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Introduction, Let k denote the quotient field of a complete discrete
rank one valuation ring R. The purpose of this paper is to establish a
relationship between the Brauer group of k and the set of maximal orders
over R which are equivalent to crossed products over tamely ramified
extensions of R.

The Brauer group B{k) of k is the union of groups H2(G, U{L)) where
L ranges over the set of all finite Galois extensions of k and G denotes the
Galois group of L over k (see pp. 206-207 of [2]). The subset V{k) =
U H2{G, U(L)) where L ranges over all unramified extensions of k forms a
subgroup of B(k). In Section 1 we associate to each element of V{k) a
positive integer called its Brauer number. Then we define T(k) to be the
set of elements of V{k) whose Brauer numbers are relatively prime to the
characteristic of R, and prove that T(k) is a subgroup of B(k). The object
of the paper is to prove the following main theorem.

THEOREM. Let k denote the quotient field of a complete discrete rank one

valuation ring R. A maximal order over R in a central simple k-algebra 2 is

equivalent to a crossed product over a tamely ramified extension of R if and only if

the Brauer class of 2 is in the subgroup T{k) of B(k).

The method of proof employs the theory of crossed products, and entails
the construction of certain wildly ramified Galois extensions of k. For this,
a separate treatment of the equicharacteristic case and the case of unequal
characteristic is necessary (Sections 2 and 3 respectively).

We obtain as a corollary to the main theorem the fact that if R is an
equicharacteristic ring of characteristic zero, then every maximal i?-order is
equivalent to a crossed product over a tamely ramified extension of R. We
then exhibit the existence of a maximal 7?-order which is not equivalent to a
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crossed product in the case when R is a complete discrete rank one valuation

ring with perfect residue class field.

The following notation shall be in use throughout the paper. The

multiplicative group of units of a ring R shall be denoted by U(R), and

the radical of R by rad R. Unless otherwise stated, R shall always denote

a complete discrete rank one valuation ring, π its prime element, and k its

quotient field. The definitions of crossed product and hereditary order may be

found in [10]. For the definitions of tame and wild ramification we refer

the reader to [9]. The definition of the ith ramification group is given on

p. 73 of [7].

For the convenience of the reader we define the notions of equivalence

which shall be used in the paper. A pair of central simple algebras Σi a n ( l

Σ 2 over a field k are said to be equivalent if there exist finite dimensional

vector spaces Vx and V2 over k together with a ά-algebra isomorphism

71* Vx) ~ Σ2 ®R Homfc(F2, V2).

The set of equivalence classes of central simple algebras over a field k forms

an Abelian group called the Brauer group of k. The inverse of the equiva-

lence class determined by the central simple algebra Σ is the equivalence

class determined by its opposite algebra Σ° (see Section 5 of [3]).

Let R denote a discrete rank one valuation ring. The set of maximal

orders Mf{R) over R forms a subset of the set Hf{R) of hereditary orders

over R (see [4]). In [3] Auslander and Goldman have defined a pair of

hereditary i?-orders Λ i and Λ 2 to be equivalent if there exist finitely generated

free i?-modules Ex and E2 and an i?~algebra isomorphism

E19 Eλ) ~ Λ2 ®R HomΛ(£2, E2).

An hereditary order equivalent to a maximal order is itself a maximal order.

The set of maximal orders in a fixed central simple algebra are isomorphic.

Finally we mention that the equivalence relation on the set of maximal orders

over R is induced by the Brauer group of the quotient field k of R. That is

to say, if Σi a n d Σ2 a r e equivalent central simple algebras over the quotient

field of a discrete rank one valuation ring, then the maximal orders of Σi

are equivalent to the maximal orders of Σ 2 (see Lemma 2. 1 of [11]).

1. The Brauer number . Let k denote the quotient field of a comp-

lete discrete rank one valuation ring R and consider the subset V(k) of the
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Brauer group B(k) of k defined by V(k) = U H2(G, U(L)) where the union is

taken over the set of all unramified Galois extensions L of L It is well

known that V{k) = B{k) when R is perfect. For an example to show that

V{k) need not equal B(k) see Exer. 2 p. 224 of [7].

