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ON THE CONTINUITY OF STATIONARY
GAUSSIAN PROCESSES

MAKIKO NISIO

1. Introduction

Let us consider a stochastically continuous, separable and measurable
stationary Gaussian process? X = {X(#), — oo <t < o} with mean zero and
with the covariance function p(¢) = EX(¢#+ s)X(s). The conditions for
continuity of paths have been studied by many authors from various view-
points. For example, Dudley [3] studied from the viewpoint of e-entropy
and Kahane [5] showed the necessary and sufficient condition in some
special case, using the rather neat method of Fourier series.

In this note we shall discuss the continuity of paths of X, making use
of the idea presented by Kahane. Our results are following: We express
the covariance function p in the form

o) =|"_emraF
with a finite measure dF, symmetric with respect to origin.
Put s, = F(2", 2", n=2012, «--

Tueorem 1. If E sup |X(¢)| < oo, then OZO}Vs—,,<00.

telo,1] n=0
THEOREM 2.  Suppose that we can choose a decreasing sequence {M,} so that

M,=s, and %1/‘1\7,,<00. Then E sup |X(t)] < oo.

n=0 telo,1]

THEOREM 3.  Suppose that o is convex on a small interval [0,6].  Then
s, <o, if X has continuous paths.
n=0

By virtue of Theorem 2, we can easily see
COROLLARY. Suppose that p is convex on a small interval [0,5] and s, is

Received May 24, 1968
1) We mean a real valued process.
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decreasing.  Then X has continuous paths if, and only if, E sup |X (&)} << oo,

tefo,1]
which is equivalent to 3 s, < oo.
n=0

The author with to express her sincerely thanks to Professor T. Sirao
for his valuable suggestions.

2. Lemmas
Let {T;,7=1,2, ---} be a sequence of increasing positive numbers

such that f}ljl‘<oo According to [5, p. 69], we shall define following
= 1
functions,

2(x) = max (1 — |z],0), — oo < g < o0,

0.(2) = inx( 7%]’), — o0 << 1 < oo,

= 1 % a4
)=~ [ e - )z
L= etn dn= L (T o, (nda

Tr1

-1 i12
B = o S‘T,_le 129, (2)d.

As to these functions, we can easily see that 4, is symmetric, non-negative
and continuous, and [/, and /¥ continuous. Since

) K.(t) = tz;/“zl/ﬂ (1 —cosT,t)=0,

!/, is non-negative as the convolution of K,, n=r.
The following Lemma 1 is clear.

Lemma 1.
L) = UK =07 (e = 9K.(9ds

L) = U0 = 2 7 10— 9K (9)ds

1

| tndr =1,

We express X in the form

X(1) = S: ¢t do(2)
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with a random measure d®. Let X satisfy the condition of Theorem 1.
We define stationary Gaussian processes ¥, and ¥¥ by

_ 1
2) Y, (t,0) = " Xt = s,0)1,(s)ds
and
(3) Yito) = L " X(t -5 ox9ds

respectively. By virtue of the condition of Theorem 1, we can see that,
for a. a. o, the Lebesgue integral of the right side of (2), as well as (3), is
a continuous function of ¢#. Moreover, ¥, and Y} are expressible in the
form

@ v.(t) = {77, e, (ndol)
and
(5) vie) = {77 et0,()do).

As to the supremum value of these processes, we have Lemma 2,
LeEMmA 2.

E sup |Y,(H)]|<a

tefo, 1]

E sup |YHi)] <2a

tefo,1]

where a=FE sup |X(#)].

tefo,1]

Proof. By Lemma 1, we have

E sup 1V,(0)] <75 | Esup |X(t — 911,05 = a.

tefo,1] - telo,1]

Put Z,(#)=Y,(t) —Y¥¢). Then Z, has continuous paths and is ex-
pressible in the form

- itd
Z:1) ST,-1<|AlsT,e 0-(2)d0).

