EQUIVALENCE CLASSES OF MAXIMAL ORDERS
SUSAN WILLIAMSON

Introduction. Let % denote the quotient field of a complete discrete
rank one valuation ring R. The purpose of this paper is to establish a
relationship between the Brauer group of k and the set of maximal orders
over R which are equivalent to crossed products over tamely ramified
extensions of R.

The Brauer group B(k) of k is the union of groups H*G,U(L)) where
L ranges over the set of all finite Galois extensions of £ and G denotes the
Galois group of L over k (see pp. 206-207 of [2]). The subset V(k)=
U H¥G,U(L)) where L ranges over all unramified extensions of &k forms a
subgroup of B(k). In Section 1 we associate to each element of V(k) a
positive integer called its Brauer number. Then we define T(k) to be the
set of elements of V(k) whose Brauer numbers are relatively prime to the
characteristic of R, and prove that T(k) is a subgroup of B(k). The object
of the paper is to prove the following main theorem.

THEOREM. Let k denote the quotient field of a complete discrete rank one
valuation ring R. A maximal order over R in a central simple k-algebra 3 is
equivalent to a crossed product over a tamely ramified extension of R if and only if
the Brauer class of >3 is in the subgroup T(k) of B(k).

The method of proof employs the theory of crossed products, and entails
the construction of certain wildly ramified Galois extensions of k. For this,
a separate treatment of the equicharacteristic case and the case of unequal
characteristic is necessary (Sections 2 and 3 respectively).

We obtain as a corollary to the main theorem the fact that if R is an
equicharacteristic ring of characteristic zero, then every maximal R-order is
equivalent to a crossed product over a tamely ramified extension of R. We

then exhibit the existence of a maximal R-order which is not equivalent to a
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crossed product in the case when R is a complete discrete rank one valuation
ring with perfect residue class field.

The following notation shall be in use throughout the paper. The
multiplicative group of units of a ring R shall be denoted by U(R), and
the radical of R by rad R. Unless otherwise stated, R shall always denote
a complete discrete rank one valuation ring, = its prime element, and & its
quotient field. The definitions of crossed product and hereditary order may be
found in [10]. For the definitions of fame and wild ramification we refer
the reader to [9]. The definition of the i** ramification group is given on
p. 73 of [7].

For the convenience of the reader we define the notions of equivalence
which shall be used in the paper. A pair of central simple algebras 33, and
31, over a field £ are said to be equivalent if there exist finite dimensional
vector spaces V; and V, over k together with a k-algebra isomorphism

24 ®r Homy(V,, V,) = 2% ® Hom(V,, V,).

The set of equivalence classes of central simple algebras over a field k& forms
an Abelian group called the Brauer group of k. 'The inverse of the equiva-
lence class determined by the central simple algebra 37 is the equivalence
class determined by its opposite algebra > (see Section 5 of [3]).

Let R denote a discrete rank one valuation ring. The set of maximal
orders M’(R) over R forms a subset of the set H’(R) of hereditary orders
over R (see [4]). In [3] Auslander and Goldman have defined a pair of
hereditary R-orders A, and A, to be equivalent if there exist finitely generated
free R-modules E, and E, and an R-algebra isomorphism

A1 @ Homg(E, E\) = A, ®r Homg(E, E,) .

An hereditary order equivalent to a maximal order is itself a maximal order.
The set of maximal orders in a fixed central simple algebra are isomorphic.
Finally we mention that the equivalence relation on the set of maximal orders
over R is induced by the Brauer group of the quotient field k¥ of R. That is
to say, if 37, and 37, are equivalent central simple algebras over the quotient
field of a discrete rank one valuation ring, then the maximal orders of 3},
are equivalent to the maximal orders of 3}, (see Lemma 2. 1 of [11]).

1. The Brauer number. Let k¥ denote the quotient field of a comp-
lete discrete rank one valuation ring R and consider the subset V(k) of the
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Brauer group B(k) of k defined by V(k) = U HYG,U(L)) where the union is
taken over the set of all unramified Galois extensions L of k. It is well
known that V(k) = B(k) when R is perfect. For an example to show that
V(k) need not equal B(k) see Exer.2 p. 224 of [7].

ProposiTioN 1.1 The set V(k) is a subgroup of the Brauer group of k.

Progf. Consider crossed products 33, = 4(fy, Ly, G;) and 33, = 4(fy Ly, Gy)
where the L, are unramified Galois extensions of k¥ and G; denotes the Galois
group of L; over k. In order to prove the proposition it suffices to show
that the Brauer class of 4(f,, L, G,) ®;d(fs Ly G, is in V(k) where
A(fa Ly G,)* denotes the opposite ring of 4(fy, L, Gy).

The compositum L,L, of L, and L, is an unramified extension of %
according to Cor. 3-2-8 of [9]. For i =1,2 let g; denote the image of f;
under the inflation map Z¥G,;, U(L;))—> Z¥G,G,, U(L,L,)) where G,G, denotes
the Galois group of L,L, over k. It is well known that 4(f,, L;, G,) is equi-
valent to 4(g,, L,L,, G,G,) for i =1, 2 (see for example Thm. 8.5 E of [1]).
Therefore 33, ® 313 is equivalent to 4(gy, L,L,, G,G,) ® 4(g3*, L,L,, G,G,) since
A3y L Ly, G,G,) represents the Brauer class of 313. The fact that 4(g,, L,L,,
G,G,) ® 4(93*, L, L,, G,G,) is equivalent to 4(g,g3', L,L,, G,G,) (see Thm. 8.5 A
of [1] or pp. 404-405 of [3]) implies that the Brauer class of 3}, ® 31 is in
Vi(k).

For convenience of notation we shall always denote the Brauer class in
B(k) of a central simple k-algebra 3! by S1. We proceed to define the
Brauer number of an element of V(k). A central simple k-algebra 3} for
which 3% is in V(k) is equivalent to a crossed product 4(f, L, G) for some
unramified Galois extension L of k¥ with Galois group G.  Let S denote
the integral closure of R in L and consider the exact sequence of cohomology
groups

(1) — HXG,U(S)) — H¥G,U(L)) > H¥G,2") — (1)
defined explicitly on p. 193 of [7].

DerintTioN.  The Brauer number of an element S of V(k) is defined to be
the order of the image of the cohomology class [f] in HXG, Z*) under the

map ¢ .
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Observe that the Brauer number of 31 is the least positive integer » such
that [f*] is in the image of the natural map H*G, U(S)) —> H¥G, U(L)).
Therefore when the Brauer number of $1is 1, we know by Thm. 2. 3 of [11]
that a maximal order in 3} is equivalent to a crossed product over a tamely
ramified extension of R.

The Brauer number is well defined according to the next proposition.

ProrositioN 1.2, The Brauer number of an element 33 of V(k) is independent

of the choice of representative of 33 as a crossed product over an unramified extension

of k.

Proof. Let A(f,, Ly, G,) and 4(f,, L,, G,) denote equivalent central simple
k-algebras, where L, and L, are unramified Galois extensions of k with
Galois groups G, and G, respectively. Let L,L, denote the compositum of
L, and L,, and G,G, the Galois group of L,L, over k. Observe that L,L,
is an unramified extension of k. For i =1,2 let [g;] denote the image of
[f:] under the inflation map H¥G,;, U(L;)) —> H¥G,G, U(LL,)). The
assumption that 4(f;, L,, G,) is equivalent to 4(f,, L,, G,) implies that [g,]=[g.].
Therefore in order to prove the proposition it is sufficient to prove that
the order of ¢([f;]) is equal to the order of ¢*([g,]) where ¢: H¥G,, U(L,))
—> H¥G,, Z*) and ¢*: H¥G,G,, U(L,L,)) —> H?*G,G,, Z*) are the maps used
in the definition of the Brauer number.

Consider the following diagram.

HYGy, U(LY) ~5> HYAG,Gy U(L,Ly)

I I+

HYG, 2" —> HYG,Gy Z*).
It is easy to verify that the above diagram is commutative. Therefore, in
order to prove the proposition, it is sufficient to prove that the order of an
element of H%G,, Z*) is preserved under the inflation map. So consider an
element [#] of HXG,, Z*), and let [1*] denote the image of [k] in H*G,G,,
Z*). We proceed to show that the order s of [k] is equal to the order ¢
of [#*]. The inequality ¢ < s is clear. To establish the opposite inequality
we observe that since ¢ is the order of [#*] there exists a map ¥': G,G, —>
Z* such that (h*(a, p)’ = ¥(a) + ¥(8) — ¥(ap) for all elements « and B of
G,G,. The equalities 0 = (h*(1,1))" = ¥(1) + ¥(1) — ¥(1) imply that ¥(1) =0.
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Denote the Galois group of L,L, over L, by G. We next observe that
¥(a) =0 whenever e« is in the subgroup G of G,G,. For since h* is the
image of % under inflation it follows that 0 = (k(1, 1)) = (h¥(e, )’ = 2¥(a) —
U(a?) for « in G.  Proceeding inductively one may show that 0=
(ord a)¥(a) — ¥(a°rde) where ord @ denotes the order of the element « of
G, and therefore ¥(a) =0 for every element a« of G. Finally we observe
that if @ = § then ¥(a) = ¥(8), where a denotes the image of « under the
natural map of G,G, onto G,G,/G = G,. For, writing « in the form « =
78 for some element 7 of G, and using the fact that ¥(r) =0, one may
obtain the equalities 0 = (h(L, §))" = (h*(1, B))' =¥(¥)+ ¥ () —¥ (1) =¥ (B) — ¥(a).
Therefore ¥(a) =¥(8). We may now consider the (well-defined) map 0:
G,—> Z* defined by 6(a) = ¥(a). The fact that (h(a,p))’ = 0(a) + 0(f) — 0(«p)
implies that [r]* =[1]. Therefore s< ¢, and this completes the proof.

We next define T(k) to be the set of all elements of V(k) whose Brauer
numbers are relatively prime to the characteristic of . We adopt the
convention that every number is relatively prime to zero, so that T(k) = B(k)
when R has characteristic zero.

The following lemma shall be useful in proving that T(k) is a subgroup
of V(k).

LemMa 1.3. Let 3 denote a central simple k-algebra such that 33 is in V(k),
and let 3 denote the opposite ring of >). Then 33 and 33 have the same Brauer
number.

Proof. Let 4(f, L, G) be a representative of St with L an unramified
Galois extension of k. The k-algebra isomorphism 4(f,L,G)* =< 4(f L,G)
implies that 3 may be represented by 4(f-%, L, G). Consider the map
¢: H¥G,U(L)) —> H*G,Z"). Since ¢([f]) and ¢([f~']) have the same order
it now follows that S and S have the same Brauer number.

ProrposiTION 1.4. The set T(k) is a subgroup of V(k).

Proof. Let 3, =4(f,L,G,) and > = A(fy Ly, G;) be central simple
k-algebras whose Brauer classes 3, and 3I, are in T(k), and let », and #n,
denote the Brauer numbers of 3%, and 3%, respectively. Form the tensor
product 3} = 3}, ®>1) and recall that the Brauer number of S19is n, according
to Lemma 1.3. To prove the proposition it suffices to show that the
Brauer number of 3 is relatively prime to the characteristic of R.
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For i=1,2 let g, denote the image of f;, under the inflation map
Z¥G, U(L)) —> Z%G,Gy, U(L,Ly) where L,L, is the compositum of L, and
L, and G,G, is the Galois group of L,L, over k, and observe that 3} is
equivalent to 4(g,93', L,L;, G,G,). Consider the map ¢: H¥G,G,, U(L,L;)) —>
H%G,G,, Z*) defined at the beginning of this section. Since (¢([g,]))™ = [1]
and (¢([gz']) = [1] it is clear that (¢([g,97']))*"2 =[1] so that the Brauer
number of 3% divides #,7, and is hence relatively prime to the characteristic
of R.