PROPOSITION 1.1 The set V(k) is a subgroup of the Brauer group of k.

Proof Consider crossed products Σ i = ̂ (/i> L19 GJ and Σ2 = Δ{f29 L29 G2)

where the Lt are unramified Galois extensions of k and Gt denotes the Galois

group of Lt over k. In order to prove the proposition it suffices to show

that the Brauer class of Δ(f19 Ll9 GJ ®fc Δ(f29 L29 G2)° is in V{k) where

Δ{f29 L29 G2)° denotes the opposite ring of J(/2, L2, G2).

The compositum LXL2 of Lx and L2 is an unramified extension of k

according to Cor. 3-2-8 of [9]. For i = 1,2 let gt denote the image of fi

under the inflation map Z2{Gi9Ό{U))—> Z^G^UiL.L,)) where GλG2 denotes

the Galois group of LλL2 over k. It is well known that Δ{fί9 Li9 GJ is equi-

valent to Δ(gt9 LXL29 GχG2) for i = 1, 2 (see for example Thm. 8. 5 £ of [1]).

Therefore Σi ® Σ2 is equivalent to J(g19 LXL29 GλG2) (x) Δ{gγ9 LXL29 GιG2) since

Δ{g~21

9LιL29GιG2) represents the Brauer class of Σ 2 . The fact that Δ{gi9LxL29

GXG2) (x) Δ{gγ9 LXL29 GXG2) is equiva lent to Δ(gιg'2~
1

9LιL29GιG2) (see T h m . 8. 5 A

of [1] or pp. 404-405 of [3]) implies that the Brauer class of Σi ® Σ2 is in

V(k).

For convenience of notation we shall always denote the Brauer class in

B{k) of a central simple ^-algebra Σ by Σ We proceed to define the

Brauer number of an element of V{k). A central simple ά-algebra Σ fc>r

which Σ is in V(k) is equivalent to a crossed product Δ(f, L9 G) for some

unramified Galois extension L of k with Galois group G. Let S denote

the integral closure of R in L and consider the exact sequence of cohomology

groups

(1) — • H2{G9 U(S)) — • H2(G9 U(L)) - ^ > H2(G9 Z+) — > (1)

defined explicitly on p. 193 of [7].

DEFINITION. The Brauer number of an element Σ of V(k) is defined to be

the order of the image of the cohomology class [/] in H2{G9 Z
+) under the

map φ .
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Observe that the Brauer number of Σ is the least positive integer n such

that [fn] is in the image of the natural map H\G, U(S)) — > H2(G, U(L)).

Therefore when the Brauer number of Σ is 1, we know by Thm. 2. 3 of [11]

that a maximal order in Σ is equivalent to a crossed product over a tamely

ramified extension of R.

The Brauer number is well defined according to the next proposition.

PROPOSITION 1.2. The Brauer number of an element Σ of V(k) is independent

of the choice of representative of ^ as a crossed product over an unramiβed extension

ofk.

Proof Let Δ(f19 LX9 Gx) and Δ{f29 L29 G2) denote equivalent central simple

ά-algebras, where Lx and L2 are unramified Galois extensions of k with

Galois groups Gx and G2 respectively. Let LXL2 denote the compositum of

Lx and L2, and GXG2 the Galois group of LXL2 over k. Observe that LXL2

is an unramified extension of k • For i = 1,2 let [g^ denote the image of

[/<] under the inflation map H2{Gί9 U(Lt)) — > H2{GXG29 U{LXL2)). The

assumption that Δ{fx,LX9Gx) is equivalent to Δ(f2,L2,G2) implies that [δri] = [5r

2]

Therefore in order to prove the proposition it is sufficient to prove that

the order of φ([fx]) is equal to the order of φ*([gx]) where φ: H2(GX, U(LX))

— > H2{GX,Z
+) and φ*: H2(GXG2,U(LXL2)) — > H2{GXG29Z

+) are the maps used

in the definition of the Brauer number.

Consider the following diagram.

H2(GX9U(LX)) - ^ H2(GXG29U(LXL2))

H2(GX9Z
+) - ^ H2(GXG29Z

+).

