 f = l , 2, • • - , # } ,

(λ L9 Δ9 9

where vp = 2plp1/* and c denotes some large number which makes ec an

integer (c.f. Lemma 9 below) and (at) denotes (al9a29 , an).

ΛcP,d> = [A'; A' = A + Q (Ξ D9 A e A(p)

9 Q e Q (p' r f )},

BcP,d, = {B'; B' = B + QΪΞ D9 B <= B(p\ Q e Q ( p 'd )},

510 [x] indicates the integral part of x.
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X*\A) = {X;X= (x,), (Ja + lt- l)/2ί> ^ xt < (fc, + lt

A = (h + IJ2P) e A(p)},

Ϋίp\B) = {Y;Y= (yt), (h - 1)/2P <yiSί (ft, + l)/2», B = (kj2p) e Bw}.

For a function φ(t), define the sequence of function {λ(d){φ)} by

• Σ (1/27, d = 1, 2, ,

c' = 2α c/(2 - 1).

F u r t h e r , we define the three types of events by

(1) for P e A(p) and Q e Bip)

E(P, Q) = {w; x(P, w) - x(Q, w) > σ{P, Q) φ(Hd(P, Q))},

(2) for P = A + Qi e Aip'd> and Q = B + Q2 e B ( W )

FW(P,Q) = {w; *(P,«;) - *(Q,w) > <r(P,Q)-^-D (?)(1M

(3) for A = 5 + L e A(p) and 5 e B(p)

E(A,B) = {w; max (x(P,w) - x(Q,w))lσ(P,Q)^λU?)(ίld(A,B))}.
P<=XW(A)

For the collection of events; g?= {E{P,Q); P e i ( p ) , Q ^ B(p\ P = Q + L,

L^L{P)], we shall order as follows where ifis defined: If En- E{P,Q)(E ^

where P = (^ + IJ2P) e ^ ( p ) , Q = (^/2P) e J5(p) and if Em = ^(P r , e ' J e g 3

where P' = (fcί + /ί/2p) e yl(3)0, Q' = (̂ </2p) G 5 ( p / ), then w < m holds if and

only if

(a) p<p*

or

(b) UΠKItfH when p = p'

or

(c) fc<<fc{ (f ^ J V ) when p = p ' f | |/ΊI = II/|| a n d kj = k'j (; = 1, , ι - l )

or

(d) / 4 < / ί (ί ^ i V ) w h e n p = p', \\Γ\\ = ||/||, ^ = jfc{ for all i

a n d /, = /< (/ = l , 2, , i - l ) ,
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where ||/|| denotes ( Σ lϊ)1/2-

Also we give the same numbering for event in §f = {E{A,B); i e A(p\

B<ΞB(P), A = B + L, for all p], i.e. when En = E{A,B), then En = £{A,B).

Under these preparations Lemma 2 can be stated as follows;

LEMMA 2.

[2.1] If I(φ)<°o, then fj P{En) < oo.
n = l

[2. 2] 7
w = l

[2. 3] For each n, l im p(un, um) = 0,

wfc = (a?(i4fc) — x{Bk))l<τ{Ak,Bk)

for Ak — P, Bk-Q, respectively if Ek — E{P,Q) e g7, and p(un,um) denotes the

correlation-coefficient between un and um.

[2. 4] There exist two absolute constants kx and k2 with the following property \

to each Eό there- corresponds a finite set of events Ej = {Ejl9 Ej2, ,EjsU)9 }{Eji^ %?)

such that

(3.1)

and if Ek is not in E5 {k > j), then

(3. 2) P(Ej Π Ek) < k2 P(Ej) P(Ekl

4. (Proof of theorem). In view of Lemma 1 and symmetric property

of the process {x(A,w); A e D ) it is enough to prove only for φ(t) e F and

for the events defined in 3.

Case 1: I{φ)<oo. From Lemma 2, [2,1] and by Borel-Cantelli lem-

ma, for almost all w there exists the number no(w), namely po{w) such that

for any p>po{w), £{A,B){A<E A(p\ B e B(p)) can not occur. Set

+ 1) V

Take any points A and B satisfying the relation

(4. 1) d{A, B) < (p\'*(w) -
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Then, since (x1/* — 2/iV )/2x is monotone decreasing for x > -^j—2~

there exists a integer p(^Pi) such that

(4. 2) ((p + I)1/* - 21/W)l2p+ί ^ d(A, 5) ^ (p1/Λ - 2/N~)l2p

holds. For this p, choose points A' e ΛiP) and 5 ' e ^ ( p ) satisfying the fol-

lowing both conditions;

(4.3)

{d(A9A') + d{B,B')} = min {rf(i4,Jf) + d(B,Y)}.
X<

Then it holds clearly that

d(A,A')^i/N~l2p and d{B,Br) <JN~ \2V.