ReMark 1.5. The subgroup T(k) need not equal V (k).

For consider the following example. Let R = Z, be the ring of p-adic
integers, and k=@, the quotient field of R. It is well known (see for
example Prop. 3-2-12 of [9]) that there exists a (unique) unramified extension
L of k with degree p. It is of the form L = k({) where { denotes a primi-
tive (p? — 1) root of unity. Furthermore, L is a cyclic Galois extension of
k (see Remark 3-5-5 of [9]) and we denote the Galois group of L over k by
G. Consider now the central simple k-algebra 3} = 4(f, L, G) where f is the
element of Z*G,U(L)) which corresponds to p mod N(U(L)) under the
canonical identification H*G,U(L)) = U(k) | N(U(L)) which holds because G is
a cyclic group. It is easy to verify that the Brauer number of 3 is p
since p is not a norm from L. We may conclude therefore that T'(k) is
properly contained in V(k).

We have thus defined the following chain of subgroups of the Brauer
group

Blk) D V(k) D T(k) > (1).

These groups shall be useful for studying equivalence classes of maximal
orders over R.

We terminate Section 1 with some remarks concerning ramification.
The ramification index of an hereditary order 4 over a discrete rank one
valuation ring R can be defined according to Thm. 6.1 of [5]. For let #
denote a prime element of R. Since the ideal z4 is an invertible /-ideal,
there exists a positive integer ¢ such that (rad 4)'=az4.

DeriniTioN. Let 4 be an hereditary order over a discrete rank one
valuation ring R, and let = denote a prime element of R. The positive
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integer ¢ for which (rad A)" == 4 is called the ramification index of A over
R and is denoted by r(4/R).

ProrosiTioN 1. 6.  The ramification index of an hereditary order A over a

discrete rank one valuation ring R depends only upon the equivalence class of A.

Proof. Let 2 denote an hereditary R-order which is equivalent to 4.
Then there exist finitely generated free R-modules E, and E, and an R-
algebra isomorphism A&y Homg (E,, E,) = 2®zHomy (E,, E,). Since
Homg(E,, E,) is a central separable R-algebra it follows that rad (4®g
Homg(E,, E,)) = (rad 4) ®z Homg(E,, E,) according to the proof of Prop. 8. 6
of [3]. Therefore »(4®zHomz(E,E,)|R)=7r(4]/R), and similarly 72 ®gz
Homg(E,, E,) | R) =72/ R). From the above isomorphism we may now
conclude that #»(4/R) = »(2]R).

ProprosITION 1.7. Let k denote the quotient field of a complete discrete rank
one valuation ring R, and K a finite Galois extension of k with Galois group G .
If the integral closure S of R in K is a tamely ramified extension of R, then the

ramification index of a crossed product A(f, S, G) is equal to the ramification index of
S over R.

Proof. Since S is a tamely ramified extension of R it follows that the
crossed product 4 = 4(f, S,G) is an hereditary R-order with radical 114 (see
Prop. 1.3 of [10]), where II denotes a prime element of S. Hence
rd]|R)=7rS/R).

2. The case of unequal characteristic. Let R denote a complete
discrete rank one valuation ring whose quotient field & has characteristic
zero, and whose residue class field R has characteristic p==0. The purpose
of this section is to prove that if St is an element of V(k) whose Brauer
number is equal to p, then a maximal order in 3} is not equivalent to a
crossed product over a tamely ramified extension of R.

Recall that an element 31 of V(k) may be represented by a crossed
product over an unramified Galois extension of k. Therefore, throughout
this section 3 shall denote a crossed product of the form 3= 4(f, L, G) where
L is an unramified extension of k, and it shall be assumed that the Brauer
number of 31 is equal to the characteristic p of R.

In order to prove that a maximal order I" in such a central simple k-
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algebra 31 is not equivalent to a crossed product over a tamely ramified
extension of R, we shall prove that the ramification index »(I'/R) of I’
over R 1is divisible by p, so that I cannot be equivalent to a crossed
product over a tamely ramified extension according to Prop. 1. 7.

The method of proof is to reduce the problem to a study of crossed
products by constructing a central simple k-algebra 3, = 4(¢g, L,,, G,,) equiva-
lent to 4(f,L,G) and such that ¢ is in Z¥G,,U(S,)) where S, , the integral
closure of R in L,, is a wildly ramified extension of . We shall then
construct a maximal order I, in Y, such that I', contains the crossed
product 4(g,S.,G,). Making use of this inclusion, we shall then prove
that #(I",, [ R) = #(S, | R) .

In order to construct the desired crossed product 4(g,L,,G,) we first
construct the Galois extension L, of k. Let L, denote the extension of L
obtained by adjoining a primitive p** root of unity. Observe that the
extension L, of L is tamely ramified since its degree is less than or equal to
p—1. Let S, denote the integral closure of R in L,. According to Prop.
3-4-2 of [9] we may select prime elements = and z, of R and S, respectively
in such a way that z{ =z where ¢ denotes the ramification index of S, over
R.

Now L, is defined to be the extension of L, obtained by adjoining a
root M of the polynomial F(X)= X? —xm,. Observe that L, is a Galois
extension of k since L, contains a primitive ‘" root of unity; we denote
the Galois group of L, over k£ by G,,. The extension L, of L, is a wildly
ramified inertial extension of degree p and II is a prime element of the
integral closure S,, of R in L,. By virtue of Prop. 1. 2 we may as well
assume that the integral closure S of R in L is the inertia ring of L, over k.

Before constructing the 2-cocycle g of Z%G,,U(S,)) we summarize the
ramification properties of the extension S, of R.

LemMa 2.1.  Let G, denote the i*" ramification group of S, over R. Then
i) G, is ¢yclic of order p

i) G,/ G, is ¢yclic of order e relatively prime to p

i) G,= G, x G| G, (semi~direct product)

iv) G, =G, and G, =) for i =a/(p-1) where a denotes the absolute

ramification index of L, .
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Proof. Assertion i) is clear from the definition of the extension S, of
S;. The second and third statements follow from Corollaries 1 and 4
respectively on p. 75 of [7], and the fourth statement follows from Ex. 4
p. 79 of [7].

The next lemma describes the action of the inertia group G, on the
prime element II of S,,. According to Lemma 2.1 we may view G,/G,
as a subgroup of G,.

Lemma 2.2, Let © denote an element of G, and o an element of G,|G,.
Then (1) = ¢ 1L for some D" root of unity €., and o(Il) = &,11 jfor some e™
root of umity &,, where e denotes the order of G,/G,.

Proof. It is clear from the definition of S, that the conjugates of II
relative to S, are of the form ('II for 1< i< p where { denotes a primitive
p*™ root of unity, so that ¢(II) = {.II for some p'™ root of unity ..

On the other hand we know that S contains a primitive e root of
unity & according to Cor. 2-2-7 of [9]. Recall that the prime elements =
of R and =z, of S, were chosen so that ¢! ==z. Hence X?°—=x is the
minimal polynomial of II over S. The pe conjugates of II relative to S
are therefore given by (*¢’Il for 1<i<p and 1<j<e. Ifosisin G,/G,
then ¢%(II) = I from which it follows that ¢(II) = &,(II) for some " root of
unity &,.

Notation. Throughout the rest of this section r shall denote a fixed
generator of the cyclic group G,, and ¢ the primitive p'" root of unity
defined by «(II) = ¢II.

The group G, is a normal subgroup of G,. For each element ¢ of
G, we may therefore consider the integer n(s) defined modulo (p) by the
equality o¢ro~! = v, The next lemma presents properties of n(s) which
shall be useful in this section.

LemMa 2.3. Let n(o) be defined as above. Then
1) n(e)=11if and only if 6 =1 for o in G,| G,

i)  a(§) = LD for each element o of G, .

Proof. Consider an element ¢ of G,/G,. By the definition of n(s) it
follows that n(s) = 1 if and only if o7 = 7¢ which holds if and only if sz(Il) =
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zo(II) since r is in G, and S, = S[II]. Let ¢, be the e root of unity
satisfying o(I1) = £,II. Then oc(Il) = o(CHl) = £°¢, 11 and o(II) = «({,I1) =
£t . Therefore n(s) =1 if and only if £° = ¢, that is to say if and only
if 6=1. This proves statement i).

Now according to Lemma 2. 2 we know the conjugates of II relative
to k. Therefore if ¢ is an element of G, we have that o(II) = «Il for
some element # of U(S,). Then ocoY(Il) = oz(Il [ o7 (ut)) = o(CIL [ 0™ (1t)) =
¢°I. But sre Y(II) = c™(Il) = (MO, so that % = O,

This completes the study of the extension S, of R, and we proceed
now to construct the desired 2-cocycle g. The fact that the image of [f]
in H¥G, Z*) has order p implies that there exists a map ¢: G—> U(L) such
that the 2-cocycle & of Z*G,U(L)) defined by h(g, p) = f%(a, p)¢(00) | ${a)$°(p)
takes values in U(S). Since ¢(o) is in U(L) we may write ¢(¢) in the form
#(0) = a,mP® where @, is in U(S) and Bls) is an integer. Define the map
bw: Gy, —>U(L,) by 6,(c) = II#B@ where ¢ is the order of G,/G, and &
denotes the image of « under the natural map of G, onto G. Let f,
denote the image of f under the inflation map Z¥G,U(L)) —> Z¥G,,U(Ly)),
and define the 2-cocycle ¢ of Z%G,,U(L,)) by

9(a p) = fulos p)pw(op) [ ulo)gulo) .

Observe that ¢ is cohomologous to f, in Z%G,,U(L,)) by definition, so
that the central simple k-algebra 4(g,L.,,G,) is equivalent to 4(f,L,G) (see
for example Thm. 8.5 E of [1]). The next three propositions present some
useful properties of the 2-cocycle g.

ProrosirioN 2.4. The element g of ZXG,,U(L,,)) defined above is in the image
of the natural map Z%G,,U(S,)) —> Z%G,, U(L,)) .

Proof. We prove first that g is in the image of the natural map
ZHG 5y U(Sy)) —> Z%G o, U(L,,)).  In order to verify that g takes values in
U(S,) it clearly suffices to show that g¢? takes values in U(S,). From the
definition of g we obtain the equalities

g°(o, ) = [fw(o, P)pw(op) [ pulo)pu(p)]”
= [1(5, p)p(@)p°(5) | $(p)] [$w(op) | $u(a)dilp)]

where ¢ and p are elements of G,, and & denotes the image of ¢ under
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the natural map of G, onto G. The definition of the map ¢, together
with the equality II1?° =z implies that ¢(¢)/[$,(0)]® = as and ¢7(p) [ [$ulp)]”
= aj. Therefore ¢°(q, p) = (3, p)asa’ | s from which it follows that g7,
and hence g, takes values in U(S,).

It remains to show that g in fact takes values in U(S,). From the
definitions of g and ¢, we obtain the equality

90, p) = oo, p) BR[| TLeBCg(T1RCP)

for elements ¢ and p of G,. According to Lemma 2.2 we may write
o(Il) = £,&,11 where £, and &, are p*™ and e roots of unity respectively.
Since f,(a, p) is in U(L) we may write f,(s, p) = as,on7(®#> where as, is in
U(S) and 7(s,p) is in Z. Using the fact that II”* =z one may now
conclude that per(s, p) + ep(ap) = ep(a) + epf(5) since gla, p) is in U(S.).
Combining these observations we obtain that g(s, o) = as,s | L. There-

fore g(o, p) is in U(S,), since s, is in U(S) and ¢, is in U(S,).

ProposiTioN 2.5.  The 2-cocycle g defined above has the following properties

=3

Y gla, p) =1 for every ¢ in G, and p in G,

1

™

9(o, p) s a p** root of unity for every ¢ in G, and p in G,

iii) g(g, p) = 1 for every ¢ in G| G, and p in G,

iv) g is in the image of the inflation map ZXG, |Gy, U(S) —> Z%G,, U(S))
where G denotes the image of g under the natural map Z¥G,,U(S,) —>

ZG,, U(S)) .