It is easy to verify that the above diagram is commutative. Therefore, in

order to prove the proposition, it is sufficient to prove that the order of an

element of H2(GX, Z
+) is preserved under the inflation map. So consider an

element [h] of H2(G19 Z
+), and let [h*] denote the image of [h] in H\GXG29

Z+). We proceed to show that the order 5 of [h] is equal to the order t

of [**]. The inequality t ̂  s is clear. To establish the opposite inequality

we observe that since t is the order of [h*] there exists a map Ψ: GXG2 — >

Z+ such that ('&*(«, β)Y = Ψ{a) + Ψ{β) - Ψ{aβ) for all elements a and β of

GXG2. The equalities 0 = (ft*(l, l))ί = Ψ(l) + Ψ(l) - Ψ(l) imply that Ψ(l) = 0 .
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Denote the Galois group of LXL2 over Lγ by G. We next observe that

ψ(a) = 0 whenever a is in the subgroup G of GXG2. For since h* is the

image of h under inflation it follows that 0 = (h{l, 1)Y = (h*(a, a)f = 2Ψ(a) —

Ψ{a2) for a in G. Proceeding inductively one may show that 0 =

(ord a)Ψ(a) — Ψ{aord α) where ord a denotes the order of the element a of

G, and therefore Ψ(a) = 0 for every element α of G, Finally we observe

that if δc = β then Ψ(a) = Ψ(β), where a denotes the image of a under the

natural map of GλG2 onto GλG2ί G = Gx . For, writing a in the form a =

Tβ for some element r of G, and using the fact that Ψ{r) = 0, one may

obtain the equalities 0 = (h(ϊ, β))' = (h*(r, β)Y = Ψ{ϊ) + Ψ(β) - Ψ(ϊβ) = Ψ(β) - Ψ(a).

Therefore Ψ{a) = Ψ(β). We may now consider the (well-defined) map θ:

Gx — > Z+ defined by θ(a) = Ψ(a). The fact that (h(a, β)Y = θ(a) + θ(β) - θ{cφ)

implies that [hf = [1]. Therefore s^Lt, and this completes the proof.

We next define T(k) to be the set of all elements of V(k) whose Brauer

numbers are relatively prime to the characteristic of R. We adopt the

convention that every number is relatively prime to zero, so that T(k) = B(k)

when R has characteristic zero.

The following lemma shall be useful in proving that T(k) is a subgroup

of V(k).

LEMMA 1.3. Let 2 denote a central simple k-algebra such that 2 ^ in V(k),

and let 2° denote the opposite ring of 2 Then 2 anά Σ° have the same Brauer

number.

Proof. Let Δ(f, L, G) be a representative of 2 ^vith L an unramified

Galois extension of k. The A -algebra isomorphism J(/, L, G)° ̂  Δ(f~ι

9 L, G)

implies that 2° m a y be represented by i(/~S L, G). Consider the map

φ:H2(G,U(L)) — > H2(G,Z+). Since φ([f]) and ̂ ([Z"1]) have the same order

it now follows that 2 and 2° have the same Brauer number.

PROPOSITION 1.4. The set T{k) is a subgroup of V{k).

Proof. Let 2 i = Λ(/i> L19 GJ and 22 = ̂ (Λ> 2̂> G2) be central simple

A -algebras whose Brauer classes 2 i a n ( i Σ2 a r e ίn T(k), and let nλ and n2

denote the Brauer numbers of 2 i a n ( l Σ2 respectively. Form the tensor

product 2 - Σ i ® Σ 2 a nd recall that the Brauer number of 22 is n2 according

to Lemma 1. 3. To prove the proposition it suffices to show that the

Brauer number of 2 is relatively prime to the characteristic of R.
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For i = 1,2 let gt denote the image of ft under the inflation map

Z2{Gi9 U{Li)) — > Z^G&v UiLiLz)) where LλL2 is the compositum of Lx and

L2 and GXG2 is the Galois group of LXL2 over k, and observe that 2 is

equivalent to Δ(gιgγ9L1L1,GιGz) . Consider the map φ: H\GιG2,U{L1L2)) — >

H^GyG^Z*) defined at the beginning of this section. Since (0([flrj))ni = [1]

and (φilgΫW* = [1] it is clear that {φ{[g1gl1]))n^ = [1] so that the Brauer

number of 2 divides nxn2 and is hence relatively prime to the characteristic

of R.

