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ON REAL QUADRATIC FIELDS CONTAINING

UNITS WITH NORM - 1

HIDEO YOKOI

Let Q be the rational number field, and let K = Q(/D ){D>0 a ratio-

nal integer) be a real quadratic field. Then, throughout this paper, we

shall understand by the fundamental unit εD of Q{JD) the normalized

fundamental unit εD>l.

Recently H. Hasse investigated variously real quadratic fields with the

genus 1, but with the class number more than one1). However, since he

needed there to know a explicit form of the fundamental unit of a real qua-

dratic field, his investigation had naturally to be restricted within the case

of real quadratic fields of Richaud-Degert type whose fundamental units

were already given explicitly.

In this paper, we shall give explicitly the fundamental units of real qua-

dratic fields of the more general type than Richaud-Degert's in the case of

real quadratic fields with the fundamental unit ε satisfying Nε = —1, and

consider the class number of real quadratic fields of this type as Hasse did

in the case of Richaud-Degert type.

In §1, by means of expressing any unit e = (t + u J'D)I2 of Q(/Z)) as a

function of t, we shall give first a generating function of all real quadratic

fields with the fundamental unit whose norm is equal to —1 (Theorem 1).

In §2, by means of classifying all units e = (t + UJ/D)/2 with Nε = —1 by

the positive value of M, we shall prove that in the class of u = p or 2p

(p is 1 or prime congruent to 1 mod 4) the unit e = (t + u \/I))/2 > 1 becomes

the fundamental unit of Q{fD) except for at most finite number of values

of D (Theorem 2 and its Corollary). Moreover, we shall show that real

quadratic fields of Richaud-Degert type essentially correspond to real

quadratic fields with the fundamental unit belonging to the class of u = 1

or 2 in such classification (Proposition 2). In §3, we shall give an estima-

Received February 21, 1968.
i) Cf. H. Hasse [3].

139



140 HIDEO YOKOI

tion formula from below of the class number of real quadratic fields with

the fundamental unit belonging to the class of u = p or 2p (Theorem 3). Fi-

nally, in §4 we shall show a few examples in concrete cases of p = 5, 13.

§1. Generating function

In order to investigate real quadratic fields with the fundamental unit

whose norm is equal to —1, we first give a generating function of those

real quadratic fields. The following theorem may be already known, but

since by using the theorem we can easily draw up a list of the fundamental

unit εD of real quadratic fields QWD) satisfying NεD = —12> and our investi-

gation in this note is based on it, we dare add a simple proof of it.

THEOREM 1. Let Q(i/Z)) (D>0 square-free) be a real quadratic field, then any

unit ε of QUJ)) satisfying Nε = —1 is of the form ε = (t + /t2 + 4)/2 for some

integer t, and the reverse is also true.

In particular, all real quadratic fields with the fundamental unit ε satisfying

Nε = — 1 are generated by the function -/t2 -f 4 over Q, and conversely any field

Q(/t2 + 4) (t ψ 0) generated by j/t2 + 4 over Q is a real quadratic field with the

fundamental unit ε satisfying Nε = — 1.

Proof Since an unit ε of a real quadratic field Q(i/25)(Z>>0 square-

free) is an integer whose norm is equal to +1, ε is of the form ε = (ί+&/Z>)/2;

t == u (mod 2), moreover t Ξ= U Ξ= 0 (mod 2) for the special case of Z) = 2, 3

(mod 4), and {t9 u) satisfies Pell's equation x2 — Dy2 = + 4 because of

+ 1 = Nε = (t2 - Du2)IA.

Conversely, if a pair of integers (/, u) satisfies PelΓs equation t2—Du2=—4,

then clearly t = u (mod 2) and moreover t == u = 0 (mod 2) for the special

case of Z ) Ξ 2 , 3 (mod 4). For, if we assume f ==w=l (mod 2), then we

have t2 == u2 =Ξ 1 (mod 4), and hence t2 — Du2 = —4 implies D = 1 (mod 4).

Therefore, ε = {t + u JD)/2 = (t ± {DtfVtt = (t ± /t2~^Ί)/2 is a unit of QWD)

satisfying Nε = —1.

The following lemma may be partly known, but it is useful throughout

this note.