—
=

Proof. We first observe that g(1) =0 where g: G—> Z is the function
used to define the 2-cocycle g. From the definition of % we obtain the
equalities 1= a(1,1) = f2(1, )a,;7PD [ (@7PD)2 from which it follows that 1=
1/emP®, so that g(1) =0.

Now let ¢ denote an element of G, and p an element of G,, and
observe that f,(s, p) = fu(p,0) =1 by the definition of f,. Then g(o, p) =
F (05 0)$(00) | ¢.(0)p5(p) = TIeBCP) | T1B@)g(11¢B(P) = 1 since g =1 and B(1)=0.

When ¢ is in G, and p is an element of G, we have the equalities
9(0, p) = ful0, 0)pu(op) | G (a)pip) = TLeBCR | TIB)g(T1RD) = T1eFP) [ g(I1BP) .
Therefore g(g, p) is a ™ root of unity since o(TL(®) = [¢(I1)]B@ = (£, IL)eB@

for some p™ root of unity ¢, since ¢ is in G,.
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Next let ¢ denote an element of G,/G, and p any element of G, .
Then g(o, p) = T8 [ g(TIB®) .  Since ¢(II) = &,11 for some e** root of unity
&, according to Lemma 2. 2 we may conclude that g(s, p) = 1.

Finally, in order to prove assertion iv) it suffices to observe that g(q, p)
=g(p,0) =1 for ¢ in G, and p in G, according to parts i) and ii) of this
proposition. One can then verify that the map ¢: G, /G, X G,, | G, —> U(S)

defined by ¢(a, 5) = g(s, p) is an element of Z*G, |G, U(S)) in the preimage
of g.

ProrosiTioN 2.6.  There exists an element o in G, such that gz, 3=1.

Progf. We first prove by contradiction that there exists an element ¢ of
G, for which g(r,s)= 1. For suppose that g(z,s) =1 for each element ¢ of
G, . From the proof of part ii) of Prop. 2. 5 we know that g(c,q) = {B®
where ¢ is the primitive p** root of unity defined by z(II) =¢II. Since e
is relatively prime to p, the assumption that g(r,s) = 1 implies that g(é) is
divisible by p. For each element ¢ of G, we may define an integer 7(s)
by p(3) = pr(g) where & denotes the image of ¢ under the natural map of
G, onto G, [G,=G. We proceed to prove that [f] is in the image of the
natural map H*G,U(S))—> H*G,U(L)) and thus contradict the assumption
on the Brauer number of 3] where 3= 4(f,L,G). Return once again to
the notation used in the definition of g. We may now express the 2-
cocycle k of Z¥G,U(S)) in the form h(qs, p) = f?(0, p)atsen?r(?2) | @an??(®dg(apm?7(P)) .
Define the map ¥:G—U(L) by ¥(s) =a7¢®, Then the 2-cocycle ¢ of
Z¥G,U(L)) defined by g(s, p) = fla, p)¥(op) | T(a)¥’(p) is cohomologous to f
and takes values in U(S), so that [f] is in the image of the natural map
HXG,U(S))—> H¥G,U(L)). From this contradiction we conclude that there
exists an element ¢ of G, for which the p* root of unity g(r,s) is not
equal to 1.

It remains to prove that g*),s)g=1 for this element s. We first
prove inductively that g(z%, 0) = (g(r,0))’. The assertion is trivial for i =1.
So we must prove that g(r’*',s) = (g9(z,¢))*"* under the assumption that
9(c’,0) = (9(r,0)*. From the associativity property of g we obtain the
equality g(z**%, o)g(z’, 7) = g(z’, r0)g7'(z, 0), S0 that g(ri*',0) = g(c*, za)9(z, ¢) since
giz%h7) =1 and g(r,0) is in U(S,). Now gz, z0) = g(z%, 6r**™D) so that we
obtain once again by associativity the equality g(<%, za)g™(o, v D) =
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g(z'a, eeD)g(z*, o) from which it follows that g(<’,zs) = g(<’, 0) according to part
i) of Prop. 2.5. Combining these results we conclude that g(ci*!,s) =
9(z*, 0)g(z, ). The induction hypothesis now implies that g(z‘*!, ) = (g(z, 0))*** .
Therefore g(z7(®, ¢) = (g(r, 6))*®>.  Since g(z,0) is a p'* root of unity different
from 1, and n(s) is relatively prime to p, we conclude at last that
9™, 0)F1.

For convenience of notation we denote the crossed product 4(g,S,,G.)
by 4, and 4(g,L,,G,) by 3,. Observe that 4, is an R-order in 3, .

We next construct an order I', in 3, containing the crossed product
4,. Let 6 denote the element of 3, defined by 6 = 1_}C(u —1). Then
I, is defined to be the ring obtained by adjoining the element 6 to 4,;
ie. I', = 4,[01. Most of this section is devoted to proving that I', is a
maximal order and to the computation of its unique maximal two-sided
ideal.

We must first verify that the ring I', defined above is in fact an order
in 3,. Since I', contains 4, , it is clear that I",, spans 3, over k. To
prove that I",, is a finitely generated R-module, we show next that ¢ satisfies
a polynomial equation over the subring 4(1,S,,G,) of 4,,. Observe that ¢
is an element of the subring 4(1,L,,G,) of 3, .

Lemma 2.7. Let Z, denote the ring of p-adic integers, and ¢ a primitive p**
root of unity. Let v denote the element of Z, defined by the equalily (1 —C)P~' =
vp. Then v=—1 mod (1-20).

Proof. Since Z,[¢] is a tamely ramified inertial extension of Z, of degree
p —1 and with prime element 1 — ¢, it is clear that (1 —{)’~! = vp for some
unit v of Z,[¢]. It is a well known fact (see p. 2568 of [9]) that p =
1-0@a=¢).--@—2¢"". Theequality 1 - =Q0—-0@+L+- -+
implies that ¢*=1 mod (1 —¢) for every integer i, so that 1 4+¢+- . -+ ¢
=i+1 mod (1—¢). Factoring the right hand side of the above expres-
sion for p we obtain the equality p=(1—- A+ Q1 +¢+¢%): - -(1+¢
+---4¢?%, But according to the above, (1+¢&)(1+¢+¢%):--(1+¢
e+ )= (p—1)! mod (1—¢). By Wilson’s theorem (p. 118 of [8])
we know that (p —1)!=—1 mod (p). Therefore v=—1 mod (1 —¢).

LemMa 2.8. Let C; be the integer defined for 1éisp—;—1 by C,=
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(— 1)i[(p—1~) (p—Z)-_:';(Z’,— : +1)_._](p—2i), Then C,+Cy+- - -+ Co

S
[ 2

=—1 mod (p).

Proof. Since C;=(—2)(— 1) (p—1)-+ - (p—i+1)/(i —1)! mod (p), it
suffices to observe that (p —1)(p—2)- - - (p — (i — 1)) = (— 1)* (i — 1)! mod
(p) in order to establish the fact that C;,=2 mod (p) for 1=i<(p—1)/2.
Therefore C, ++ + «+ + Cp-1y2= — 1mod (p) since there are (p—1)/2 sum-
mands.

LemmA 2.9. Let 4, = 4(1, S, G,) and consider the left 4,-submodule 4,(u- —1,
(ur —1)0) of 41, L,,G,) generated by the elements u. —1 and (u. —1)0. The
element 0 has the property that 0° — 0 is in dy(uc — 1, (u- — 1)) .

Proof. We consider first the case of an odd prime p. Observe that
1—¢ is in the center of 4(1,L,,G,). By expanding (#.— 1)? according to
the binomial theorem and combining terms with the same binomial
coefficient one may obtain the equality

R R

for i1<i<(p—1)/2. For convenience of notation let 4; = (—1)(p—1)- - -
(p—i+1)/i!. By writing u.?-2% —1 in the form #u?-2% —1= (g P~2%-1+4- . .
+ 1) (- — 1) we have that

o7 = Tli‘%j};ﬁl:ZAi(urp"i—l +ee o+ ufi)]e .

We next observe that (ucP~i-1+4. . .4+ ') —(p—2i) is in 4(u. —1),

since there are precisely p — 2i summands in the expression #?=i-1-+ . . .

+ ut . This now implies that 6% — H:%T'T [ZAi(p — 2i)]0 is in
4,(u:—1)8). Since p/(1—¢)P'=—1 mod (1—¢) (see Lemma 2.7) and
S1Ap —2i)=—1 mod (p) according to Lemma 2.8 we conclude at last

that 0 — 0 is in 4,(uc — 1, (u: — 1)8).
In the case p =2, one can verify by an easy computation that ¢* — 6 =
—20 = — (u- — 1) and this completes the proof.

CoROLLARY 2.10. The element 6 of the ring I, has the property that 6" — 0
=0 mod 1— &I, .
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Proof. The proof is immediate from the lemma since the element #%. —
lisin 1—¢T,.

ProposiTioN 2.11.  The ring I',, is generated as both a left and a right
4(9, S, Gy)-module by {1,6, - -,6"'}.

Proof. We prove first that I', is generated as a right 4,-module by
powers of 4. The inclusion 4,(0) c (1,6)4,, may be obtained by showing
that (aeu,)0 is contained in (1,0)4, for every element p of G, and a, of
S, . Using the fact that g(z%®),p)=7 is a p' root of unity (see Prop.
2. 5) together with the fact that (1—¢¢) =91 —¢) for some element v of
U(S,) one may obtain the equality

(@ottp)d = *f%’c“ [urrl(p)f_n@)(ap [ ) — ap /U] Up .

Part iv) of Lemma 2. 1 implies that ¢=(a, [9v) = a, /v mod (I(1 — ¢)).
Since =1 mod (II(1 —¢)) we may write =P, [yv) = ap /v + sTI(1 — ¢)
for some element s of S, . Writing #7* —1 in the form u™® —1=
(e —1) @™~ +. . . +1) we next obtain that

(@otp)0 = 0P~ + o o o+ 1) (@ [ v) + (0P — 1) 511

from which it may be seen at once that 4,(f) is contained in (1,6)4,, .

It now follows inductively that 4,(¢") is contained in (4i-1,6"4,, for every
positive integer i. Since ¢ satisfies an equation of degree p over 4(1,S,, G,)
(see Lemma 2. 9) we conclude that I', is generated as a right 4,-module
by {1,6,...,0""}.

By a similar computation one can show that I",, is generated as a left
4,-module by {1,0, ...,67'}.

Proposition 2.12. The ring I', is an R-order in the central simple k-
algebra 4(g, L., G,.) .

Proof. To prove that I, is an order in 3%, = 4(g, L, G,,) we must show
that I, is a finitely generated R-module such that 7", = 3, . Since 4, =
4(g, Sy» Gy,) is an order in 3, and I', contains 4,, it follows that kI', =
Yw. And, I', is a finitely generated R-module since I, is a finitely
generated 4,-module and 4, is a finitely generated R-module.
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The object now is to prove that the radical of I',, is generated by the
prime element I of S,. The following general observation concerning
orders shall be useful, (see Lemma 1.7 of [13]).

LemmA 2.13. Let R denole a discrete rank one valuation ring with quotient
field k, and let A, and A, be orders over R in the same central simple k-algebra.
If (rad 4,) N 4, s a two-sided ideal of A,, then (rad A,) N A, is conlained in rad
Ay . In particular if A, is contained in A,, then (rad 4,) N A, ts contained in rad
4,.

Progf. Let n denote the prime element of R. The fact that w4, = 4;n
together with the fact that 4, is a finitely generated left R-module implies
that = is contained in rad 4, (see Lemma 1.4 of [12]). And for similar
reasons = is contained in rad 4,.