Therefore Z, and ¥} are mutually independent. So, for any topological
Borel set A of C[0,1],
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P(¥, € A) = Sqo l]P(f";‘ e A— & P(Z, € de)

where f stands for the restriction on [0,1] of . Hence, for ¢ >0,

P( sup Y. ()| <c)=< sup P( sup [VH(¢)+é&B)<e)

telo,1] geCo,1]  tefo,1]
= P(sup |Yi(¢)+ &) <c)+ e
tefo,1]

with & € C[0,1]. On the other hand, by virtue of the symmetricty of ¥%,

P( sup |Y¥E) +9(8)] <c¢) = P( sup [YEE) — 9(8)] <¢), 5 e CL0,1]

telo,1] telo,
Therefore, we have

1—(sup [Y¥¢#)| =¢)= P2 sup [YH¢)| <2c)

telo,1] tefo,1]

=P( sup lY*(t)+€(t)l+sup |YE() — &,(£)] < 2¢)

te<[0,1]

=P( sup |Y¥i#) + &) <e, ts;;% |Y¥(1t) — ()] <)

tefo, 11

=1—2P( sup |Y¥i)+ &) =¢)

tefo, 1]

=2P( sup |Y.(t)] <¢)—2e—1.

tefo,1]

Tending ¢ to 0, we get

P( sup |[Yi#)| =c)=<2P( sup ]Y ]| =c).

tefo,1]
Hence
5 on " n+1
©) Eo P <t§%pnly <
N 1
E P( sup |Y¥(#) o P( sup |Y¥(i) 2_,|: )
n=1  zeo,1] 1€(0,1]
Nl n—l—l n—i—l N+1 N+1
=2 P < Y. ( + = sup |Y,(8)|= .
nEl) ( Zk te‘;}pﬂl Zk 1 <te[01,)1]l ( )l Zk )
. N—l—l
Appealing to the former half of Lemma 2, we have NP( sup Y. (¢)]

t<fo,1]
tends to 0, as Nt oo, So, (6) implies the latter half of Lemma 2.

Define stationary Gaussian processes ¥, and Vi by
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Vo) = =] Yl = 9K (9)ds

1
ISl>‘/ﬁ

and

Vi =) | Vil = 9K 9ds.

/T

Then we can easily see, by Lemma 2,

LEMMA 3.

.
E sup 1V,(t)|s7ZZT“

tefo,1]

E sup |[V*( t)ls—j—ll:z—f: .

te[0,1]

3. Proof of Theorem 1.
To prove Theorem 1, we shall firstly show the following proposition,

ProrositioN.  Let {T,} be a sequence of increasing positive numbers such that

® 1
rgl T < oo, Then

2 GT I<IAIST 0 b= ﬁ-l(l - %’!‘)2 dF(z))% < oo,

Jj=1

Proof.

We define successively random variables S;, S} and H;, j=1,2,---, as
follows,

Siw)=0

H(o) =Y(S(0), o)

min {¢; || <7, Yi(t,0)=minYi(s, ), if H (o) <Imin Yi(s, w)

|Is|<71 s|<r

Silw)=( min {¢; |t] <<, Yi(t,0) = maxYi(s, o), if Hl(a))>lnllgx Yi(s, o)

1
Is|<1

min {¢; [{| <7, Y%, 0) = H(e), otherwise

where 7, =1+ 1/% We can easily see that S} is measurable with respect
1
to the Borel field, £, spanned by {d9®(2), [1]<T}.
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Si(@), if Y;4,(S(0), 0) = Hj(w)

Sjinlo) = min {t; |t]<c;, Y;i,(t, 0) =‘1;1;12-§ Yiuls, @), if }Ij(w)>[1'§[12§Yj+1(s’ o)

min {¢; |t| <7j, Y (t,0) = Hiw), otherwise.
IIJ’+1((0> = Yj+1(sj+1((0)y o).

min {#; |#] = tie Vi, 0) :;s?/lirn Y7..(s, 0)},
<LTju

if Hi (o) < min Y%,,(s,0)

Is1< 1
frilo) = min {¢; ] <41, Yinlt, 0) :] {Y/I?X Vit o)},
SIKTj1
if Hj,i(0) > max Y¥,,(s, o)

[s]<7 41

min {t; U] = Tien Y:Jl;+2(t, ) = }1:1‘+1(w)}, otherwise,

1 1 .

where ¢, =1+ I o + Successively, we can prove that S,
1

j
and S are measurable w. r. to the Borel field, &}, spanned by {d®(2),
2l <T,}.

We shall show the boundedness of H;.