L E M M A 1. If Pell's equation t2 — Du2 = —4 is solvable for a positive square-

free integer D, then the prime decompositions of D, u are of the following form:

2) Cf. Table 1.
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D = 2δ* Π φi9 u = 28*Iί qp ,
i j

where δl9 δ2 take the value 0 or 1, φir qj are congruent to 1 mod 4, and βj are

positive integers. Moreover, Z>==2 {mod 4) implies £ Ξ = 0 (mod 2), which is equiva-

lent to u ΞΞΞ 0 (mod 2).

Proof. If PelΓs equation t2 — Du2 = —4 is solvable, then t2 == —4 (mod

Z)^2) holds, and hence for any odd prime factor p of Z>&2, we have ί2 == —4
p—1

(mod p). Therefore, we get 1 = (—^-) = (—1) 2 > which implies J Ξ I

(mod 4).

Next, if ft = 0 (mod 4) holds, then t2 — Du2 = —4 implies f = 0 (mod 2),

and hence we may put u = 4&0> £ = 2/0> and we have t% — ADu\ =—\.

Therefore, we get t\ s —1 (mod 4), which is a contradiction. The remain-

ing part is clear from t2 — Du2 = —4.

§2. Fundamental unit

We first give the fundamental unit of real quadratic fields of two types.

PROPOSITION 1. (i) If D=t2+4 (t > 0 ) is square-free, thentεD=(t-\-]/'t^4)l2

is the fundamental unit of the real quadratic field QWD) and NεD= — 1 .

(ii) If D = t\ + 1 (0 < fo ψ 2) is square-free, then εD = tQ + //j + i ίj ίΛ̂

fundamental unit of the real quadratic field Qb/D) and NεD = — 1.

Let (a?, y) = (t, u) be the least positive integral solution of PelΓs

equation x2 — Dy2 = —4 (if exists), then εD = (t + UT/D)/2 is the fundamental

unit of the real quadratic field Q(J/D) a ^d NεD — —1. Therefore, in the

special case of y = u = 1, i.e. t2 — D = —4, εΰ = (/ + u JT))l2 - (t + i/t2 + 4)/2

is certainly the fundamental unit of Q(/^2 + 4) provided that Z> = t2 + 4 is

square-free. In the case of y = u = 2, we get ί Ξ= 0 (mod 2) from lemma

1, and hence we may put t=2t0, and t\ — D = — 1 holds. Hence,

βz) = (t + U-]/D)I2 = *„ + /ίΓ+~ϊ ί s t h e fundamental unit of Qdi^Γ+l) provided

that D = tl + 1 is square-free and Z> is not of the above mentioned type

(i). However, D = t\ + 1 = t2 + 4 holds for some integers /0, ί if and only

if 10 is equal to 2, i.e. Z) = 5 = 22 + 1 = I2 + 4. Thus, the proposition 1 is

proved in both cases.
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Probably, the following result of Richaud-Degert3) is only one that gives

explicitly the fundamental unit of real quadratic fields of certain type.

LEMMA 2 (Richaud-Degert). Let Q{τ/D){D>0 square-free) be a real quadratic

field, and put D = n2 + r (—n < r ^ n). Then, if 4n Ξ= 0 (mod r) holds, the

fundamental unit εD of Qb/f)) is of the following form:

ε β = n+i/D yoith NεD = — sgnr for \r\ = 1,

(except for D = 5, n = 2, r = 1),

eD = (n + τlD)l2 with NεD = — sgn r for \r\ = 4,

εD = [(2n2 + r) + 2n)/D'\lr with NεD = 1 for \r\ ψ 1, 4.

Such type of real quadratic fields that the assumption of this lemma

is satisfied we shall call simply R-D type. Then the following proposition

shows a relation between the type of real quadratic fields in proposition 1

and R-D type in the case of real quadratic fields with the fundamental unit

whose norm is equal to —1.

PROPOSITION 2. A real quadratic field Q( JD) (D>0 square-free) with the

fundamental unit whose norm is equal to —1 is of R-D type if and only if D is of

the form D = ί 2 + 4 or tl + l (t, t0>0 integer) except for D = 5, 13; in other

words, if and only if u in the least positive integral solution (x, y) = (t, u) of PelVs

equation x2 — Dy2 = —4 is equal to 1 or 2.