The residue class ring 4,/=4, is an Artin ring, so that its radical is
nilpotent. Let x be a positive integer for which (rad 4,/z4,)® = (0) and
observe that (rad 4,)® is contained in n4,. Since 4, and 4, are orders in
the same central simple k-algebra there exists a positive integer y such that
n¥4, is contained in 4, (see p. 2 of [4]). Combining these observations we
now obtain that [(rad 4,) N 4,]*¢+D is contained in n4;,. It now follows
from the assumption on (rad 4,) N 4, that its image under the natural map
of 4, onto 4,/r4, is a nilpotent two-sided ideal. Using the fact that 4, /=4,
is an Artin ring we may now conclude that (rad 4,) N 4, is contained in
rad 4,.

If 4, is contained in 4,, then (rad 4,) N 4, is a two-sided ideal of 4,
and is therefore contained in rad 4, according to the above.

LemMa 2.14. Let T denote the prime element of S,,.  Then

) ur,=r,i

ii) II is contained in rad T,
i) rad 4, = (M, uc.— 14, = 4,(, uc — 1)
iv) r,dnd,=rad 4,.

Proof. Since 4,1 = I14,, because 4, is a crossed product over S, , it

suffices to show that ¢'II is in III", for 1< i< p —1 in order to obtain the

inclusion I",,JI c 11r,. Now ¢II = 119+ 1—_11? [—F%I)H - 1] u: so that 1L
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is in III",, because fl—ifz[ "(I}I)
¢l is in 1O, for 1=<i<p-—1 so that I",II is contained in III",. The
opposite inclusion may be obtained by a similar computation, and therefore
r,ui=1uar,.

The fact that 1r, =r,II implies that I is in rad I, according to

Lemma 1. 4 of [12].

— 1] is in S,. It follows inductively that

In order to prove iii) we first observe that the radical of the subring
4, = 44,S,,G,) of 4, is generated as a right ideal by II and #. —1 where
7 denotes as usual a generator of G,. For, the S-algebra isomorphism
41, S,G,) = S[X1/(X? — 1) induced by defining #-—> X implies that the
radical of the commutative ring 4(1,S,G,) is generated by ur—1. The
natural isomorphism 4,/ 114, = 4(1, S, G,) together with the fact that II is in
rad 4, implies that rad 4, = (II, ur — 1)4,. Now Props. 3. 1 and 3. 4 of [12]
together imply that rad 4y = (rad 4,)4,,. Combining the above observa-
tions we conclude that rad 4, = (II, - — 1)4,, .

Now we may prove iv). The equality #:—1=6(1—¢) implies that
#cr—11is in I', 11 N 4, since 1 —¢ is in S,,. Since rad 4, = (II,u- — 1)4,,
according to part iii), we may conclude that rad 4, is contained in
r,l1nd4,. On the other hand, the intersection I",II N 4, is contained in
rad 4, by Lemma 2.13. This completes the proof of statement iv).

Since I',II is a two-sided ideal of I, we may form the residue class
ring I, /I, 11, which shall henceforth be denoted by I',. According to
Prop. 2.5 we may consider an element of Z%G, /G, U(S)) in the preimage
of g under the inflation map Z*G, |G, U(S))—> Z%G,,U(S)) which for
convenience of notation shall also be denoted by g. The following
isomorphism shall be useful in establishing the semi-simplicity of I, .

Lemva 2.15. The residue class ring I, is R-algebra isomorphic to 4(g, S,
G,IG) 0] in a natural way, where § denotes the residue class of 6 modulo I', 11 .

Proof. Using the fact that g is in the image of the inflation map
Z¥G,, | G, U(S)) —> Z%G,, U(S)) we may observe that the crossed product

4(9,5,G, |G, is isomorphic to 4, [(Il,ur—1)4, in a natural way. Parts
i) and iv) of Lemma 2.14 imply that 7,1 N 4, = (II,u- — 1)4,,, so that
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there is a natural injection of 4, /(Il,u:—1)4,, into [, . By identifying
4(3,S,G, | G,) with its image under the maps

49,5,G, | G)—> 4y | (T, ux — 1)4,, —> T,

we may conclude that I", is R-algebra isomorphic to 4(g, S, G, | G,)[d] since
r, is generated as a left 4,-module by {1,6, ...,6°"'}.

LemMa 2.16 A. The intersection (ILT,) N 4(g, Sy, Go) (0] is contained in
1 4(g, Sw, Go) 6] .

Proof. Consider an element & of (III',) N 4(g, Sy, Go) [6].  Since 6 is in
I, we may write & in the form &= MI315,6° with the 4, in 4(g, Sw, G,)
according to Prop. 2.11.

We now use some properties of crossed products to show that each g,
is in 4(g9,L,,Gy) . Since 4(g9, Sws Go) [6] is contained in 4(g, L,,G,) it follows
that >16,6" is in 4(g,L,,G,). Consider a disjoint (left) coset decomposition
G, = Uw,;G, of G, with respect to the subgroup G,, with o, =1. According
to Lemma 2.5 of [12], 4(¢,L,,G,) is a free right 4(g, L,,G,)-module with
free basis {#»,}. Since each §; is in 4(g, S,, G,,) we may therefore write §;
uniquely in the form §; = Ylu.,0%> where the 6% are elements of 4(g,L,, G,).
The equality 315,6" = >uw,(316$°¢°) now implies that j =1 because 315,6° is
in 4(g, Ly, Gy). Therjefore ;=0 for each i, and so each 4, is in
4(g, Ly, Gy) -

Using the fact that 4(g,L,,G,) is a free (left) L,-module with free basis
{us} for all ¢ in G,, it is easy to see that the intersection 4(g,S,,G,) N
4(g, L., G,) is contained in 4(g, S,,G,). Therefore each 4; is in 4(g, S,, Gy
and hence ¢ is in M 4(g, S, G,) [6].

LemmA 2.16 B. The subring 4(1,S,G,/| G,) (8] of ', is a commutative semi-
simple ring.

Proof. We prove first that the ring 4(1,5,G,/G,)[4] is commutative.
Now the crossed product 4(1,S,G,/G,) is commutative because G,/G, is a
cyclic group with trivial action on S. Let p denote a generator of G,/G,.
Since § commutes with the elements of S it suffices to show that #, com-
mutes with § in order to prove that 4(1,S,G,/G)) [d] is a commutative
ring. Let i be the integer defined by p() =¢'. Since i = n(p) according
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to Lemma 2.3, we obtain the congruence upazi-»%i; (#: — Du, mod
Ur,. The equalities 1 - =1 - @+ ¢+ - -+¢-) and ul —1 = (ur—1)
i+ . -+-41) in I, imply that 1—¢=i(1—¢) mod I, and ui—1
=i{(ur—1) mod III",, since {=1 mod NI, and #-=1 mod NI, . These
congruences imply that u,0 =fu, in I, and we conclude therefore that
41,5,G, | G,)[4] is a commutative subring of T, .

In order to prove semi-simplicity, we first prove that 4(1,'S,G,/G,)[d]
is a free (left) 4(1, S, G,/ G,)-module with free basis {1,4,...,8?}. The
proof is by contradiction. So suppose that there exist elements §; of
41, 5,G,/ G, such that ii}’ 6,0°=0 with 6,20 and z=<p—1. Then

8]

s _ . ) =1
0,0'»—1-m =0 so that we may consider an expression 3} 6;6°=0
0 i=0

1

I

where 5,_, #=0. The method of proof shall be to contradict the assumption
that §,., is non-zero. It is clear that we may choose representatives §; in
I, of the residue classes §; such that each §; is in 4(g,S,,G,). Now the
equality 35,4 =0 implies that 314,0" is in (III,) N 4(g, S, Gy)16], and
therefore 314,6° is in 114(g, S,, G,) [#] according to Lemma 2.16 A. Since
4(g, Suy Go) [0] is generated as a left 4(g, Sy, Gy)-module by {1,4, ...,6"},
it follows that (1—¢)P'3146:6° is in Md(g, S,,Gy).  Finally, the fact that
(1— C)”‘{‘Z‘Z 6:0° is in 114(g, S,» G,,) implies that (1 — £)?716,,07 " =5, (#—1)"""
is in I4(g, S, Gy). It remains to show that 4, is in NII',. Consider
a disjoint (left) coset decomposition G,= U o,G, of G, with respect to
the subgroup G,, and recall that 4(g, S,,G,) is a free right 4(1,S,,Gy)-
module with free basis {#o)}. We may therefore consider a (unique)
expression for 4, , of the form 4, =;ua,iTi with the 7; in 4(1,S,,G,).
The equality 6,_(ur — 1)?"" = Yl 7:(uc — 1)?~* together with the fact that
0p_y(ur — 1) is in M 4(g, S,, G,) now implies that 7,(u- —1)*"* is in IIA(1,
Sw» Gy) for each ¢. The radical of 4(1,S,,G,) is generated as a left ideal
by I and #-—1, and the residue class ring 4(1,S,,G,)/rad 4(1,S,,G,) is

isomorphic to S. We may consider therefore for each 7, an element s; of
S and elements «; and g; of 4(1,S,,G,) such that 7, = s; + ;11 + Bi(ur—1).
Then 7,(u: — 1) = sy(ur — 1) + ;I (%e — 1)>~' + B(ur — 1)* . Since (ur —1)”
and 7;(u- —1)*"' are in I14(1,S,,G, it now follows that s;(u.— 1)P"' is
in 04(1,S,,G,). Using the fact that 4(1,S,,G,) is a free (left) S,-module
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with free basis {#r} for 0<i< p—1 we may conclude that s; is in IIS for
each i, and therefore each 7, is in rad 4(1,S,,G,). The element % —1
is in I14(g, S,, G,)[0], so we obtain at last that §,_, is in II",. Thus we
have established that 4(1, S, G,/ G,)[8] is a free left 4(1, S, G,/ G,)-module with
free basis {1,6, ...,07'}.

Consider the polynomial ring 4(1,S,G,/G,)[Y] and form the residue
class ring 4(1,5,G,/G,)[Y]/(Y? —Y). Define a map ¢: 4(1,S,G,/G,) [§]1—>
4(1,8,G, | G)IY1/(Y?—Y) in the following way. An element of 4(1, S, G,/G,)[d]
has a unique expression in the form f};]z 0:6° with the §; in 4(1,S,G,|G,)
according to the above. Define ¢(315:6°) =315Y'+ (Y?—Y). Cor. 2.10
implies that §® = ¢, from which it follows that ¢ is a monomorphism. It
is easy to verify that ¢ is in fact an R-algebra isomorphism.

Now we may establish the semi-simplicity of 4(1,S,G,/G,)[d]. Since
the order of G,/ G, is relatively prime to the characteristic of S, the group
ring 4(1, S, G,/ G,) is semi-simple. The polynomial Y? —Y factors into linear
factors with no repeated roots in S[Y], namely Y” - Y =Y :’I;Ill (Y — &%) where

¢ is a primitive (p — 1)* root of unity in S whose existence is guaranteed by
the fact that S has characteristic p. For convenience of notation let
h(Y)=Y and A (Y)=Y — ¢ for 1<<i<p—1. By the Chinese Remainder
Theorem we have that the ring 4(1,S,G,/G,)[Y]/(Y? —Y) is isomorphic to

Pp—

@1 41,5,G,|G) Y]] (hi(Y)). FEach polynomial #;,(Y) is linear so that each

i=0

summand is isomorphic to 4(1,S, G,/ G,). Therefore 4(1,5,G,/G,) [Y]/(Y?—Y)
is isomorphic to a direct sum of semi-simple rings and is therefore itself
semi-simple. The fact that 4(1,S,G,/G,)[d] is isomorphic to 4(1,S,G,/G,)
[Y]1/(Y? —Y) now implies that 4(1,S,G,/G,)[d] is semi-simple.