LEMMmA 4.

sup |Hjlw)] < oo, a. a. o.
F=1,2, 00

Proof. By virtue of Lemma 3, we have

(7) E sup |V, (#)] < oo,

1 Jt<re

iMs

where ¢ =limz;. On the other hand,

j—oo

(8) sup

ltl<v

7/2175 X(t — s)l,(s)ds

Is|<)-/-%?

r

= 1§ sup | X(u)|1,(s)ds
xs|<;,§{».: lu] <zt

r

< sup |X(u)] <oo, a. a. o.
lul <2t

Therefore, we see
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sup sup |Y,(#)] <oo. a. a. o.
r=1,2,+0¢ |2|<T

Recalling the definition of H;, we have Lemma 4.

(9) I{j-n(w) - I'IJ(CU)

= {(Hjs1(0) — Hj(0)) V 0} — {(Y;(S;(0), 0) — sup Yj.(s, ) V 0}2.

|s|<7y
On the other hand, for ¢ € [— 7j_, 7j-1],
1
Y(t) = —“——S Yiu(t — s)Kj(s)ds + Jom S Yiu(t — s)K(s)ds

vor isl< L 81>
VT, Ty

< sup Y., (¢) + sup Vi(2).

lt|<7y 1t]<7jm1

So,
Y;(t) — sup Yj..(s)< sup V), [t <7jore

|s|<7; |s|<7;-1
Therefore,

(Y5(S;) — sup Yiu(s)) VO sup [V,(#)].

Isl<7y []<74-1

Appealing to Lemma 3, we have

(10) S E{(Y/(S) — sup Yiuu(s)) V 0} < oo,
Jj=1

Is]<7y

As to the first term of the right side of (9),

M

1l
f

(Hyy — H;) V O

J

3

= Hyy — H, + 23 (Yi(S;) — sup Y;u(s)) Vo.

Jj=1 |s|<7s

Therefore, using Lemma 4 and (10), we get
(1) S (Hu—H)Vo<e, aao

On the other hand, recalling the definition of H;, we see
(12) (Hpy — Hp) V 0 = (Y34u(S7) — H) V 0

2) aVb=max(a,b).

95
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= {(Yia(S5) — Y$.(S)) V 0} — {(H; — sup Y%.(¢) V 0}.

[t
So, using the similar method as (10), we get
(13) S} E((H; — sup Yia(t) V 0} <o,
j=1 121y

Therefore, combining (11) and (13) to (12), we have

(14) ]zi (Ve1(S5) — YE.(S)) V 0 < oo, a. a. o.
Put 7 =Y;u(S)) — Y$.,.(S5) and
= (1 ALY
b ST,«<M|<T,-+1 k=1}+1<1 T, > dr@).

Then, we see, appealing to the independence of do,
1 e 2
P(r;< 2| &) = WS e 2 dy,
4 J —00

since Sj is Z~-measurable,

Hence

_Yo;
(15) E@; V0) = s
and
(16) E(; V02 = _”2"_ )

Appealing to the following Lemma

LemMA. [5, p. 641.  If X is a non-negative random variable with mean finite,
then

PX>21EX)=(@1— z)ziggi ,  v2e(0,1),

we can derive
no, n
SWo; " Vo;

& j=1 ! . j=1 . ,_1'_. .
P(Z(r;V 0> L) PRIV 0> )=
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So,

%
> /=1 - \=>_1_
P(RrvozE)=
By virtue of (14), we conclude
S, < oo
=1

This completes the proof of Proposition.
Making use of Proposition, we can easily prove Theorem 1. Put T,=2*
and a = ﬁ (1 —3-27%2)2,  Then we have
k=0

2aF (2, 3-21“]—ag dF ()< T (1 IM>dF
k=j+1
20<|Ag —21 21<|A|<~—2J
Aal
s§ 5 ]+1<1 )dF( 2.

20| A g2/

So, by Proposition,

o) 1
(17) ZOF(zf, 3.2/7177 < oo,
J:

0 2
Put T,=3-2""! and = II (1 — 7:13* 2"‘“) . Then we have
k=0

2aF(3.2/71, 2] < i (1 — |§,[ ) dF ()
P IPT L ket
Ss ﬁ (1 - _"uilc—l )ZdF(Z)-
3.27-1<|A| 3027 F=7+1 32
So,
o 1
(18) SV F(3-2771, 27412 < oo,
i=0

By virtue of (17) and (18), we have Theorem 1.