REMARK 1.5. The subgroup T(k) need not equal V(k).

For consider the following example. Let R = Zp be the ring of p-adic

integers, and k = Qp the quotient field of R. It is well known (see for

example Prop. 3-2-12 of [9]) that there exists a (unique) unramified extension

L of k with degree p . It is of the form L = k{ζ) where ζ denotes a primi-

tive {pp — l)st root of unity. Furthermore, L is a cyclic Galois extension of

k (see Remark 3-5-5 of [9]) and we denote the Galois group of L over k by

G . Consider now the central simple ^-algebra 2 = Ά{f, L, G) where / is the

element of Z2(G,U{L)) which corresponds to p mod N{U{L)) under the

canonical identification H2(G,U{L)) = U{k) I N{U{L)) which holds because G is

a cyclic group. It is easy to verify that the Brauer number of 2 is p

since p is not a norm from L. We may conclude therefore that T(k) is

properly contained in V(k).

We have thus defined the following chain of subgroups of the Brauer

group

B(k) -D V{k) =) T{k) D (1).

These groups shall be useful for studying equivalence classes of maximal

orders over R.

We terminate Section 1 with some remarks concerning ramification.

The ramification index of an hereditary order A over a discrete rank one

valuation ring R can be defined according to Thm. 6. 1 of [5]. For let π

denote a prime element of R. Since the ideal πA is an invertible ./f-ideal,

there exists a positive integer t such that (rad Af — πA.

DEFINITION. Let A be an hereditary order over a discrete rank one

valuation ring R, and let π denote a prime element of R. The positive



EQUIVALENCE CLASSES OF MAXIMAL ORDERS 137

integer t for which (rad AY = π A is called the ramification index of A over

R and is denoted by r(A / R).

PROPOSITION 1. 6. The ramification index of an hereditary order A over a

discrete rank one valuation ring R depends only upon the equivalence class of A.

Proof. Let Ω denote an hereditary border which is equivalent to A.

Then there exist finitely generated free ivNmodules Eλ and E2 and an R-

algebra isomorphism A®RHomR(E19 Eλ) ~Ω(g)R Homβ (E2, E2). Since

^ , ^ ) is a central separable /^-algebra it follows that md{A(g)R

^ , Eλ)) = (rad A) (x)Λ H o n i β ^ , Ex) according to the proof of Prop. 8. 6

of [3]. Therefore r{Λ ® Λ H o m ^ ^ , Eλ) / R) = r{Λ IR), and similarly r(Ω ®R

HomR(E29 E2) IR) = r(Ω IR). From the above isomorphism we may now

conclude that r{Λ / R) = r(Ω / R).

PROPOSITION 1.7. Let k denote the quotient field of a complete discrete rank

one valuation ring R, and K a finite Galois extension of k with Galois group G .

If the integral closure S of R in K is a tamely ramified extension of R, then the

ramification index of a crossed product J (/ , S, G) is equal to the ramification index of

S over R .

Proof Since S is a tamely ramified extension of R it follows that the

crossed product Δ — Δ{f,S,G) is an hereditary R-oτάeτ with radical ΠJ (see

Prop. 1. 3 of [10]), where Π denotes a prime element of S. Hence

r(ΔI R) = r(S/R).

2. The case of unequal characteristic. Let R denote a complete

discrete rank one valuation ring whose quotient field k has characteristic

zero, and whose residue class field R has characteristic p φ O . The purpose

of this section is to prove that if 2 is an element of V(k) whose Brauer

number is equal to φ, then a maximal order in Σ is not equivalent to a

crossed product over a tamely ramified extension of R.

Recall that an element Σ of V(k) may be represented by a crossed

product over an unramified Galois extension of k. Therefore, throughout

this section 2 shall denote a crossed product of the form 2 - ^(Λ L, G) where

L is an unramified extension of k, and it shall be assumed that the Brauer

number of 2 is equal to the characteristic p of R.