Hence by (4. 2) we have

Since this implies E{A',B')<E. g7, we can see that the event E{A'9B') belongs

to if. We have, therefore, because of (4. 1) and (4. 3)

x(A, W) - x(B, W) < σ(A, B). λU9){Hd(A\ B')).

Since λ^{ψ) (vp) is monotone decreasing for p > 10c'/log 2, we obtain by

(4. 3)

x{A, W) - x{B, W) < σ(A, B)λU<P) (Ud(A, B))9

which for (4. 1) implies

Ψ(t) + —j^jy- e U\

In order to assure that φ(t) itself belongs to Uu, we set

Then a computation show th&t . I(η) ̂ eloNc' I{φ). Accordingly I{η).<.og

holds under the condition I(φ) < oo.

This implies from the above argument that
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Since for large t

we have φ(t) e Uu. This completes the proof of theorem in the case

oo.

Case 2: I{φ) = oo. First of all we shall show that for elements of

iT; Eh, Eh+1, , EhHn-h)(m^n^h) it holds for large m,

(4. 4) P (EJE'h Π Π £\+c»-w) > - L . P(Em),

where E'k denotes the complement of Ek and P(Em/C) the conditional proba-

bility of Em under the condition C. Corresponding to Em{ = E{A,B)) and

Et{ = E{P,Q)){l = A, , w), we define their subsets ££ and .EΊ by

El = {w; σ(A, B) φ(lld(A, B)) < x(A, w) - x(B, w) < 2σ(A, B) φ{lld(A, B))},

and

Eι = {w; x(P, w) - x(Q, w) e Bt}, I = h, , n,

where Bt is any bounded Borel set. If we set ε{m) by

p(E*ιέh n n En) = d + β W).p(£»,

then e(m) is a function of p(ul9um), (/= A, ,n) and of σ(-A,5) ί>(l/rf(Λ,S)).

Then we obtain from Lemma 2, [2,3]

e(m) >0 as max ρ{ul9 um) >0

(T. Sirao [11]). Therefore, we have for large m,

(4. 5) P(E*ιέh n n En) >±-.p{Et).

On the otherhand, we see easily

(4.6) P(Em)<2P(E*)

for all large m. Further, if we denote the event that ut + a is pρsitive

by Et(a), it is clear that

P(Et(a))—>1 as a—> oo .
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Choosing, therefore, ah%n for each pair of positive integers h and n (h <n)

such that

^ P ( n
l=h

n E'n)^p(Ej n (E\ n £,(«*. J)/2.

Therefore taking £ z = £{ Π Eι (ah> J , (/ = A, , w) in (4. 5), it yields (4. 4)

(T. Sirao [11]). (4. 4) together with Lemma 2, [2. 2] and Lemma 2, [2. 4]

implies that

we

(4.

have

7) P(Em

P[ n

lEin •

"» occur infinitely often) = 1,

(K.L.Chung and P.Erdδs [2]), which implies φ{t) e ZΛ This establishes the

proof of theorem in the Case 2, I(φ) = oo.

5. (Proof of Lemma 2.) This section is devoted to prove Lemma 2.

In the first place Lemma 2, [2. 1] is verified after several preparations. In

the second place Lemma 2, [2. 2], [2. 3] and [2. 4] will be proved, which

were required to refer K.L.Chung-P.Erdos lemma for the proof of lower

class.

Following Lemma 3 will be cited so often from now on, but we shall

omit the proof, because it is easy.

LEMMA 3.

(a) For x iΞ> l,

— ί - exp {-x2l2) < Γ exp (- t2l2)dt < -^- exp (-x2l2).
ΔX J x X

(b) At x — e, \ogxlx attains its maximum and for x > e it is monotone decrea-

sing.

(c) log(2)#/log# attains its maximum at x = ee and monotone decreasing for x > ee.