4. Proof of Theorem 2

We shall first assume that s, is decreasing and S5, <. We put
n=0 .
¢(j) = 2% and define & and 7; by
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& = | ¢ith do(2)

c(F-D<|A|<el)

and

L )
- = max (ke =1,2, -
T SR i §’<6(1 +1) > rIEAS

respectively. Then the process & has continuous paths. Appealing to the

following Lemma,

Lemma. [5. Proposition 2].

B = Cj+1) poo a b0
;<< h+ kgo Snlw F‘gj( ! )(x), >

(G +D
where p. is the probability law of & we have

Eiy= b+ (ol +1)+1) o 22,72

where ¢; = 2F(c(j — 1), ¢(/)]. Let & = h(j) =v/206;l0gc(j +1).

Then we see

(19) En; < 2h(7).
. 2i—1
Since ;= 3 S we get
=27~
211 )
2j¢r,~ =2 Sp =< 2275551
k=it
Hence,

271

V20, <25y <4 3 s
Consequently, by (19), we have
(20) 31 By, <o,
J:

Define ¢ and ¢ by

. e k q ¥
§Gskypyq,1) = 51( GFU TG+ De@ TG FDclp+1)

—E k. q
(551 + e T )
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~
|
e
o
xR
Sl
=
N
Q
1
-
M
.
.
o
2
=
=
==
I

0y...,cj+1), p=1,2,...,

0(j,p) = max 18, k, 2, q, 7).

Then we see

2( 7 _ _ 7
EC*j, k, 2, g, 1) = 28 (1 COS — T e 1) z)dF(,z)
(i-1)<ASe(H)

—

GOEON

Again, using the same Lemma, we have

Do

B0, 9) <2/ Tog cto + 1 e+ 1) o
Therefore
(21) ST SVE6(j, p) < oo
=1 p=1

By virtue of the separability of X and &;, we have

sup |X(1)] < 3 sup [&()] + |d00)], a. a. o,

tefo,1] j=1 tefo,1]
and

sup &) <7; + X 0(4,p), a. a. .
p=1

te|0,1]
So, taking (20) and (21) into account, we complete the proof of Theorem 2

in the first case.
Define a symmetric finite measure G by

GLA) = F(A) + 3 (My = 5)3,n0i(A), Aco,),

where §, is the delta measure concentrated at a. Let X, and X, be the
mutually independent stationary Gaussian processes whose covariance func-
tion has the spectral measure F and nZ:‘,oo (M, — $4)8,,(A), respectively. Then
G is the spectral measure of the covariance function of X,+ X, and
G@2",2"']= M,. So, using the result, we just proved,

E sup |X\(t) + Xy(t)] < oo,

tel0,1]
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Repeating the same method as Lemma 2, we have

E sup [X(#)] < oo,

tefo,1]

This completes the proof of Theorem 2.

5. Proof of Theorem 3
To prove Theorem 3, we shall first show the following Lemma,

LemmA 5. Assume that a symmetric, positive continuous function R ts convex and
. . . ™ i
decreasing on [0,a).  Then any Fourier coefficient a,, i.e. a,= Zl_ng e~ R()dt,
-7

[oe]
s non-negative. Moreover, >3 a, = R(0).
h=—oc0

Proof. By symmetricity of R, for n=>1,
= = —}— " = __1“ " _s_
(22) Uop = ap = — SO R(t) cos nt dt o SO R( n)cos s ds.
2(k+Dm
s
3 R<7> cos s ds

ZS;;<R(—2£I%4;S)_R (ik@;;ti)‘“}? &—I—Eis)-l-R(z—]mian——s)) cos s ds.

By virtue of the convexity of R, the integrand is non-negative, and we
have

Z(HDRIQ(—%—) cos s ds=0.

2kn

On the other hand, by the monotonicity of R,

2kn 41 T
s _{z 2k +s\_ p(2knrtx—s
ZSM R(W) cos s ds —So (R(—~—n‘—) R( P )) cos sds =0.
Therefore, appealing to (22), a,=0.
Since R is continuous and bounded variation, its Fourier series con-

verges to R uniformly on any closed subset of (—=x,z). Hence _f}a,FR(O).