In order to prove that a maximal order Γ in such a central simple k-
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algebra 2 is not equivalent to a crossed product over a tamely ramified

extension ofR, we shall prove that the ramification index r(Γ / R) of Γ

over R is divisible by p, so that .Γ cannot be equivalent to a crossed

product over a tamely ramified extension according to Prop. 1. 7.

The method of proof is to reduce the problem to a study of crossed

products by constructing a central simple ^-algebra Σ w = d(g,Lw,Gw) equiva-

lent to J(f, L, G) and such that g is in Z2{GW9 U{SW)) where Sw , the integral

closure of R in Lw , is a wildly ramified extension of R. We shall then

construct a maximal order Γw in Σ w such that Γw contains the crossed

product Δ{g,Sw,Gw). Making use of this inclusion, we shall then prove

that r(Γw IR) = r(Sw / R).

In order to construct the desired crossed product Δ{g,Lw,Gw) we first

construct the Galois extension Lw of k. Let Lt denote the extension of L

obtained by adjoining a primitive pth root of unity. Observe that the

extension Lt of L is tamely ramified since its degree is less than or equal to

p — 1. Let St denote the integral closure of R in Lt. According to Prop.

3-4-2 of [9] we may select prime elements π and πt of R and St respectively

in such a way that π\ = π where e denotes the ramification index of St over

R.

Now Lw is defined to be the extension of Lt obtained by adjoining a

root Π of the polynomial F{X) = Xp — πt. Observe that Lw is a Galois

extension of k since Lw contains a primitive pth root of unity; we denote

the Galois group of Lw over k by Gw . The extension Lw of Lt is a wildly

ramified inertial extension of degree p and Π is a prime element of the

integral closure Sw of R in Lw . By virtue of Prop. 1. 2 we may as well

assume that the integral closure S of R in L is the inertia ring of Lw over k.

Before constructing the 2-cocycle g of Z2{GW, U(SW)) we summarize the

ramification properties of the extension Sw of R.

LEMMA 2.1. Let Gt denote the ith ramification group of Sw over R. Then

i) Gj is cyclic of order p

ii) Gol Gx is cyclic of order e relatively prime to p

iii) Go = Gx x GJ Gx {semi-direct product)

iv) Gt = Gj <2ftrf G ί + 1 = (1) /<?r i = a/ (p-l) where a denotes the absolute

ramification index of Lw .
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Proof. Assertion i) is clear from the definition of the extension Sw of

St. The second and third statements follow from Corollaries 1 and 4

respectively on p. 75 of [7], and the fourth statement follows from Ex. 4

p. 79 of [7].

The next lemma describes the action of the inertia group Go on the

prime element Π of Sw . According to Lemma 2. 1 we may view Go / Gλ

as a subgroup of Go.

LEMMA 2.2. Let τ denote an element of Gj and a an element of Go / Gί.

Then τ(Π) = ζΓΠ for some pth root of unity ζ Γ , and σ(U) = ζall for some eth

root of unity ξa, where e denotes the order of Go / Gλ.

Proof It is clear from the definition of Sw that the conjugates of Π

relative to St are of the form ζ ιΠ for l^i^p where ζ denotes a primitive

pth root of unity, so that r(Π) = ζ r l l for some pth root of unity ζ T .

On the other hand we know that S contains a primitive eth root of

unity ξ according to Cor. 2-2-7 of [9]. Recall that the prime elements π

of R and πt of St were chosen so that π\ = π. Hence Xpe — π is the

minimal polynomial of Π over S. The pe conjugates of Π relative to S

are therefore given by ζ ^ Π for l^i^p and l^Lj^e. If a is in Go / Gx

then σe(H) = Π from which it follows that *(Π) = ξσ(U) for some eth root of

unity ζa .

Notation. Throughout the rest of this section τ shall denote a fixed

generator of the cyclic group Gj, and ζ the primitive pth root of unity

defined by r(Π) = ζΠ .

The group Gx is a normal subgroup of G ω . For each element a of

Gw we may therefore consider the integer n[a) defined modulo (p) by the

equality aτa~ι — τn^ . The next lemma presents properties of n{a) which

shall be useful in this section.