(d) For sufficiently large x (e.g. x ^ e3/*) and for 0 < a < 1,

(α log 2) (log xjx) < 1

LEMMA 4. For φ(t) e F, it yields;

(a) For t > e,
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(2iVlog ί ) ι ' < ψ(t) ̂  c, (2ΛΠog t)ιl\

(b) For sufficiently large pie.g. p > £ 3 / α ) ,

φ(υv)>l and φ{3vp)>l.

(c) For the same p in (b),

c2- p < φ\vv) < p {c?2iVlog2},

c 2 p < Ψ2(3vp) <c3-p

where c2 = 2N Iog2-{l - α 2 . l o g

3

2 . ^ } ,

. (a). Since ^(ί) e F implies that

we obtain (a) due to Lemma 3, (c).

(b). From Lemma 4, (a) it is sufficient to choose so large p that

vp > e, i.e.

p log 2 — — log p > 1.

Since from Lemma 3, (b) we have

P log 2{l - J ^ • ^ } > „ . l o g 2 { l - ft2, l Q g 3 2 . ^

for p> e11* > e, we obtains (b). The latter of (b) could be checked simi-

larly.

(c). From the above results (a) and (b), we have for p>eυ*,

2N- log υp ^ Ψ2{vp) < cl2N\og vp.

If we set c2 as cited above, we find (c). The latter part of (c) is similarly

derived.
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LEMMA 5. For φ{t) e F we have;

(a) For sufficiently large t {e.g. t^e21*), K[φ{t)] is monotone decreasing in t.

(b) For p >2*e3l*ja, K[φ{vp)] is monotone decreasing in p and so does K[φ{3vp)].

Proof, (a). Since K[x] is monotone decreasing for x^(—— — l) ,

it suffices to find t such that φ{t)^

By Lemma 4, (a) we can find it as follows;

- l , i.e
a a

(b). In view of the above (a), it is enough to choose p such that

Hvp>e2ia, i.e.

\ p a log 2 / =

Using the same argument as well as in the proof of Lemma 4, (b), we

have (b) for p^2 ezlctja. The remaining part is obtained similarly.

LEMMA 6. For En = E(A,B) e g% we have

exp {- \ <P2(Hd(A, B))j/2]/2τT . φ(Ud(A, B)) ̂  p(En) £

— β X p ί~~ \ V^d(A> B))}/τ/2π~ φ(lld{A, B)).

Proof. It is evident from Lemma 4, (b), Lemma 3, (a) and from the

fact;

i/^Γ P{En) = Γ exp ( - t2l2)dt.

LEMMA 7. If I(φ) < oo, then we have

. Set the number corresponding to p0 = [2^3/<ϊ/α] + 1 by w0.

It is enough to check only the following;
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1

•/2ΪΓ

oo

•Σ
J>=ϊo

(2. 2P

oo

TAKAYUKI
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g.sP(E(A,B))

- \ <P2(Hd(A,

By Lemma 5, (b) and Lemma 4, (c)

Σ P(En) < c4 Σ < - 1 (*„- *,-i)l>2*/e exp
n=nύ P=Po

<c4.c2-
2^^. Σ Γ ^ -

^ 2 i V - 1 c 4 . C22iV/Λ Σ P t ^
P=Po J ^ - i

where
)/2π { 2 \Po—

As a consequence, we obtain

P(En) ^ 2 iV-1c4 Γ2

2Nl« Γ jf̂ "1 K[φ(t)]dt

which completes the proof of Lemma 7.

The above Lemma 7 plays an essential role to prove Lemma 2, [2. 1].

LEMMA 8. For any pair of points {A,B), where A<Ξ Λip'd\ B e B^^ and

A — B = L + Q^Qz, L(ΞL(P\ Ql9 Q2^Qip'd\ if we choose properly a pair

{A', B') such that A e £***-» and B' G B'p'd~Ό, and A'-B' = L + Q[ + Q'2

(Qί and Q'2 e Qcp'd'Ό), we have

(5. 1) p(u, u')>l- (1 + a) {tyN Λ / l - 12j^ P1/tf ^ ~ 1 ) c

where u = x(A) - x(B), u' = x{A') - x(B') and p > [12-JWV'*] + 1.

Proof Choose Ar and Br as follows: If i-th coordinate of point A is

not smaller than i-th coordinate of point B, that is, if ki

Jrli

Jrmψe~dc'^

kiΛ nψe~dc, then we choose the point A! e ACp'd~i:> whose i-th coordinate is

greater than i-th coordinate of A and has the minimum distance, i.e.
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1) β-cd-1)c)/2p), for which

(5. 2) nffo^e-"-™ > m^e~dc,

for any 4 = ((4,+/, + nΐt"' ^"w'1)c)/2ί)) e ^<P *-» .