LemMa 6. Let R be a continuous, symmetric and positive definite function on

T .
(— o0, o),  Assume that each Fourier cogfficient a,, i.e. a, = 517?5 e~ ™ R(t)dt,
-
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is non-negative. Then, the speciral measure dG of R satisfies

<o

gl/G(zn 2n+1] <

T an+l

if ZM/ a;<oo.

k——2ﬂ+1

Progf. By the symmetry of dG,

L7 ([T ita
(23) an—z—ﬂs_”e (Le dG () dt
_ 1 [ sinl— e oy L (° SinG+ nls
T So A—n dG@)+ T go A+n dG),
where LI(I)O”— is read as lim > sinte  _
%0
k+1
Put f= 3 Snd=—n 120, (k=4 5,...)

Then we have, for m= 28 +1,..., 25 € (0,11,

a8 gin(f 4+ ) | 2P sin(l — p)x
Jem=1+pm= =z it A l—p
11 1 11 1 7 sinpx
Z(,, Tn T o Tiss T 2= T )Sm"“2 12 pl—p)
and, by the same method,
 sings — ok-1 r
f(2m+pz)212 ull—p) re 0,11, m=2* ... ,2°—1.
Therefore,
(24) [ rmacw=L "5 S5 acq +
24 12 %% So+ p(l—p) Bl
On the other hand, we have the following inequalities,
(25) f@)=o, 2 e [28, 28t 4] U [2° — 5, 21,
b1 _ —singx singz __ sinpm |, sinpm
@) ST tAt = et o T, T T st
1 1 1 5 sinpm _sinpx
— [ > 2 SIpm
2( 1+ 4 + 2+p 3+p sinpa 6 1+p (3 V8) p(l=p)
¢ € 10,11

. 5 —.. sinpgx .
k+1 9 e L — k+1
@0) @M A= B—V8) g #€10,1) =5, ..., 2 ],
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. 5 —
(@) FEF—j+m=—B—V8) 7?(11“":) , zEl01], =6, ..., 241

Hence, by (25) and (28),

e [, swac=—§e-v) 5l e acu+

and, by (25) and (27),

2k+2 5 gk+2 1 sm/l
o) ., 060 =—g6—V8) S0 d6 + .

As to the value of integral of f on the remainder set of 2, we see

1) " rwacw = 5 1 g yom =1 960
_ 5 G027l _ RO

m=2k—2 (2m ~2% 1)2_“ 2815 »

and, similarly

(32)

" ndom|= 570

On the other hand,

2kt143
(33) S sin(2 4 n)x

1+ n dG ( 2)’

= 5 RO _ RO

m=g1_y (Zm)* = ok 5

n=2k—4

Consequently, taking (23) into account, we have

3R(0 7 5 —
(34) oot RO = Tt~ 5 (3 /8) (B + 4o
2043 g _2Uolel sinpn
where 4= 3 -7 and 4= 3 S0+ Ay 4G+ ).

Since 4, <=z G(2F, 2¥*'], 4, tends to 0 as ntoco, Therefore (34) implies

PN LU s (VRN S SPRVES) 7 sl (VALY )8

By the assumption of Lemma 6, i.e., %/5—,6< co, we have
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(35) 31V, < oo

k=1

Appealing to the following inequality
_sinpm — 1 on [0,1],

we have 4,=G(2% 2*¥*'] and, by (35), we complete the proof of Lemma 6.
Using Lemmas 5 and 6, we can easily prove Theorem 3. By the assump-
tion of Theorem 3, we can choose a positive 4, so that ¢ is positive convex

and decreasing on [0,4]. Define a Gaussian process X by X(t)=X (—%)
Then the covariance function § of X is p(¢) = p(%), and its spectral

measure F is F(A) = F({L A) for any Borel set A. Since @ satisfies the

condition of Lemma 5, we can construct a periodic covariance function R
by

R(t) = 3} azet, — oo <<t <<oco,
N=—
T
where a, = %S p(t)e—intdt. Let ¥ be a stationary Gaussian process with
¥ -~

mean zero and with the covariance function R. Since R=§ on [~m,7], ¥

has the locally same probability law as X. So, ¥ has continuous paths.
Hence Kahane’s Theorem [5, p. 73], [3, p. 300] tells us that

o [ okl T
Sy 5 a4 <o
k=0 ¥ n=2+F41

Therefore, by Lemma 6, we have

2 F A n A nt1
n:O/‘/ “ ] <
I hlS ln.lplles I heOI em 3.
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