LEMMA 2.3. Let n{σ) be defined as above. Then

i) n[σ) = 1 if and only if a = 1 for o in Go / Gλ

ϋ) a(ζ) = ζ*(<o for each element a of Gw .

Proof. Consider an element a of Go / Gλ. By the definition of n{σ) it

follows that n(σ) = 1 if and only if aτ = τo which holds if and only if <w(Π) =
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τtf(Π) since τ is in Gx and Sw = S[Π]. Let ζ, be the eeftp root of unity-

satisfying *(Π) = ζ,Π . Then <rr(Π) = <r(ζΠ) = C*C,Π and ^(Π) = τ(ζaU) =

ζ^ζΠ . Therefore #(<;) = 1 if and only if ζa — ζ, that is to say if and only

if a = 1. This proves statement i).

Now according to Lemma 2. 2 we know the conjugates of Π relative

to k Therefore if a is an element of Gw we have that σ(\Iί) = ull for

some element u of U(St). Then aτa~ι{U) = στ{TL I a'^u)) = o(ζΠ / ̂ ( K ) ) =

ζ"Π . But aτa-\H) = τ<">(Π) = ζ»C">II , so that ζ" = ζ»W.

This completes the study of the extension Sw oΐ R, and we proceed

now to construct the desired 2-cocycle g. The fact that the image of [/]

in H2(G, Z+) has order p implies that there exists a map φ: G — > U{L) such

that the 2-cocycle h of Z2(G,U(L)) defined by h{σ, p) = fp(σ, p)φ{ap) / φ{σ)φa(p)

takes values in U(S). Since φ(o) is in U(L) we may write φ(σ) in the form

φ(σ) = aσπ^a^ where aσ is in U(S) and β(σ) is an integer. Define the map

φw:Gw—>U(LW) by φw{σ) = Π'0« where ^ is the order of G0/Gx and σ

denotes the image of <? under the natural map of Gw onto G. Let fw

denote the image of / under the inflation map Z2(G, U(L)) — > Z2(GW, U(LJ),

and define the 2-cocycle g of Z2(GW, U(LJ) by

g(<*> p) = fwfa p)Φw(<7p) I ΦwMΦiip)

Observe that g is cohomologous to fw in Z2(GW9 U{LW)) by definition, so

that the central simple ά-algebra d(g,Lw,Gw) is equivalent to J(f,L,G) (see

for example Thm. 8. 5 E of [1]). The next three propositions present some

useful properties of the 2-cocycle g.

PROPOSITION 2.4. The element g of Z2(GW,U(LW)) defined above is in the image

of the natural map Z2(Gw,U{St)) •—>Z2{GW,U(LJ).

Proof We prove first that g is in the image of the natural map

Z2(GW,U{SW)) —>Z2{GW,U(LW)). In order to verify that g takes values in

U{SW) it clearly suffices to show that gv takes values in U(SW). From the

definition of g we obtain the equalities

9P(c, p) = [ / „ ( * p)φ

= [h(&, p)φ(σ)φHp) I φ(σp)] [φw(σp) I φw(σ)φa

w(p)Y

where a and p are elements of Gw, and σ denotes the image of a under
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the natural map of Gw onto G. The definition of the map φw together

with the equality I F e = π implies that φ(σ) l[φw{σ)]p = aσ and φ*(ρ) / [φi(p)V

= aσp . Therefore gv{a, p) = h{σ, ρ)aσaδp I ccσp from which it follows that gp ,

and hence g, takes values in U{SW).

It remains to show that g in fact takes values in U{St). From the

definitions of g and φw we obtain the equality

g(e, p) = /»(* p)H^^> I Π «θ t f(Π ««)

for elements a and ^ of G w . According to Lemma 2. 2 we may write

tf(Π) = ζtf£,Π where ζtf and £tf are pth and efΛl roots of unity respectively.

Since fw{ό9ρ) is in U{L) we may write fw{σ,p) = aa.pπr^'ri where α<r,p is in

ί/(S) and T(σ, p) is in Z . Using the fact that Upβ = π one may now

conclude that φeϊiσ, p) + eβ[σp) = eβ(σ) + eβ(ρ) since flr(<y, ̂ ) is in U{SW).