Proof Let Q(Ί/D) (D>0 square-free) be a real quadratic field with the

fundamental unit whose norm is equal to —1. Then, if Q( JD) is of R-D

type, D is of the form D = t2 + 4 or tl + 1, (t, t0>0 integers) by lemma 2,

and hence it follows from proposition 1 that in the least positive integral

solution (x, y) — (tf u) of Pell's equation x2 — Dy2 = —4 is equal to 1 or 2.

Conversely, if u = 2, i.e. D = t\ + 1, then Q(}/D) is clearly of R-D type.

On the other hand, in the case of u = 1, i.e. D — t2 + 4, Qb/D) is of R-D

type if and only if t ^ 4 holds. However, in the case of t = 2, D is equal

to 8 and is not square-free.

Therefore, except for D = 5 with t = 1 and D — 13 with t = 3, it is

equivalent to u = 1 or 2 that the real quadratic field Qb/D) with the funda-

mental unit whose norm is equal to —1 is of R-D type.

3) Cf. G. Degert [2] and C. Richaud [6].
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Thus, both Q(/5~) and Qd/13) are not of R-D type, but both values of

u in the least positive integral solution (x, y) = (t9 u) of Pell's equation

x2 — Dy2 = —4 are equal to 1. Hence, from now, we shall understand R-D

type in such a wide sense that it contains both Qb/~5) and Qd/13).

In order to give explicitly the fundamental unit of real quadratic fields

of a new type different from R-D's, we must prepare the following three

lemmas:

LEMMA 3. For any prime p satisfying p == 1 (mod 4), an unit ε of a real

quadratic field Qb/D) that is of the form (t -f PI/D)/2 or t + Pi/f) (D>0 square-

free) and that satisfies Nε = —1 is the fundamental unit of Q( JD) if and only if the

real quadratic field QJ/D) is not of R-D type.

Proof Let ε0 = (t0 + uQ)/J))/2 (D>0 square-free) be the fundamental unit

of the real quadratic field Qb/D), then the norm of ε0 is equal to —1 and

there exists an odd integer n satisfying e = ej. If we put for this odd

integer n 2nεn

0 = (tQ+uQ/D)n=T+Ui/D, then we have U = nC1tr
1uQ+nC,tn

Q-3ulD+

• + nCn.2tluT2 D 2 +«Cnκj;Z) 2 Ξ=O (mod «0), while we have U=2n~1j)

or 2np. Hence, in the case of MO = 1 (mod 4), we get p = 0 (mod uQ),

which implies M O Ξ 1 or p. In the case of uQ^l (mod 4), we may put by

lemma 1 uQ = 2u'o, u'0^l (mod 4). Hence, we get p s O (mod u'o), which

implies u'o ~ 1 or p. Therefore, the condition uQ = p or 2p is equivalent

to uoη^l, 2. On the other hand, since the condition s0 = ε is equivalent

to u0 = p or 2p, it follows from proposition 2 that ε = ε0 holds if and only

if the real quadratic field QWD) is not of R-D type.

LEMMA 4. For any prime p satisfying p = 1 (mod 4), there are two uniquely

determined integers a, b such that a2 + 4 = bp2, 0 < a < p2. Moreover, for these

p, a, b, D = p2m2 ± 2am + b (m > 0) is congruent to 1 mod 4 or congruent to 4

or 8 mod 16, and PelΓs equation t2 — Du2 — —4 is always solvable.4)

Proof. Since for any prime p congruent to 1 mod 4 we get ( ) = 1>

congruence x2 == —4 (mod p) is solvable, and hence congruence x2 = —4

(mod p2) is also solvable. Among the solutions of this congruence x2 = —4

4) L. Rέdei notes in [5] that if PelPs equation t2—du2= — 1 is solvable for some integer
d = d0, then the PelΓs equation is also solvable for d = Uoin2+2t0m-\-dQ) where (to,uo) is any
positive integral solution of t2—dQu2= — 1 and m is any integer.
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(mod p2), there exists only one solution χ==±a (mod p2) satisfying 0<a<p2.

For this positive integer a, there is a unique integer ft satisfying a2 -f 4 = bp2.

Conversely, if a2 + 4 = ftp2 holds, then x == ± α (mod #2) is a solution of

congruence x2 Ξ= —4 (mod p2).