Further choose the point Br e BCp'd~i:>, whose i-th coordinate is smaller

than i-th coordinate of i? and has the minimum distance, i.e.

Br = {(/bί + n?0-
1) ^c"-1)c)/2p}

for which

(5. 3) nT e~dc - nft"15 ^"cd"1)c < w ^ e~dc - n't1* ^cd"1)c

for any JS = {(jfct + n?~n e-(d'ΌC)l2p} e s^.d-Dβ

In the other case, i.e. if i-th coordinate of A is smaller than that of

B, then choose the points A' and Br whose coordinates satisfy the reversed

inequality respected to (5. 2) and (5. 3), respectively. For points chosen as

above, we see

d{A, A') ̂  W e-u-v'fc*, d{B, Br) ̂  ,/ΛΓ ̂ ( d ' 1 ) c /2 p ,

(5.4)

d(A,B)<d(A',B) and d(A,B)^d{A,B').

Then we have

Δ\(JL \-tx^ £J) * U, \Γ\. JD )]

^ 1 - (1 + a)m\

where m = d(A, A')jd(A, B) V d{B, B')ld{A, B).

In order to estimate m, it requires to evaluate d(AfB):

(2P)2 d{A, Bf = ΣJ {li+(nί?-nc?)e-dc}2

N

AT

l

l
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N
f r» r

AT

(ΣNϊ)1'1

N 4/ΛΓ
N

*(i,")Vl"i4-/N~

From this and (5. 4) we have Lemma 8.

In the following Lemma 9, notation Aip^ and Bip'd:> are used for the

fixed points A and B in their definition, respectively.

LEMMA 9. For some fixed points A and B

P( U FW(P,Q))<C5P(E(A,B))

where p = [12Λfe3/ot] + 1 and c5 is an absolute constant.

Proof. We shall prove by induction on d. By de Morgan's law, we

see

(5.5) P( U F{d\P,Q))<P{ U F"-1\X,Y)) +

Set s = l/d(A9B). For the case J = 1 we can estimate as follows: For

P e AϊP'V and Q e JB^'1), we have by Lemma 4, (b) and Lemma 3

Since the number of all combinations of P G A^^ and Q e JB^1) does

not exceed (2ec)N x (2ec)N, we obtains
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(5. 6) P( U FW(P, Q)) < 2 4PP{E{A, B). )

Next we consider the second term in (5. 5). If we choose the pair

(PotQo)* PoG A^'d~x\ Qo e B(p>d-V as in Lemma 8 corresponding to each

pair (P,Q)9 P e A&>d\ Q e B^'d\ which satisfy (5.1), then we can see that

n [F'v-vix, Y) n FW(P, o i c F ^ - 1 ) ^ , Q0) n F^(P, Q)

since the set {(X,Y); X^A^d~1^, Y^ B^d~^} contains (PQ,Q0). Hence in

order to evaluate second term in (5. 5), it suffices to evaluate the probability

of the right-hand side above:

9 Qo) Π W(P, Q)) = ~= Γ p\w ^~= Γ p\w ̂  ZJ

where we write λw briefly instead of λk(φ) (lld(A, B)) for fixed A and B,

and W (and V below) are mutually independent random variables of

standard normal distribution. Since the last integral is monotone decreas-

ing in 9 (T. Sirao [11]) and by replacing p by ρ0 which is set by the

right-hand side in (5. 1), we find

)) <P(V> φ(s))

+ {(1 - Pi)'112 Po 2Nclφ(s)2<d~V })

where s = lld{A,B).