Lemma 2.16 C. The residue class ring T, is a finitely generated free left
41,5, G, | G,) [0)-module with free basis {us} where G, |G,= U (G,|Go; is a
disjoint right coset decomposition of G, |G, with respect to the subgroup G,|G,.

Proof. 1t follows at once from Prop. 2.11 that I, is generated as a
right 4(g, S, G, | G;)-module by {1,4, ...,8?*}. Therefore an element 2 of
I, can be written in the form 2= 314%, with the §; in 4(3,S,G, /G, .
Consider the elements o; defined in the statement of the lemma. The
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crossed product 4(g, S,G, |G, is generated as a free (left) 4(1,5,G,/Gy)-
module by the {us,} (see Lemma 2.5 of [12]). Therefore each 4§, can be
written in the form d; = 3} 7%us, with the 7$ in 4(1,S,G,/G,). Since 1=
20U, = T (8 §‘T§i’)1]4aj we may conclude that the {u,} generate I',, as
at left]A(l, S, G, /]Gl)l[é]-module.

It remains to show that the {u,} are linearly independent over
41, S,G,/G,) (1. So suppose that ;‘,1 Aus, =0 for elements A, of 4(1,5,
G,/ G,118]. If the A; are not all zero, define #({A4;}) to be the largest
integer ¢ such that A;=0; if A, =0 for each i, define #({A;})=0. The
proof is by induction on #({A;}). If t{A}) =1, then A, = Ajus,(tte))? =0
contradicting the assumption that #({4;}) =1. For the inductive step con-
sider a set of elements {4;} of 4(1,5,G,/G,)[8] such that 3 A;us,, =0 and
t{AH =t. The induction hypothesis states that if {B;} is a set of
elements of 4(1,S,G,/G,)[d] such that 3} Bius,, =0 and t{B;})<t, then
B; =0 for each i. Observe that G, /G, is the Galois group of S over R
and consider an element a of S such that S= R(a). The assumption that
31 Asus, = 0 implies that 0 = a3} A,us,) — (3 Aitto))o7 (@) = Dl — 6107 (@) Astho, .
Since o;07 (e) = & if and only if { = ¢, we have that #{(e — aia;‘(a))Ai})< t.
Using the induction hypothesis we may now conclude that A, =0 for
l=i=t—1. Therefore A,us, =0 since 3'A,us,=0 and we obtain that
A, = As(us)™ =0 contradicting the assumption that A,=£0. We have
established therefore that an equality X Aus,, =0 with the A, in 4(1,S,
G,/ G, 1] implies that A, =0 for each i.

The semi-simplicity of I', now follows from that of its subring 4(1, S,
G,/ G I1d].

Lemma 2.17.  The ring I, is a semi-simple ring.

Proof. For convenience of notation we shall denote the subring 4(1, S,
G,/ G,) 18] of ', by I'y throughout the proof of this lemma. We shall make
use of the fact that (rad ") N Iy is contained in rad I, (see Lemma 2.4 of
[12]). ,

The first step is to prove that rad [, = (rad '), . Consider a
disjoint right coset decomposition G,, | G, = U (G,|G,)a; of G, |G, with respect
to the subgroup G,/G,. According to Lemma 2.16 C, an element 2 of I,
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can be written uniquely in the form 2 =3} A4, where the 2, are in TI}.
=1

For 240, define #(2) to be the largest integer i for which 2,50, and
define #(0) =0. The proof is by induction on #(2). If 2is an element of
rad I, for which #(2) =1, then 2 is of the form A = A,us, with 2, in I’y so
that 2, = A(us,)™ is in (rad I',) N I, and hence in rad I, according to the
remark at the beginning of the proof. Therefore 2 is in (rad I')I",. For
the inductive step we assume that if 7 = 317,44, is an element of rad I, for
which #(r)< ¢ then each element 7, of I, is in rad I,. Now let 2 = 3 Z;uo,
be an element of rad I, such that #(1) =¢. Recall that G, /G, is the

Galois group of S over R, and consider an element ¢ of S for which S=
R(e). In order to apply the induction hypothesis we form the element
= @l — 167 (a) and observe that 7 =Y a — ;07 (a))litte, is in rad [, .

t—1
Since gi07'(a) = « if and only if i =¢, we may conclude that 7= 3} (« —

i=

007 (@) Aiutq, is an element of rad I, for which #()<#. Since a — g;07(a)
=0 for 1<i<t—1, the induction hypothesis now implies that 2; is in
rad I, for 1<i<t¢—1. Therefore A, is in rad I°,, so that 1, = 2(u,)™
is in (rad I",) N I, and therefore in rad I,. We have now established
that rad I, is contained in (rad )l .

The ring I, is semi-simple according to Lemma 2.16 B. Therefore rad
IFy=(0) and we obtain that rad I, = (rad )", = (0). Since I, is an
Artin ring with zero radical we conclude that I",, is semi-simple.

ProrosiTioN 2.18.  The ring I'y, is an hereditary order with radical I',1I .

Proof. The fact that I,II is contained in radl’, (Lemma 2.14)
together with the fact that r,/I,II is semi-simple (Lemma 2.17) implies
that rad I, =7,II. It is easy to verify using the definition of crossed
product that 7", 1 is a free left I",-module. Therefore I", is an hereditary
order according to the Corollary to Theorem 2.2 of [4].

In order to prove that I', is a maximal order it remains to show that
I',1I is the unique maximal two-sided ideal of I",,, i.e. that I, is a simple
ring. Since I, is a semi-simple ring (Lemma 2.17), its number of simple
components is equal to the number of primitive orthogonal idempotents
required to generate its center. We shall prove that the idempotents in the
center of I, are contained in R and thus conclude. that I",, is simple.
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LemmA 2.19. The center of T, is contained in the subring S[4].

Proof. Once again we denote 4(1,S,G,/G,)[d] by I',. We show first
that the center C(I",) of I', is contained in the subring I, of I, .
Consider a disjoint right coset decomposition G, [ G, = U (G,/G,)e; of G, | G,
with respect to the subgroup G,/G,, with ¢, =1. Let 4 denote a non-
zero element of C(I,). tAccording to Lemma 2.16 C 6 may be written

uniquely in the form &= §us, with the 4, in I, and 4,40. Let «
=1

denote an element of S for which S = R(a). Since § is in C([",,) we must
have ad = da so that

ad, + (ady)tts, + - + » + (ad,)Us,
= a0y + (ox{a)0s)tto, + + « + + (0u(a)d)tha, .

Therefore as; = g;(a)é; for 1=<i =<t because I, is a free left I';-module with
free basis {#s} (see Lemma 2.16 C). Write each element 5, of Iy in the
form 4, = 3125?67 with the 2§ in 4(1, S,G,/G,). The equalities ad; = a;(@)3;
imply that %‘,az(f')ﬁ’ = };‘.ai(a)z‘j“l?’ for each i. Using the fact that Iy is a

free left 4(1,S, G,/ G,)-module with free basis {1,4, ...,87'} (see the proof
of Lemma 2.16 B) we conclude that a1}’ = 6;(a)2{’ for every 7 and j.
From the definition of crossed product it now follows that « = g;(a) for
each i. Since g;(a) =« if and only if i =1, we obtain finally that ¢ =1
and so § is in [,.

It remains to prove that 'y n C([",) is contained in S[f]. Consider
an element 6 of I',NC(I",,) and write ¢ in the form 6 = 3 2,4° with the 1, in
41,5,G,/G,). Since ¢ is in C(I",) we must have that #<6 = éu-. Since

u: commutes with § we now obtain the equality ;urziﬁi = %}ziuﬂ?’ . The

fact that I, is a free left 4(1, S, G,/ G,)-module with free basis {i,4,...,0°'}
(Lemma 2.16 B) implies that #:1; = Z;ur for each i. Write each element

A of 4(1,5,G,/G,) in the form 2, = 3 a$Pu, with the p in G,/G, and the
0

a?in S. Then the equality #:2; = 24 implies that %‘,afpum =§a§f>u,n<p),,
where #n(p) is the integer defined modulo (p) by prp™ =%, According
to Lemma 2.3 n(p)=1 if and only if p=1. Therefore 7p =<%¢ for
elements p and ¢ of G,/G, if and only if p =1 and ¢=1, from which it
follows that each 1; is in S, and hence that 6 is in S[7].
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LemMA 2.20. The idempotents in the center of I, are contained in R .

Proof. We first observe that the idempotents of S[f§] are present in
R[G]. In the proof of Lemma 2.16 B it was shown that the ring 4(1,S,
G,/ G)10] is a free left 4(1, S, G,/G,)-module with free basis {1,4, . ..,d7'}.
From this it follows at once that S[4] is a free S-module with free basis
{1,4, ...,6% '} and that R[4] is a free R-module with free basis {1,4,. . .,
6°*}. These observations imply that S[§] is isomorphic to S[Y]/(Y” —Y)
and that R[#] is isomorphic to R[Y]/(Y? —Y). Recall from Lemma 2.16
B that Y? —-Y =fﬁz h,(Y) is a factorization of Y? —Y into linear factors in
R[Y] where ho(Y)ljz Y and h(Y)=Y —¢ for 1<i<p-—1, and ¢ denotes a
primitive (p — 1)* root of unity in R. By the Chinese Remainder Theorem
we obtain the isomorphisms R[Y]/(Y?—Y) = ® R[Y]/(h,(Y)) and S[Y]/(Y? —Y)
~®S[Y]/(h(Y)). The natural map of @ R[Y]/(k,(Y)) into ®S[Y]/(k,(Y))
maps the set of primitive orthogonal idempotents of @ R[Y]/ (4;(Y)) into such
a system for @ S[Y]/(h;(Y)). We conclude therefore that the idempotents
of S[4] are already present in R[d].

In order to prove the lemma it suffices to show that the intersection
C(I'y) N R[#] is contained in R since C(I',) is contained in S[§] according
to Lemma 2.19. Let 2 denote a non-zero element of C(I",) N R[4] and
express 2 in the form 2= iéor,ﬂ‘i where 0<<t<p—1 and r,Z=0. To
prove that C(I",) N R[#] is contained in R we shall assume that >0 and
contradict the fact that »,==0.

Now according to Prop. 2.6 there exists an element ¢ of G, such that
g7, q)=1. Therefore g(**,s) must be of the form g¢(z"(*),¢) = ¢* for the
primitive p** root of unity { and some integer a satisfying 1<<a<p—1 (see
Prop. 2.5). We shall now establish the equality «.0 = <9+—n—é—)—)ua where
& denotes the image of ¢ under the natural map of G, onto G, /G,. From
the definition of ¢ together with the fact that g(s,7) =1 (see Prop. 2.5) we
obtain the equality .0 = '(1--;—]%;)*@-- [(u’,“”—— 1)+ (1 — C“)] us. According to
Lemma 2.3, ¢°=¢%9, And the congruence {=1 mod IIS, implies that
gnio)-1 4. . . +1=n(s) mod IIS,. From these observations we obtain the
congruence #q60 = _h_(l;)_ [Ti?‘; (Wp —1) + 11;};] #s mod I',JI.  Observe
that u?” — 1= (ur — 1) (@~ 4 - - - +1) so that w? — 1= nio) (ux —1)
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mod I',1I since ur=1 mod I',1I. This fact together with the congruence

*11;_% =gq mod I',II enables us to write usf = <5 + ﬁ*) us .

Since 2 is in C(I',) we must have that #s2 = ius. From the above

t ¢ T
we may then obtain the equality >} r,6° = 3} r,(ﬁ—k;?{;)*) . Using the
=0 =0
fact that R[#] is a free R-module with free basis {1,4, ...,87'} it follows
from equating coefficients of §¢-' that »,_, =r,, + *ﬁlf(%'n. Therefore », =

0, and this contradiction proves the lemma.
CoroLLARY 2.21. The ring I'y is a simple ring.