Next, set Z> = p2m2 ± 2am + ft, t - p2m ± a, u = p (m>0), then Pell's

equation t2 — Du2 = —4 is certainly satisfied by these D, t, u. Therefore,

if we note only that p2 =Ξ 1 (mod 4) and t2 + 4 = Dp2, it is easy to see that

J9Ξ=1 (mod 4) for odd t, and D Ξ O (mod 4) for even t. In the case of

£>Ξ=0 (mod 4), we may put D = 4D0, t = 2t0, and get f§ + 1 = £>0p
2.

Hence, we obtain similarly Z>0—2 (mod 4) for odd ί0 and Z)0==l (mod 4)

for even t. Thus, we have Z) = 4D0==4 or 8 (mod 16).

In order to prove theorem 2 we require another leήima, which is itself

of some interest.

LEMMA 5. For any integers a > 0, b, c satisfying b ^ 0 {mod a), there exist

at most a finite number of such natural n that f(n) = a2n2 + bn + c is square.

Proof It follows from the assumption, b ^ 0 (mod a) that an integer

k satisfying ~-~~ — k < -~- is uniquely determined. By using this integer

k, we rewrite /(«) in the following form:

f(n) = «2n2 + 6w + c = («» + A;)2 + (b - 2ak)n + (c - A?2).

Then, since \b — 2ak\<a, the inequality

- (<m + Jfc) < (ft - 2ak)n + {c-k2)<an + k

holds for all natural n except at most finite number of cases. Moreover,

since b — 2ak ψ 0, we know that

{b - 2ak)n + (c-k2)φ0

holds for all natural n except for at most one.

On the other hand, the above inequality shows that (ft — 2ak)n + (c — k2)

is the nearest integer to i/f(n) in absolute value. Therefore, f{n) — a2n2 + bn + c

does not become square for any natural n apart from a finite number of

exceptions. The lemma is thus proved.

THEOREM 2. For any prime p congruent to 1 mod 4, let, a, ft denote the

integer in lemma 4 satisfying a2 + 4=bp2 ( 0 < a< p2). Then, there exists an

integer DQ = DQ(p) such that if D = p2m2 ± 2am + ft (m ^ 0) has no square factor
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except 4, and if D^DQ, the real quadratic field Q(i/ZT) is not of R-D type.

Therefore, the fundamental unit εD of Qb/J)) is of the following form:

[(p2m + a) + Pi/D~\l2 D: square-free,
εD = (

{p2m ± a) 12 + P)/D/4 otherwise,

and NεD = — 1 .

Proof Since Pell's equation t2—Du2——4 is satisfied by D— p2m2±2am+b,

t = p2m + a9 u = p, ε = [{p2m ±a) + Pi/Dl/2 is an unit of the real quadratic

field QbfD), and Nε = —1. Moreover, by our assumptions a2 + 4 = bp2 and

p Ξ= 1 (mod 4) we have 2 ^ Ξ O (mod p). Therefore, in the case that D is

square-free, it follows from lemma 5 that both D — 1 = p2m2 ± 2am + b — 1

and D — 4 = p2m2 ± 2αm + b — 4 are never square for any natural m except

at most a finite number, and hence by lemma 2 the quadratic field Q(/£))

is not of R-D type for any natural m except at most a finite number. In

the case of D - 4DQ{D0 > 0 square-free), we have t = p2m ±a^0 (mod 2) by

lemma 1, and hence m Ξ= a (mod 2). By our assumptions a2 + 4 = 6p2,

p == 1 (mod 4), « Ξ O (mod 2) is equivalent to b = 0 (mod 4), and <z == 1

(mod 2) is equivalent to b Ξ= 1 (mod 4).

Therefore, in the case of m = 0 (mod 2), we may put m = 2w0, 6 = 4&0

and get DQ = Z)/4 = p2m\ ± am0 + 60 Since a ΐ 0 (mod p), it follows from

lemma 5 that both Do — 1 and DQ — 4 are never square for any natural m

except at most a finite number. In the case of m Ξ= 1 (mod 2), we may

put m = 2mo + l, 6 = 4bQ + 1 and get DQ = D/4 = p2m2

0 + {p2 ± a)m0 + (b0 + {p2

+ 1 ± 2α)/4). Since p2 + β = + α ΐ 0 (mod p), it follows from lemma 5 that

both DQ — 1 and Z)o — 4 are never square for any natural mQ except at most

a finite number. Thus, for both types of m, we see at once from lemma

2 that the quadratic field QWD) = Qiτ/Dj4) is never of R-D type for any

natural m up to at most a finite number of exceptions.