Further, for p^ 12-jΊsΓ - ev« we estimate using (5. 1)

- ̂ ¥)' V

^ (6/JΓd+α))1" {(l- ^a-)U fa βC'-w)."1 j ^ Cl - (2Nlog2Yι*+

c,(2iVloβ2) '
In view of (5. 1) and Lemma 4, (c) we can estimate similarly;
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2Nc{l-ρ0)-112 P0l2«(-d-V . φ{s) ̂  c7

where

2 N c I (1+a) }Λ 1_Y/4.

V 1 e*'*

As a consequence we have

0, Qo) Π F«*)(P, Q)) ̂  P(F ̂  9(5)) P(W ^ -

In order to apply Lemma 3, (a) to the above, it is required to set c

such that

- c 6

But for this it is enough to take c such that

c > j_2_ . iog(Ί+ -4-) + Iog2

where Cg and c? are constants dependent on c6 and c7, respectively. Choose

such c and set c8 by c8 = c7 -

Then we obtain

< P(E(A, S)) ( 2 W ( ^ ) . exp (~

where c9 = 2ι /0! /cf0+1 and /0 = [4A^c/αlog(̂ /2/2)] + 1.

Since the number of all combinations of P G i^^) and Q e J5^ d> does

not exceed (2edc)2N, we have

(5. 7) Σ P( Π F'C^-D(Z, F) Π F^)(p, (?)) ̂  2^ c 9 ^- 2 ^ c . P(E{A, B)).

By (5. 5), (5. 6) and (5. 7) we have

P ( U F^(P, Q)) < 23N+% P(E{Λ, B))
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Thus it completes the proof if we set a constant c5 by c5 = 23iV+1 c9/(l—e~2Nc)

in statement of Lemma 9.

Lemma 2, [2. 1] follows from these preparations.

Proof of Lemma 2, [2. 1], Continuity of the Gaussian process implies

that for A e A&> and £ e BCP), A = B + L(L e

E(A,B)Q U U { U
h l d h C

Hence

( ( ) H ( U

<csP(E(A,B)).

Let the pair (A, J5) runs over 4̂̂ ) and B*', and corresponds the num-

bering of E{A,B) or £(A,B) to each pair (A, £). Then from the assump-

tion of Lemma 2, [2. 1] and Lemma 7 we have

<

which proved the lemma.

^ Lemma 2, [2. 2], We use the similar estimates as employed in

Lemma 7. Set the number corresponding to Po = [2e3/°7α] + 1 by n0. For
CO

proof it is enough to show that if I(φ) = oo, then 2 P{En) = oo. Relying

on Lemma 3 and Lemma 5, (b), we underestimate P{En) as follows:

= Σ P(E[A9B))

for p>Po

- | pV )* exp(- -i- φ*

- ' Σ
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P = P o J 3 ^

Thus we obtain

which verifies Lemma 2, [2. 2].

Proof of Lemma 2, [2. 3], We recognize easily that it is sufficient to

prove only for the subsequence {mk} such that p(un, umj) ^ 0. Using the

inequality {a+b)* <a* + ba, (0<a<l, a>0, b> 0) (Hardy-Littlewood-Pόlya

[7]), we have

(5. 8) 0 ̂  p(uΛ, umj) < d(Am]c, Bm])«/2ld(An, BJ*/2 >Q9 mk > oo

which, for each w, implies Lemma 2, [2. 3],

The following lemmas are prepared to refer in the proof of Lemma 2,

[2. 4]. For the function φ(t) and each Ej9 we define Ej by

Ej={En; P{uj9un)

where sk denotes lld(Λk,Bk) corresponding to uk = (x(Λk) — x(Bk))lσ(Ak, Bk).

Then we have

LEMMA 10. Ej is a finite set for each j .

Proof From (5. 8), we find

m<P2(Sj) <P2(sn)} ̂  P\ujy u*) ^ d*{AΛ9Bn)ld*(Aj9B,).

By Lemma 4, (c), the above becomes as follows in terms of p and p'

corresponding to E3 and En9 respectively;

(clpp'Y1 < P2(uj, un) ^ {3vPlpp'}a ,

i.e.

This yields

p' < P + c10 logp ,

where c10 = 2 log 2 + {log (cl3α)/α:(log 2)2}.

This assures the lemma.
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By Lemma 10, we can write down for each j

Ej = {EJ1,EJ2, , EjsU)}, ji > j .

LEMMA 11 (K.L.Chung, P.Erdos and T.Sirao [3]). Let U and V be two

random variables whose joint distribution is a two-dimensional Gaussian distribution

and each of them is subjected to one-dimensional standard Gaussian distribution.

Then,

(a) If p{U,V) <l/ab, there exists a positive absolute constant dx such that

P(U>a, V > b) <d,P(U >a) -P(V > b).

(b) There exists two positive absolute constants d2 and δ such that for any a>0,

P(U >a,V>a)<d2 exp{- δ(l- p\U, V)a2)} P(U > a).