Proof. The number of simple components of the semi-simple ring I,
is equal to the number of primitive orthogonal idempotents required to
generate its center. Since the idempotent elements of C(I",) are in R

according to the lemma, we conclude that I",, is simple.

ProrosiTioN 2.22. The R-order I, in the central simple k-algebra 4(g, L.,
Gy) has the following properties

i) I, is a maximal order with radical I, 11

i) 7w/ R)=7(Sw/R).

Proof. Prop. 2.18 together with Cor.2.21 implies that I, 1is an
hereditary order with unique maximal two-sided ideal. Therefore I',, is a
maximal order according to Thm. 2.3 of [4].

Since I, 1I is the radical of I",, (see Lemma 2.17) and I is the prime
element of S, , it follows that the ramification index of I', over R is equal
to the ramification index of S, over R.

Now we prove the main result of this section.

ProrosrTioN 2.23. Let k denote the quotient field of a complete discrete rank
one valuation ring R of unequal characteristic, and let > denote a central simple
k-algebra for which 33 is in V(k). If 35 has Brauer number equal to the characte-
ristic p of R, then a maximal order of 3 ts not equivalent to a crossed product
over a tamely ramified extension of R.

Proof. Let I' denote a maximal order in a central simple algebra 3}
such that 3% satisfies the hypothesis of the theorem. If S% has Brauer number
p there exists a maximal order I', equivalent to I for which (I, /R) 1s
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divisible by p according to Prop. 2.22. Therefore »(I"/ R) is divisible by p,
since ramification index is preserved under equivalence (Prop. 1.6).

However Props. 1.6 and 1.7 together imply that a maximal order
equivalent to a crossed product over a tamely ramified extension of R has
ramification index relatively prime to the characteristic of R.

3. The equicharacteristic case. The purpose of this section is to
prove the assertion analagous to that of Prop. 2.23 in the case when R is
an equicharacteristic ring. If R is an equicharacteristic ring of characteristic
zero, then the Brauer number of 3% is relatively prime to the characteristic
of R for every central simple k-algebra 31; so for the purpose of this section
we restrict our attention to the case of non-zero characteristic.

The following notation shall be in use throughout this section. The
symbol R shall denote an equicharacteristic complete discrete rank one
valuation ring of non-zero characteristic,c and 3! shall denote a central
simple algebra over the quotient field k¥ of R for which X is in V(k) and
such that the Brauer number of 3} is equal to the characteristic p of R.
Since X is in V(k), we may assume that Y is of the form 3} = 4(f,L,G) for
some unramified Galois extension L of k.

Our object is to prove that under the assumption on the Brauer
number of ¥}, a maximal order in 3! cannot be equivalent to a crossed
product over a tamely ramified extension of R.

The method of proof is similar to that used in Section 2. We shall
construct a central simple k-algebra 33, = 4(g,L,,G,) equivalent to > =
A(f, L,G) with L,, a wildly ramified extension of k¥ and with the 2-cocycle g
in 2%G,,U(S,)), where S, denotes the integral closure of R in L, . As
in Section 2 we then construct a maximal order I',, in 3}, by adjoining an
element ¢ of 3, to the crossed product 4(g,S,,G,) and prove that the
ramification index »(I', [ R) is equal to the characteristic of R.

In order to construct the desired central simple k-algebra 31, we first
construct the extension L,, of k. Let S denote the integral closure of R in
L and consider a prime element n of S. It follows from Eisenstein’s
criterion that the polynomial F(X)= X? —z?"'X —z of S[X] is irreducible in
L[X], and we define L, to be the field obtained by adjoining a root II of
F(X) to L.
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ProrosiTioN 3.1. The chain of fields L, D L Dk defined above has the
Jollowing properties

1) if I denoles one root of F(X)= X? —aP X —nx then the other roots of
F(X) are given by T + &xn for 1<<i<<p— 1 where & denotes a primitive (p — 1)**
root of unity in R

1) L, ts a Galois extension of k

iii) the extension L, of L is wildly ramified of degree p, and T is a prime
element of L, .

Proof. Using the fact that % has characteristic p, toghether with the
fact that F(II)=0, one may obtain that F(Il + &'n) = (' —&)”. But
€? = ¢& since € is a (p — 1)* root of unity, and therefore F(II + &'n) =0 for
l=i=p—1.

It is clear from statement i) that L, is a Galois extension of k.
The equality II? = =(z*"2II + 1) implies that L, is a wildly ramified inertial
extension of L of degree p with prime element II.

Henceforth G, shall denote the Galois group of L, over k, and S, the
integral closure of R in L, . The next proposition describes the ramifica-
tion groups of the extension L, of k.

ProrosiTION 3.2. Let G, denote the i*™™ ramification group of L, over k. Then

1) G,=G,
i) G, is a cyclic group of order p
i) G, s contained in the center of G,

w) G, =G, and G;yy = (1) for i=p—1.

Proof. Statement 1) is true because the extension L, of k has no tame
inertial part. Statement ii) follows at once from Prop. 3.1.

In order to prove that G, is contained in the center of G, , consider
the generator = of G, defined by «(II) = Il + & and an element ¢ of G, .
Since ¢ leaves the elements of S fixed, it follows that s = or if and only
if 76(II) = or(II). The conjugates of II relative to %k are precisely the
conjugates of II relative to L since the minimal polynomial F(X) of I is
in k[X]. Therefore o(II) =T or ¢(II) = II + &'z for some integer i such
that 1<i=p—1 according to Prop. 3.1. When o(IT) = II it is clear that
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7o(Il) = or(Il).  So consider the case when o(I) =1l +&z. Using the
fact that ¢ and =z are in k it is easy to verify that zo(II) and oz(II) are both
equal to T + &1+ &-Y)n. Therefore ¢ = oz for all ¢ in G,, and hence
G, is in the center of G, .

Finally we observe that p»—1 1is a discontinuity in the sequence of
ramification groups of L, over k. For if = is the element of G, defined
by «(II) =1 + ér, then 7(II)— I =én so that r is in G, if and only if
l<i<p-—1.

In order to define the central simple k-algebra 31, = 4(g, L, G,) it
remains to define the 2-cocycle ¢ of Z*G,,U(L,)). Now the assumption
that the Brauer number of 3} is p, where 31 = 4(f,L,G), implies that the
p"™ power of the cohomology class [f] is in the image of the natural map
H¥G,U(S))—> H¥G,U(L)). There exists therefore a map ¢: G—> U(L)
such that the 2-cocycle % of Z*G,U(L)) defined by k(s ) = f?(s,7)p(a7) ]/
$(a)¢?(z) takes values in U(S). Since ¢(o) is in U(L) we may write ¢(s) =
asP®) where as is in U(S) and B(s) is an integer, and = denotes the prime
element of S. Define now the map ¢,:G,—>U(L,) by ¢,(s) = IE®
where & denotes the image of s under the natural map of G, onto
G, |G, =G, and II denotes the prime element of S,,. Define the element
g of Z*G,,U(L,)) by

g(o" 7) = fw(ay T)¢w(67) / ¢w(d)¢:1(7)

where f, denotes the image of f under the inflation map Z¥G,U(L))—>
Z%Gy,U(Ly)). The central simple k-algebra 4(g,L,,G,) shall be denoted
by 31,. The next three propositions present properties of the 2-cocycle g.

ProrosITION 3.3. The element g defined above is in the image of the natural
maﬁ Zz(Gw’ U(Sw)) g ZZ(Gw’ U(Lw)) .

Proof. Using the method of Prop. 2.4 one can verify that g¢” takes
values in U(S,), from which it follows at once that g is in the image of
the natural map Z%G,,U(S,))—> Z%G,,U(L,)).

ProrosiTioN 3.4. The 2-cocycle g defined above has the following properties

i) g(a, p) =1 for every o in G, and p in G,
i) glo, p)=1 mod (I1?7Y) for every ¢ in G, and p in G,
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iii) g is in the image of the inflation map Z*G,U(S)) —> ZXG.,, U(S)) where
g denotes the image of g under the natural map Z%G,,U(S,)) —> Z¥G,,U(S)).

Proof. As in the proof of Prop. 2.5 one can easily show that (1) =0
where 1 denotes the identity element of G. Now let ¢ denote an element
of G, and p an element of G,. By the definition of f,, we have f,(s, p)
= f(d, p) =1 where  denotes the image of ¢ under the natural map of G,
onto G, so that g(s, p) = ¢,(00) /] $u(a)pa(p) = IE@D | TIEOG(TIED),  Since
p) =0, it follows that g(s, p) =1.

In order to prove statement ii), consider now an element s of G, and
an element p of G,. The definition of g together with the fact that
A1) = 0 implies that g(s, p) = [II [ o(I[)1#» .  According to Prop. 3.1 we have
o(ll) = II or o(Il) = I + &'z where ¢ is a primitive (p — 1)** root of unity and
i is an integer satisfying l1<<i<p—1. If o(I)=1I it is clear that
glo, p) = 1; so consider the case when () = Il + &'z for some i. Observe
that = = II? — 2?1 since F(II)=0. Substituting this expression for = one
then obtains that ¢(II)/ II = (Il + &%)/ II = 1 + 4117t — =?7%), so that (T1)/II
=1 mod (M**). We may now conclude that g(s, p) =1 mod (II?"").

For the proof of part iii) we first observe that g(s, p) = §(p,s) =1 for
every ¢ in G, and p in G, according to parts i) and ii) of this proposition.
Using this observation it is easy to verify that the map q: GXG—>U(S)
defined by ¢(3, g) = §(s, p) is an element of ZZ(G, U(S)) in the preimage of g.

ProposiTioN 3.5. For cach non-trivial element = of G, there exists an element
¢ of G, for which g(z,6)=1 mod (II*™*) and ¢(z,s) %=1 mod (II7).

Proof. Let B: G—>Z be the function used in the definition of the
2-cocycle g, and let & denote the image of the element ¢ of G, under
the natural mapping of G, onto G. We shall show first that there exists
an element ¢ of G, such that (&) is relatively prime to p. We shall then
use the equality g(r, o) = (II8(®) [ ¢(II#@®) to show that g(s, s) 3= 1 mod (117).

We now show that there exists an element s of G, for which
pg)E=0mod (p). As in Prop. 2.6 the method of proof is to assume that
g(@)=0mod (p) for every ¢ in G, and then contradict the assumption on
the Brauer number of 31, where 3! denotes the central simple k-algebra
4, L,G). If g(@6)=0 mod (p) for every ¢ in G,, then each integer A(5)
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may be written in the form g(G) = pr(é) for some integer 7(s). Define
¥:G—>U(L) by ¥(¢) =nr®, One can verify that the 2-cocycle g of
Z¥G,U(L)) defined by q(a, p) = flo, p)¥(sp) | ¥(a)¥?(p) is cohomologous to f
and takes values in U(S), so that [f] is in the image of the natural map
H(G, U(S))—> HXG, U(L)). This contradicts the assumption that the
Brauer number of $% is p. Therefore there must exist an element ¢ of G,

for which () 2= 0 mod (p) .

Finally we show that this o satisfies the assertion of the proposition.
Part ii) of Prop. 3.4 implies that g(r,s)=1 mod (II?"'), so it remains to
show that g(¢)=#=0mod (p) implies that g¢(r,¢)=%=1 mod (II?). We have
already observed that g(z,0) = [II[z(II)]* (see the proof of part ii) of
Prop. 3.4). Let u=<(II)/I. Since r was assumed to be non-trivial we
must have that <(Il)= Il 4 &7 for some integer i. The equality u =1
+ (P —7?1) implies that #==1 mod (II?). It is easy to see that
(@ =1 mod (II?) by writing #f® —1 in the form «f@® —1=(u—1)
O R L For the fact that p(G) is relatively prime to »
implies that #f(@®-14...41 is in U(S,), so that #f@ =1 mod (II?) if
and only if #=1 mod (II?). We may now conclude that g(z,s) %=1 mod
(I7) .