Combining these observations we obtain that g{σ, p) = aa,PlζfQp). There-

fore g{σ, p) is in U(St), since α .̂p is in U(S) and ζtf is in U(St).

PROPOSITION 2.5. 7%e 2-cocycle g defined above has the following properties

i) 9i<*9 p) — 1 jfof ^ ^ ? 7 ^ z w ^ w a n ά P in ̂ o

ϋ) g(σ, p) is a pth root of unity for every a in Gx and p in Gw

iii) g(a, p) = 1 for every σ in G^IG1 and p in Gw

iv) g is in the image of the inflation map Z2(GW / Gv U(S)) — > Z2{GW, U(S))

where g denotes the image of g under the natural map Z2(GW, U{SW)) — >

Z2(GW9U(S)).

Proof We first observe that β{ΐ) = 0 where β: G—>Z is the function

used to define the 2-cocycle g. From the definition of h we obtain the

equalities 1 = A(l, 1) = / p (l, I ^ T ^ W / (a&P^)2 from which it follows that 1 =

1 / «!*«!), so that β{l) = 0 .

Now let a denote an element of Gw and p an element of Go, and

observe that fw{σ, p) = fw(p,σ) = 1 by the definition of fw . Then g(σ, p) =

fJσ9p)φw{σp)/φMφσ

w(p)=U^(^^IUe^M^eβc')) = l since ^ = 1 and β(ϊ) = 0.
When a is in Gx and p is an element of Gw we have the equalities

g(*, P) = / „ ( * P)Φ*(*P)IΦU, WΦttp) = Π ^ ( ^ )

Therefore flf(<y, p) is a p t / ι root of unity since

for some pth root of unity ζtf since a is in G
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Next let a denote an element of GJG1 and p any element of Gw .

Then g(σ9 p) = Π e^)/<j(Π e^>). Since <r(Π) = ξall for some eth root of unity

£tf according to Lemma 2. 2 we may conclude that #(<?, p) — 1.

Finally, in order to prove assertion iv) it suffices to observe that g(σ, p)

— Sip* o) = ϊ for σ in Gλ and p in Gw according to parts i) and ii) of this

proposition. One can then verify that the map q: Gw / Gt x Gw IG1—>U(S)

defined by q{&, p) = g{σ, p) is an element of Z2{GW /G19U{S)) in the preimage

of g.

PROPOSITION 2.6. There exists an element a in Gw such that g{τ<a\ o) ψ 1.

Proof. We first prove by contradiction that there exists an element a of

Gw for which g(τ,σ) =V 1. For suppose that g(τ,σ) = 1 for each element a of

Gw . From the proof of part ii) of Prop. 2. 5 we know that g(τ, σ) = ζ^(J)

where ζ is the primitive pth root of unity defined by τ(Π) = ζΠ . Since e

is relatively prime to p, the assumption that g(τ, a) — 1 implies that β(σ) is

divisible by p. For each element a of Gw we may define an integer r(σ)

by β(σ) = pϊ{σ) where σ denotes the image of a under the natural map of

Gw onto Gw I Go = G . We proceed to prove that [/] is in the image of the

natural map H2(G, U(S)) — > H2(G9 U(L)) and thus contradict the assumption

on the Brauer number of J] where 2 = J(/, L, G). Return once again to

the notation used in the definition of g. We may now express the 2-

cocycle h of Z2(G, U(S)) in the form h(σ9 p) = fp{σ, p)aa9π^^^jaaπ^^a{aPπ^(.p)).

Define the map Ψ: G—>U[L) by Ψ(σ) = πrW. Then the 2-cocycle q of

Z2(G, U(L)) defined by q(σ, p) = f(σ, p)Ψ(σp) / Ψ(σ)Ψσ{p) is cohomologous to /

and takes values in U(S), so that [/] is in the image of the natural map

H2{G9 U(S)) — > H2{G9 U(L)). From this contradiction we conclude that there

exists an element ΰ of Gw for which the pth root of unity g(τ,σ) is not

equal to 1.

It remains to prove that ^ W ^ j φ l for this element σ. We first

prove inductively that g{τ\ a) = (g(τ, ΰ))1. The assertion is trivial for i — 1.