Therefore, it was proved by lemma 3 for both types of D that there

exists an integer DQ = DQ(p) such that the above mentioned unit ε = [imp2 ± a)

+ PT/D ]/2 is the fundamental unit of Q(τ/D) provided that D has no square

factor except 4, and that D^

This theorem implies the following sufficient condition for an unit ε

of a real quadratic field Q( /D) (D>0 square-free) satisfying Nε = —1 to be

the fundamental unit.
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COROLLARY. For any prime p congruent to 1 mod 4, there exists an integer

DQ = Dύ{p) such that if for some square-free D satisfying D^tDQ the real quadratic

field Q(/Z)) contains an unit ε of the form ε = (tQ -f pi/J))/2 or tQ + p/ZΓ and

Nε = —1 holds, then the unit ε is the fundamental unit of

Proof In the case of ε = (ί0 + p-Jo)/2, -1 = Nε = {t2

0 - Dp2)\4 implies

tl+4=Dp2. Hence, x Ξ= t0 (mod p2) is a solution of x2 = — 4 (mod p2).

On the other hand, let α, b be as in lemma 4 satisfying α2 + 4 = £p2, then

we get to = p2m1±a for some integer w^^O. Therefore, Dρ2=t2

0 + 4 = {p2m1±a)2

+ 4 = p\p2m\ ± 2β^j + 6) implies Z) = p2m? ± 2 0 ^ + 6 ( ^ ^ 0). If we choose

DQ in theorem 2 as Dfl = A(P) m question, and consider square-free D satis-

fying D^DQ, then it follows from theorem 2 that the unit s = (ί0 + Pτ/£j)/2

is the fundamental unit of QWD).

In the case of ε = /0 + p / 5 , —1 = t% — Dp2 implies t\ + 1 = Z)p2. Hence,

there exists an integer m 2 ^ 0 satisfying 2tQ = p2rn2±a, because x==2t0

(mod p2) is a solution of x2 = —4 (mod p2). Therefore, (4Z>)p2 = (2ί0)
2 + 4

= (p2m2 ± a)2 + 4 = p2(p2wi ± 2am2 + 6) implies AD = ^ 2 ^i ± 2«w2 + 6 (w2 ^ 0).

If we choose DQ in theorem 2 as Z)o = A ( P ) m question and consider square-

free D satisfying Dύ ^ 4D, it follows from theorem 2 that the unit ε = tQ + p/2)

is the fundamental unit of Q{iΓD) Thus, in both cases the corollary is

proved.

§3. Class number

In this §, we give an estimation formula from below of the class number

of those real quadratic fields whose fundamental unit was given in §2. To

this purpose we require the following lemma of Davenport-Ankeny-Hasse:

LEMMA 6. (Davenport-Ankeny-Hasse)^ Let Q{]/~D) {D > 0 square free) be a

real quadratic field with the fundamental unit εD = (t + u /J))/2 {t, u > 0 ) . Then,

if PeWs equation (x2 — Du2)/4 = ± m (m not square) is solvable, the following

inequality holds:

^(t —2)/u2 for NεD = l,

^t/u2 for NεD=—l.

5) Cf. N.C. Ankeny, S. Chowla and H. Hasse [1] and H. Hasse [3].
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Let us quote this boundary 5 = t/u2 for NεD = — 1 in lemma 6 as Hasse's

boundary (in the lemma of D-A-H).