For the proof of (3. 1) in Lemma 2, [2. 4] it is convenient to separate

Σ n EH) = Σ ω P ( £ , n Eόi) + JlωP&j n EH),
i = \

where 2 ω a n d Σ(2) denote summation over i satisfying

) a n d P ( U U ) ^ [ } )( 1 \ 1 / 2

1-y=) a n d

respectively. For each summation we evaluate the summand and the number

appearing in the sum.

LEMMA 12. There exists an absolute constant cn such that

Proof First we estimate P(EjnEji). From the definition of Σ ω , we

find a positive integer k such that k< Jp and

Hence, by Lemma 11, (b) and Lemma 4, (c) we obtained

P(Ej Π EH) sg d, exp {- δ(c\2Nϊog 2)p • (k - ί)lp) • P(E,)

^ clt exp {-δicVNlog 2) k]

where cn = d2 exp {δ(ci2iVlog 2)}.
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Next we estimate the number of summand in Σ ω

If we apply (5. 8) to the present case, we have

(5. 9) (Ί - JlΛ . d"(A, B) ^ d\A\ Br) < d*(A, B),
\ p /

where pairs of points (A, B) and (A', Br) correspond to Es and EJif respect-

ively. Further using (5. 9) to estimate the denominator of ρ{uj9 uH), we have

(l _ JJOj d*(A, B) ^ d*{A, B') - d*(B, B'\
\ p /

(5. 10)

(l _ JL) . dΛ(A9 B) ^ d*{A', B) - d*(A, A').
\ p /

Thus the number in Σ ω does not exceed the number of point A! and Br

which are contained in the region determined by (5. 9) and (5. 10). A

computation shows that this region has volume V smaller than {2{4k)ίlctl2p}N.

On the other hand, pr is estimated by pr < p + l0, where l0 is an absolute

constant integer. In fact, if we set l0, n0 and m0 by l0 = 4yn0\/m0 where

n0 = min{n; 2(1 - (3/16)α) - /2" ̂  n-3al2n*} and mQ = max {n; n + 2^2na+1/3a],

respectively. If we consider (5. 9) in term of p and pr, we see that n0 and

m0 are minimum integers to break inequalities in (5. 10). Since the above

argument permits us to overestimate the number in Σ ω as

we have

Π ESi) < Cn&W ίVψPiEj) Σ kN'2 exp {~δ(d2Nlog 2)k],
k 1
Σ

k== 1

which completes the proof if we set cn by the coefficient of P(Ej) in the

right-hand side.

LEMMA 13. There exists an absolute constant c'n such that

Proof. First we estimate the summand and next the number in Σ ω

Since we have Sj > sH for ji > j {sk = lld{Ak, Bk))9 it holds by Lemma 4, (c)

and Lemma 11, (b)

P(Ej Π EH) ^ P(uj > φ(Sj), uH > φ{$j))
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^ d2 exp {- 5(1 - P2{uj9 uji) φ(sj)} P{u3- > φ(sj))

Set

Γo = m'o V nj V 2,

mj = min{/; 2(* + c10) > e 21},

nj = minj/ log (l/c10) < /(-I- - l)} .

For (A,J5) corresponding to £.,• and (A\B') corresponding to Eji9 if we have

inequality, d(A',B) or d{A,B')^{pι'°/*)l2p, then ρ(^ , w;ί) does not satisfy

the condition of Ej. This implies that for all EH e JS?y, d(Ar

9 B) and

d{A,B')^{/pι'Qla)j2p. Since Λ' and J5' are contained in a cube with volume

{2pιΌl2p)N, the number # of such points A or 5 ' is dominated as

Thus we have estimate of Σ ω ;

Σ ( 2 ) P ( £ y n £y<) ̂  d22™V

2N (-~ + C l ° l o g 2 ). exp {

which verifies the lemma if we set c'n by

^ 1 1 = (a.C3)^.M!/2 and M= {N(-^

/ Lemma 2, [2. 4]. If we set kγ = c n V c'n, it yields (3. 1).

From Lemma 11, (a) we find for Ek φ Ej9 (k > j),

P(Uj > φ{Sj), Uk > φ{sk)) < dγ P{uj > φ{Sj)) - P{uk > φ{sk))9

since p(uj9 uk) < ll{φ(sj) φ{sk)}. This implies (3.2).

We established the proof of theorem completely.
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