Since the 2-cocycle ¢ is in Z%G,,U(S,)) we may consider the crossed
product 4, = 4(g,S,,G,). Observe, moreover, that 4, is an R-order in
>lw. In order to construct the desired order I',, containing 4,, we first
introduce some notation; throughout the rest of this section ¢ shall denote
a fixed generator of G, and ¢ shall denote the primitive (p —1)* root of
unity defined by «(II) = Il + éx. Consider the element ¢ of Y1, defined by
0= {rl—(uz —1). Now I, is defined to be the ring obtained by adjoining
the element ¢ to 4,, ie. I'y, = 4,[0]. Our main object is to prove that
I, is a maximal order whose unique maximal two-sided ideal is generated

by the prime element II of S, .

The next two lemmas shall be useful in proving that I', is in fact an

order over R in X, .

LEMMmA 3.6. For 1<i<<p—1, let a; be the element of 4(1,S,,G,) defined
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by a; = —I:— %_:1>ur where u is the element of U(S,) defined by «(11) = ull.

Then (8 — ap_y) (6 — apy)s + (0 —a@)0=0.

Proof. Observe that each element a; of 4(1,L,,G,) defined above is in
fact an element of the crossed product 4(1,S,,G,) (apply part iv) of Prop.
3.2).

. . . H i+1

The first step is to prove inductively that (0 —a;) - - - (0 —a,) 0 =<7>
(= —1)***.  When i =1 we obtain by an easy computation the equalities

IT\2 11 \?
(0 —a)=0*—ab= (4”') [(wore — 1) — (0 — Vu<) (e — 1) = ( - ) (ur—1)2.  For

—
. . I \i+t )
the inductive step we assume that (9 —a;): « - (6 —a,)0 = (@) (e — 1)0%%,

w
Then
(0= @) (0=~ 0= a0 = 0 — @) () (e — 1)°7*

= ()" frre — 1) = (@1 = Daee] (e — 1P

(1)

and this completes the inductive step.

From the above we may now conclude that (6 —a,_ ;) - (0 —a;))0 =
<%)p (e —1)?. But (u-—1)? =0 since (u:)” =1 and % has characteristic
p. Therefore (0 —a,_y) - - (6 —a))0=0.

Lemma 3.7. The ring I'y is generated as both a left and right 4(g, S,,
G,)-module by {1,6, ...,0"'}.

Proof. As in Prop. 2.11 we first prove that I",, is generated as a right
4,-module by powers of . We shall obtain the inclusion 4,(9) c (1, 6)4,, by
showing that (a,u,)6 is contained in (1,8)4, for every element p of G, and
a, of S,,. Using the definition of ¢ one may obtain by a straightforward
computation the equality

(@otee)0 = 1L e auv | g, p)) — vecolito

where v is the element of U(S,) defined by p(II) =vII. From part ii) of
Prop. 3.4 we may obtain the congruence <7*(1/g(z,p))=1 mod (II?7),
The equality of ramification groups G, = G,_, (see Prop. 3.2) implies that
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v epv) =ap,v mod (II?). These two congruences together imply that
Hap [ 9le, p) = mod (I, so that < H(apw/gle, p) = apw + T~ for
some element s of S, . Substituting into the above expression for (e,u,)d
we may then obtain the equality (a,u.)0 = l:%(uz — 1)vapup] + [—gu,sﬂp“up].
The first summand is in (9)4,, and the second is in 4,, so that (apu,)d is
in (1,60)4, .

It can now be proved inductively that 4,(6") is contained in (6:-1,6%4,,
for every positive integer i. Since @ satisfies an equation of degree p over
4(1, S, G,) (see Lemma 3.6) we conclude finally that I, is generated as a
right 4,,-module by {1,6, ..., 6°'}. A similar argument shows that I,
is generated as a left 4,-module by {1,6, ...,6°1}.

ProrositioN 3.8. The ring I',, is an order over R in the central simple k-
algebra 3, .

Progf. The proof of this assertion follows from Lemma 3.7 by an
argument similar to that of Prop. 2.12.

We can prove that I', is an hereditary order by proving that its
radical is I',-projective.

LemMa 3.9. Let 11 denote the prime element of S,,. Then
iy ur,=r,u

i) 1IL is an element of rad 4,

i) rad 4, = (O, ur—1)4,

wv) I',qind,=rad 4,.

Proof. Since I', is generated as a left 4,-module by the elements
{1,6,...,6°"} (Lemma 3.7) and 14, = 4,11, it suffices to prove that 4II
is in III", in order to establish the inclusion I, II < III',.  The equality

o1 = 116 + %I‘ («(II) — M)ur may be obtained by an easy computation. It is

easy to verify that the element %(’Z‘(H) — M) is in S, using the fact that
there is a discontinuity in the sequence of ramification groups G; at i =
p—1 (Prop. 3.2). Therefore ¢11 is in 1[I, and I',T is contained in
nr,. A similar computation yields the opposite inclusion. Therefore
r,i=1r,. By Lemma 1.4 of [12] we may now conclude that II is in
rad I',. This completes the proof of statements i) and ii).
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The proof of part iii) is entirely similar to the proof of part iii) of
Lemma 2.14.

It remains to prove assertion iv). Lemma 2. 13 implies that I",,II N 4,
is contained in rad 4, since II is in rad I', according to part ii). To
obtain the opposite inclusion we make use of the fact that rad 4, =
(I, —1)4,,. The definition of ¢ implies that #u:—1 is in II*7'[, =
I, 11771, from which it follows that rad 4, is contained in I, 1I.

By Lemma 3.9 we may now form the residue class ring I",, / I",, 1 which
shall henceforth be denoted by I',. An argument similar to that of
Lemma 2.16 shows that I, is R-algebra isomorphic to 4(g, S,G)[§] in a
natural way where § denotes the residue class of 4 modulo I, 11 .

In a manner similar to that of Section 2, the semi-simplicity of I,

shall follow from that of its subring S[7].

Lemma 3.10. For 1<<i=<p—1 let a; denote the element of 4(1,S,,G,)
defined in Lemma 3.6, and let a; denote the image of a; in I',. Then a,=E&i
where & denotes the primitive (p — 1)°° root of umity defined by (1) = 1 + éx.

Progf. From the definition of a; we obtain the equality a; = %(u —1)

i1 ...
(—q+—lﬂ>ur Since %(u——1)=~i—( (O)— 1) =& we may write

u
-1 ..
a, =& (%) ur. The congruence #r =1 mod I', I holds because

6isin I',. And #=1 mod IIS, since G,_, = G, (see Prop. 3.2), so that
#i~14..-4+1=4 mod IIS,. Combining these observations we may now
conclude that a, = &;.

LemMa 3.11.  The ring T, is a semi-simple ring.

Proof. The first step is to observe that the subring S[4] of [, is a
commutative semi-simple ring. Consider an element @ of S for which
S=R(a). In order to establish the commutativity of S[#] it suffices to
prove that @ =6a. Now from the definition of # we obtain the equality
fa = %(T(d)ur — &) where « is an element of S, in the preimage of @. It
is easy to see that the congruence ¢(a)=a mod (II?) implies that fa = af
mod I',1I. In order to prove that S[§] is semi-simple we point out that
a computation similar to that of Lemma 2.16 may be used to show that
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S14] is a free S-module with free basis {1,4,...,67'}. From this it
follows that S[d] is isomorphic to the factor ring S[Y]/(H(Y)) where H(Y) =
(Y —dpy) - -Y—a)¥. Since 4, ==£& according to Lemma 3.10, we see
that a;, =a; if and only if i=j, so that H(Y) is a polynomial without
repeated roots. We may now conclude from the Chinese Remainder
Theorem that S[Y]/(H(Y)) is isomorphic to a direct sum of p copies of S.
This completes the proof that S[#] is semi-simple.

An argument similar to that of Lemma 2.16 C shows that I, is a free
left S[§]-module with free basis {#s} where ¢, ranges over the elements of
G. Using this fact one can now establish by the method of Lemma 2.17
that I, is a semi-simple ring.

ProrosiTION 3.12. The ring I',, is an hereditary R-order with radical I',1I .

Proof. Since I is in rad I",, and I, [ ", 11 is semi-simple it follows that
rad I', =I',71. Thus I', is an hereditary order by the Corollary to Thm.
2.2 of [4].

LemmA 3.13.  The ideal ', 11 is the unique maximal two-sided ideal of T, .

Proof. In order to prove that I, II is the unique maximal two-sided
ideal of I, it suffices to prove that the semi-simple ring I, is in fact a
simple ring, and we do this by studying the idempotents in the center C(I",,)
of I, .

An argument similar to that used in Lemma 2.19 shows that C(I",) is
contained in S[d]. It is easy to see that the idempotents of S[#] are
already present in R[§]. For consider the polynomial H(Y)= (¥ —
dp-)+ + (Y —a,)Y of S[Y] and recall that the equation H(Y) =0 is satisfied
by §. Lemma 3.10 implies that the &, are in U(R), so that H(Y) splits
into p (distinct) linear factors in R[Y]. Using the Chinese Remainder
Theorem once again, we conclude that R[§] has precisely » simple com-
ponents. Since R[§]c S[F] is an inclusion of commutative rings, we may
now conclude that the idempotents of S[f] are already present in R[4].

We now use Prop. 3.5 to prove that the intersection C(I',) n RI[A] is
contained in . The proof is by contradiction. ‘ Suppose that 2= 317,6°
is a non-zero element of C(I",) N R[], where the 7, are in R and ¢ is the
largest integer for which »,=:0. Prop. 3.5 implies that there exists an



EQUIVALENCE CLASSES OF MAXIMAL ORDERS 165

element ¢ of G, such that g(r,6)=1 mod (II?*) and g(r,s)=1 mod (II?).
Therefore we may write g(r,0) =1+ wII®* for some element w of U(S,).
Using the definition of 4 together with the fact that G, is contained in the
center of G, (Prop. 3.2) one may obtain by an easy computation the
equality us0 = (§ + w)us. Since 2 is in C(I",) we must have us1 = us, 0O
that 217.0° =317+ w)'. This equality together with the fact that
{1,8,...,67'} is a free basis for R[§] over R implies that »,, =r.; +
twr,. Therefore 7,=0 and this contradiction establishes the desired
inclusion.

Combining the above observations, we may conclude that the idempotent
elements in the center of I, are contained in R. Therefore the semi-
simple ring I, is a simple ring, and I, II is the unique maximal two-sided
ideal of Iy, .

The arguments used in Props. 2.22 and 2.23 may now be used to prove
the next two propositions.

ProposiTioN 3.14. The R-order I',, in the central simple k-algebra 33, has
the following properties

1) Iy, s a maximal order with radical I',TI

i) #(I'y | R) =7(Sw/R).

ProposITION 3.15. Let k denote the quotient field of a complete discrete rank
one valuation ring R whick is an equicharacteristic ring of characteristic p =0, and
let '3\ denote a central simple k-algebra for which S5 is in V(). If 33 has
Brauer number p, then a maximal order in Y is not equivalent to a crossed product
over a tamely ramified extension of R.

Combining Propositions 2.23 and 3.15 we obtain the following theorem.

THEOREM 3.16. Let k denote the quotient field of a complete discrete rank
one valuation ring R such that the characteristic p of R is non-zero, and let 3 denote
a central simple k-algebra for which 33 is in V(k). If 33 has Brauer number p,
then a maximal order in Y\ is not equivalent to a crossed product over a tamely
ramified extension of R.

4. Maximal orders and the Brauer group. Let k& denote the
quotient field of a complete discrete rank one valuation ring R. In this
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section we prove the main theorem of the paper, namely that a maximal
order in a central simple k-algebra >} is equivalent to a crossed product
over a tamely ramified extension of R if and only if 31 is in T(k). Both
the necessity and sufficiency parts of the proof depend upon the main
theorem on crossed products and maximal orders presented by the author
in [11].