THEOREM 3. For any prime p congruent to 1 mod 4, let a, b denote the

integers in lemma 4 satisfying a2 + 4 = bp2 (0 < a < p2), and let DQ = DQ(p) be the

integer in theorem 2. Furthermore, set D = p2m2 ± 2am + b for any integer m bigger

than 4p, and consider D bigger than D0{p). Then, if D has no square factor except

4 and p splits in the real quadratic field Q(τ/D) into two conjugate prime ideals with

the degree one, these prime ideals are not principal. Therefore, the class number h

°f Q(i/D) is bigger than one and the following estimation from below holds:

- 2 for flsl (mod 2),

ϊ 2 for DΞ=O (mod 2).

logp J

Proof. In the case of D == 1 (mod 2), D is square-free from the assump-

tion, and hence by theorem 2 the fundamental unit of QWD) is εD — i(mp2

+ a) + Pi/Ί)l/2 provided D^D0(p). Therefore, it follows from lemma 6 that

Hasse's boundary is 5 = (mp2 ± a)/p2 = m ± alp2 (0 < alp2 < 1). In the case of

D Ξ O (mod 2), we have Z> = 0 (mod 4) by lemma 4, and Do = 4/D is square-

free. Therefore, by theorem 2 the fundamental unit of QUϊJ) is eD =

(mp2 ± a) 12 + Pi/D/ί provided D^D0(p), and hence by lemma 6 Hasse's

boundary is 5 = (mp2 ± a)/4p2 = tn/4 ± a/4p2 (0 < a/4p2 < 1/4). For any integer

m bigger than p (in the first case) or 4p (in the second case), the prime p

is smaller than Hasse's boundary s i.e. p < s.

If we assume that the prime p splits into two conjugate principal ideals

p, p' with the degree one in Q(-/D), then Pell's equation (x2 — Dy2)/4 = ± p

is solvable, and hence lemma 6 implies p > s, which is contrary to the

above assertion p < s. Therefore, if the prime p splits into two conjugate

prime ideals p, p' with the degree one in Q(]/D), then the prime p, p' are

not principal. Moreover, the order of those prime ideals p, p' in the ideal

class group of Q(/Z)) is bigger than one and it is a factor of the ideal class

number h of QWJ)). Hence, in the case of Z) = l (mod 2), we have

_ mp2± a _ i/Dp2 — 4
- p2 - - " 2
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which implies

- logp

and similarly in the case of D = 0 (mod 2), we have

c —
ίp2 Ap2

which implies

log-ί- /Dp2 - 4

h > - — V - 2

— logp
Thus, the theorem is completely proved.

Remark 1. In the case of D^D0(p), e.= [(mp2 + α)/2 + Pi/Dl and

e = (w2p2 + a) 12 + p/lDJ4 are not always the fundamental unit of the real

quadratic field Q(I/D), but they are always an unit of Qb/£>) satisfying

jVε = —1. On the other hand, it is not always necessary in lemma 6 that

the unit e is the fundamental unit of QWD); it is sufficient that e is an

unit, as we can see easily from proof of lemma 6. Therefore, we can re-

move the condition D^DQ(p) in theorem 3.

Remark 2. In the case of real quadratic fields of R-D type, H. Hasse

obtained already in [3] an explicit estimation formula as in theorem 3, and

in the case of Qb/a2 + l) T. Nagell also treated in [4] a similar problem.

§4. Examples

[I] The case of p = 5.

a = 11, b = 5, A(P) = 61,

/ = 2 5 M + 1 1 , D = 25m2 ± 22m + 5.

(1) If mΞ= 0 (mod 2), then D Ξ I (mod 4), and hence the fundamental

unit is

ε = [(25m ± 11) + 5/25m2 ± 22m + δi/2.

Hasse's boundary is s = m± 11/25.

Hence s > 5 <=> m ̂  6.

(2) If m s l (mod 2), then D Ξ O (mod 4), and hence the fundamental

unit is
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e = (25m ± ll)/2 + 51/'(25m2 ± 22mT5J/4,

Hasse's boundary is s = m/4 ± 11/100.

Hence s > 5 <£=Φ m ^ 21.

DQ = Z>/4 = 2 (mod 4) Φ=> m ΞΞ 1 (mod 4),

Z)o = D/4 = 1 (mod 4) <=> m = - 1 (mod 4).

[II] The case of p = 13.

a = 29, 6 = 5, Z>0(p) = 58,

t = 169m + 29, Z> = 169m2 ± 58m + 5.

(1) If m = 0 (mod 2), then D =Ξ= 1 (mod 4), and hence the fundamental

unit is

ε = [(199m ± 29) + l^ΐωm2 ± 58m + 5l/2,

Hasse's boundary is s = m + 29/169.

Hence 5 > 13 <=» m ̂  14.

(2) If m = l (mod 2), then Z>Ξ=O (mod 4), and hence the fundamental

unit is

ε = (169m ± 29) 12 + lSi/{V69m2 ± 58w"+5)/4,

Hasse's boundary is 5 = m/4 ± 29/676.

Hence s > 13 <=> m ̂  53

Z>0 = D/4 = 2 (mod 4)<=> m == 1 (mod 4),

Do = D/4 = 1 (mod 4) <=> m = —1 (mod 4).
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Table 1

t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

D

5

2

13

5

29

10 = 2-5

53

17

85=5-17

26 = 2-13

5

37

173

2

229

65=5-13

293

82=2-41

365=5-73

101

445=5-89

122=2-61

533 = 13-41

145=5-29

629=17-37

170=2-5-17

733

197

5

226=2-113

u

1

2

1

2 ε?
6
>

1

2

1

2

1

2

5 e%

2

1

10 ε\

1

2

1

2

1

2

1

2

1

2

1

2

1

2

13 εl
2

t

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

D

965=5-193

257

1093

290=2-5-29

1229

13

1373

362=2-181

61

401

1685=5-337

442 = 2-13-17

1853=17-109

485=5-97

2029

530=2-5-53

2213

577

2405=5-13-37

626=2-313

2605=5-521

677

2813=29-97

730=2-5-73

3029=13-233

785=5.157

3253

842=2-421

3485=5-17-41

901 = 17-53

u

1

2

1

2

1

10 6Ϊβ

1

2

5

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

6) ε| = (4+2/5)/2 means the third power of the fundamental unit ε5 of the real quadratic
field O(/5), and etc.
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Table 2

The case of p = 5.

t=25m-ll
D=25m2-22rn+5

t=25m+ll
D=25m2+22m+5

t

14

39

64

89

114

139

164

189

214

239

264

289

314

339

364

389

414

439

464

489

514

539

564

589

614

639

664

689

714

D

2 e$

61

41

317

130 = 2.5-13

773

269

1429

458=2-229

2285 = 5-457

697 = 17-41

3341 = 13-257

986 = 2-17-29

4597

53

6053

1714=2-857

7709 = 13-593

2153

9565=5-1913

2642 = 2-1321

11621

3181

13877

3770=2-5-13-29

16337

4409

18989 = 17-1117

5098=2-2549

u

10

5

10

5

10

5

10

5

10

5

10

5

10

5

50

5

10

5

10

5

10

5

10

5

10

5

10

5

10

m

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

t

11

36

61

sβ

111

136

161

186

211

236

261

286

311

336

361

386

411

436

461

486

511

536

561

586

611

636

661

686

711

736

D

5 eg

13 ε?
8

149

74 = 2-37

493 = 17-29

185=5-37

1037 = 17-61

346 = 2-173

1781 = 13-137

1129

109

818=2-409

3869=53-73

1129

5213=13-401

1490=2-5-149

6757 = 29-233

1901

8501

2362=2-1181

10445 = 5-2089

17

12589

3434=2-17-101

14933 = 109-137

4045 = 5-809

17477

4706 = 2-13-181

20221=73-277

5417

u

5
10

5

10

5

10

5

10

5
10

25

10

5

10

5

10

5

10

5

10

5

130

5

10

5

10

5

10

5

10
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Table 3

The case of p = 13.
t = 169m-29

Z)=169m2-58m+5 > = 169m2-f58m+5

t

140

309

478

647

816

985

1154

1323

1492

1661

1830

1999

2168

D

29 e|
9

565=5-113

2

2477

985=5-197 :

5741

1970=2-5-197

10357

3293 = 37-89

653

4954=2-2477

23645=5-4729

6953 = 17-409

u

26

13

338

13

26

13

26

13

26

65

26

13

26

m

0

1

2

3

4

5

6

7

8

9

10

11

12

13

t

29

198

367

536

705

874

1043

1212

1381

1550

1719

1888

2057

2226

D

5; εl

58=2-29

797

17

2941 = 17-173

1130=2-5-113

6437 = 41-157.

2173=41-53

11285=5-37-61

3554=2*1777

17485=5-13-269

5273

25037

7330=2-5-733

u

13

26

13

130

13

26

13

26

13

26

13

26

13

26
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