The following lemma shall be used to prove the sufficiency of the
condition that $% be in T(%).

LemMA 4.1. Let k denote the quotient field of a complete discrete rank one
valuation ring R. Let L be an unramified extension of k, and 3\ = 4(f,L,G) a
crossed product for which SV is in T(k). Then there exists an extension L, of L
such that

1) L, ts a tamely ramified Galois extension of k

i) [fe] ¢ in the image of the matural map H¥G, U(S,)) —> H¥G,, U(L,))
where S, is the integral closure of R in L,, G, denotes the Galois group of L, over
k, and f, is the image of f under the inflation map Z*G,U(L)) —> Z%(G, U(L,)).

Proof. Let e denote the Brauer number of 5i. Since e is relatively
prime to p, it follows that the extension L(£) of L is unramified where &

denotes a primitive e™

root of unity. Next let II denote a root of the
polynomial X*— = where = is the prime element of R. Define L, = L(¢, 1I).
It is easy to verify that the field L, is a tamely ramified Galois extension

of k.

Let S denote the integral closure of R in L, and S, the integral closure
of R in L,. It remains to construct a 2-cocycle g of Z¥G,, U(L,)) such
that g is cohomologous to f, and such that g is in the image of the natural
map Z¥G,, U(S,)) —> Z¥G, U(L,)). Since the image of [f] in H*G, Z*) has
order e, it follows that there exists a map ¢:G—>U(L) such that the
2-cocycle 2 of Z%G,U(L)) defined by h(s,z) = f*(a,c)¢(0c) ] $(a)p°(c) takes values
in U(S). Write the element ¢(s) of U(L) in the form ¢(s) = asnf(®> where
as is in U(S) and f(e) is an integer. Define the map ¢,: G,—> U(L;) by
é:{o) = TIB@® where & denotes the image of s under the natural map of G,
onto G. Define the element g of Z%G, U(L,) by g¢(s7) = fio,7)¢.(oz)/
#:(a)pi(r) . Proceeding as in the proof of Prop. 2.4 one may easily verify
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that ¢%(¢,7) = h(s,t)asal [ @sc from which it follows that the 2-cocycle g takes

values in U(S,).

PROPOSITION 4.2. If 3V is a central simple k-algebra for which 33 is in T (k),
then a maximal order in 3 is equivalent to a crossed product over a tamely ramified
extension of R.

Proof. Consider a representative 4(f, L, G) of 31 where L is an unramified
extension of k. Since 31 is in T(k) we may consider a field L, satisfying
the conclusion of Lemma 4.1. Theorem 2.3 of [11] now implies that a
maximal order in 4(f,L,G) is equivalent to a crossed product over a tamely
ramified extension of R.

In order to prove the main theorem in the other direction we first prove

two propositions.

ProposiTioN 4.3. If a central simple k-algebra 3% is equivalent to a crossed
product over a tamely ramified extension of k, then 33 is in V(k).

Proof. According to the hypothesis we may consider a crossed product
4(f, L, G) equivalent to 3] for which the extension L of k is tamely ramified.
Let G, denote the inertia group of L over k and let f, denote the image
of f under the restriction map Z¥G,U(L))—> Z¥G; U(L)). We show first of
all that f may be replaced by a 2-cocycle g whose restriction to G, x G;
is normalized in the sense of cyclic groups. Consider a 2-cocycle g, in
Z¥G,U(L)) which is cohomologous to f; and which is normalized in the
sense of cyclic groups. Let ¢,: G;,—>U(L) be a map for which g,(s,7) =
Filo, )¢ 1(0)p7(z) [ ¢1(07) for ¢ and z in G,;. Extend ¢, to a map ¢:G—>
U(L) by defining ¢(s) = ¢,(0) for ¢ in G; and é(s) =1 for ¢in G—G;.
Then the 2-cocycle g of Z%G,U(L)) defined by g(a,z) = f(s,7)p(0)6%(z) [ $(o7)
is cohomologous to f and its restriction to G, X G; is normalized in the
sense of cyclic groups. Since [f]=[g] it follows that 4(f,L,G) is k-algebra
isomorphic to 4(g,L,G).

Let L, denote the fixed field of G, and let a denote the element of
U(L;) which defines the 2-cocycle g,. Since L is a tamely ramified inertial
extension of L,, the natural map H¥G;, U(S))—> H¥G,, U(L)) is an
epimorphism, where S denotes the integral closure of R in L (see the proof
of Cor. 2.4 of [11]). We may therefore assume that ¢ is in U(U) where U
denotes the inertia ring of L over k.
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We proceed to construct an unramified extension of L which will give
rise to an unramified splitting field of 31. Let e denote the order of G,
and consider the element @ of U({). Denote the order of ¢ in U(U)/
[UWD)]* by e/m. There exists an element ¢ in U(U) such that @ =™, and
the polynomial X¢7 — g is irreducible in U[X] (see the proof of Prop. 2.2
of [10]). Applying Hensel’s lemma we may conclude that there exists an
element ¢ in U(U) for which ¢™ =a. Observe that the polynomial P(X) =
X™~—¢ is irreducible in L[X], and let L(a) be the field obtained by
adjoining a root « of P(X) to L. Since L; contains a primitive ¢'* root
of unity, it is clear that L(a) is a Galois extension of £. It is easy to see
that L(«) is an unramified extension of L. For let S denote the integral
closure of R in L and consider the ring S[a] where the brackets denote ring
adjunction. According to Cor. 2 p. 66 of [7], the different D of S[a] over
S is the principal ideal (P’(e)). Since P'(X) = (e /m)X/ -1 it follows that
D = S[a] since (p,e/m)=1 and « is a unit in S[e]. Hence S[a] is an
unramified extension of S and is therefore integrally closed in L(a).

We establish some notation which shall be used in the remainder of
the proof. Let G. denote the Galois group of L(e) over k; let Gr, denote
the inertia group of L(a) over k, and let Lr, and U. denote the inertia field
and the inertia ring (respectively) of L(«) over k. Finally, denote by g. the
image of g under the inflation map Z¥G, U(L))—> Z*G,, U(L(a))) and observe
that the crossed product 4(gs, L{a), G<) is equivalent to 4(f,L,G).

The extension L(a) of L has been constructed so that g. shall be
cohomologous to the trivial 2-cocycle on Gr, X Gr,.  For since the image
of Gi1, under the natural map of G« onto G is G;, it follows from the
definition of the inflation map that g, is defined by the element a of U(U)
where g, denotes the image of g under the restriction map Z*G., U(L(a))) —>
ZYGr,U(L())). It remains to show that ¢=1 mod N(U(L(a))) in U(Lz,)/
N{U(L(a))). Since a°=a and « is in U{U.) we have that N(a) =a, and
therefore g, is cohomologous to 1.

Now we may complete the proof of the proposition. Since HYG,,
U(L(«))) = (1) according to Prop. 2 p. 158 of [7] it follows from Prop. 5 p. 126
of [7] that the sequence

inf

(1) —> HXG4 | G1oy U(L1,)) —> H¥Go, U(L(a))) —> H*(Gr1o U(L(a)))

is exact. Therefore the fact that res [g.] = [1] implies that there exists a 2-
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cocycle & in Z¥G./Gr1,, U(L1,)) such that inf [#] =[g.]. Now the crossed
product 4(h, L1,, Go | G1,) is equivalent to 4(g,, L(a),G,) and therefore to 3.
Since Lz, is an unramified extension of k, we have proved that 3 is in V(%) .

PrOPOSITION 4.4. Let k denote the quotient field of a complete discrete rank one
valuation ring R, L a finite Galois extension of k with Galois group G, and f an
element of ZG,U(L)). If a maximal order I' in A(f,L,G) is equivalent to a
crossed product over a tamely ramified extension of R, then a maximal order T, in
A(f*, L, G) s equivalent to a crossed product over a tamely ramified extension of R for
every positive integer x .

Proof. Suppose that I" is equivalent to the crossed product 4(g, S G,)
where S, is a tamely ramified extension of R, and G, is the Galois group
of the quotient field extension L, of k. The first step is to prove induc-
tively that the central simple k-algebra 4(f7, L,G) is equivalent to 4(9*, L,, G,).
For x=1 the assertion is trivial. So assume now that 4(f*%,L,G) is
equivalent to 4(¢9**, L., G,). Now 4(f"',L,G)®,4(f,L,G) is equivalent to
4(f*, L, G) and similarly 4(g°*, L,, G;)®,4(g, L., G;) is equivalent to 4(¢%, L, G,)
(see Thm. 8.5 A p. 86 of [1]). We may conclude therefore from the
induction hypothesis that 4(f%, L, G) is equivalent to 4(¢”, L., G,).

A maximal order I", in 4(f°,L,G) is equivalent to a maximal order 2,
in 4(g° L, G,) according to Lemma 2.1 of [11]. However, the fact that S,
is a tamely ramified extension of R, together with the fact that g is in
ZXG,, U(S,)) implies that 2, is equivalent to a crossed product over a tamely
ramified extension of R by Thm. 2.3 of [11].

Now we may complete the proof of the main theorem.

TueOREM 4.5. Let k denote the quotient field of a complete discrete rank one
valuation ring R, and let I' be a maximal order in a central simple k-algebra 3.
Then I' s equivalent to a crossed product over a tamely ramified extension of R if
and only if the Brauer class 33 is in the subgroup T(k) of B(k).

Proof. If 3% is in T(k), then a maximal order in 3! is equivalent to a
crossed product over a tamely ramified extension of R according to Prop. 4.2.
On the other hand, assume now that I is equivalent to a crossed
product over a tamely ramified extension of R. Then S is in V(k) accord-
ing to Prop. 4.3, so that 31 may be represented by a crossed product
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A4(f,L,G) where L is an unramified extension of k. We prove by contradic-
tion that the Brauer number » of 3% must be relatively prime to p. The
assertion is trivial when R has characteristic zero. We assume therefore that
n is divisible by char R = p=:0, and write » in the form » = mp® where m
is relatively prime to p and ¢=1. Consider the central simple k-algebra
SVp = 4(f7/? L,G) and observe that the Brauer number of 33, is p. If a
maximal order in 4(f,L,G) were equivalent to a crossed product over a
tamely ramified extension of R, then a maximal order 2 in 4(f7? L,G)
would be equivalent to a crossed product over a tamely ramified extension
of R according to Prop. 4.4. But £ cannot be equivalent to such a
crossed product because the Brauer number of 3., is » (see Thm. 3.16).
This contradiction completes the proof of the theorem.

COROLLARY 4.6. Let k denote the quotient field of a complete discrete rank one
valuation ring R whose residue class field R is perfect, and let I' denote a maximal
order in a central simple k-algebra Y. Then the following statements are equivalent

1) I is equivalent to a crossed product over a tamely ramified extension of R
il) I' ts equivalent to a crossed product

iil) the Brauer number of S% is relatively prime to the characteristic of R.

Progf. The equivalence of i) and ii) follows from Theorem 2 of [6] since
a maximal order is hereditary and R is perfect. The equivalence of i) and

iii) follows from the theorem.

COROLLARY 4.7. Let R denote a complete discrete rank one valuation ring. If
R is an equicharacteristic ring of characteristic zero, then every maximal order over R
is equivalent to a crossed product over a tamely ramified extension of R .

Proof. This assertion follows immediately from Thm. 4.5 since T(k) =

B(k) when R is an equicharacteristic ring of characteristic zero.

CoRrROLLARY 4.8. There exist maximal orders which are not equivalent fo

crossed products.

Proof. Let R denote the ring of p-adic integers Z,, and k the quotient
field of R. In Remark 1.5 we observed that T(k) is properly contained in
V(k). Since R is perfect, it follows from Cor. 4.6 that not every maximal
order is equivalent to a crossed product.
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