So we must prove that g{τi+1

9a) = (g(τ9 σ))ί+1 under the assumption that

•g{τ\ σ) = (g{τ9 σ)Y. From the associativity property of g we obtain the

equality g{τt+1

9σ)g{τ\r) = g{τ\τσ)gτl{τ9a), so that g(τί+1

9σ) = g^fT^g^a) since

g{τ\ τ) = 1 and g{τ9 σ) is in U{St). Now g{τ\ τa) = £(τ\ (jτ'1^"1)) so that we

obtain once again by associativity the equality g{τ\ τa)gτ\a9 τ<a~1^) =
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0(τV,rn(tfl))<7(τ\tf) from which it follows that g{τ\τσ) = g{τ\ΰ) according to part

i) of Prop. 2 .5 . Combining these results we conclude that g(τί+1

9σ) —

Q(τ%iό)g{τ,σ). The induction hypothesis now implies that g{τi+1,σ) = (g{τ9 o))i+1 .

Therefore g(τ<a\σ) = {g(τ,σ))n(-σK Since g(τ,σ) is a pth root of unity different

from 1, and n(a) is relatively prime to p, we conclude at last that

For convenience of notation we denote the crossed product Δ{g9Sw9Gw)

by Δw and Δ(g9 Lw9 Gw) by Σ w . Observe that Δw is an i?-order in Σ w .

We next construct an order Γw in 2 W containing the crossed product

Δw . Let θ denote the element of Σ w defined by θ = —=^γ-(uτ — 1). Then

Γw is defined to be the ring obtained by adjoining the element θ to Δw;

i.e. Γw = Δw[θ]. Most of this section is devoted to proving that Γw is a

maximal order and to the computation of its unique maximal two-sided

ideal.

We must first verify that the ring Γw defined above is in fact an order

in Σ w . Since Γw contains Δw, it is clear that Γw spans 2 W over k. To

prove that Γw is a finitely generated i?-module, we show next that θ satisfies

a polynomial equation over the subring J(l, Sw9 Gλ) of Δw . Observe that θ

is an element of the subring J(l, Lw9 Gx) of Σ w .

LEMMA 2.7. Let Zp denote the ring of p-adic integers, and ζ a primitive pth

root of unity. Let υ denote the element of Zp defined by the equality (1 — ζ)v-λ =

υp . Then v == — 1 mod (1 — ζ ) .

Proof Since Zp[ζ] is a tamely ramified inertial extension of Zp of degree

p — 1 and with prime element 1 — ζ , it is clear that (1 — ζ) 2^ 1 = vp for some

unit v of Z p [ζ ] . I t is a well known fact (see p. 258 of [9]) that p =

(1 - ζ) (1 - ζ 2 ) . . . (1 - ζp->). The equality 1 - C = (1 - ζ)(1 + ζ + +C*"1)

implies that <Γ = 1 mod (1 — C) for every integer i, so that 1 + C + + ζ1

= / + 1 mod (1 — C). Factoring the right hand side of the above expres-

sion for p we obtain the equality p = (1 — C)p"1(l + C) (1 + C + C2) (1 + C

+ + Cp~2). But according to the above, (1 + C) (1 + ζ + ζ2) (1 + ζ

+ . . + ςp-2) == (p _ i ) ! m o d (l — ζ). By Wilson's theorem (p. 118 of [8])

we know that (p — 1)! Ξ= — 1 mod (p). Therefore t; = — 1 mod (1 — ζ).

LEMMA 2.8. Z^ί Ct be the integer defined for l^i-^, ^ ~ by Ct =
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l iΆ _=_ί±lL_Ί (p _ 2 , ). Tfcn C, + C2 + +

Since Ct ΞΞ (- 2) (- l)?'(p - 1). - (p - * + 1) / (i - 1)! mod (p), it

suffices to observe that (p — 1) {p — 2) (p — (i — 1)) Ξ= (— l)*"1^' — 1)! mod

(p) in order to establish the fact that C ^ 2 mod (p) for 1 ̂  ί ^ (p — 1) / 2.

Therefore Cx + + C(P-i)/2 = — 1 mod (p) since there are (p — 1) / 2 sum-

mands.

LEMMA 2.9. Z^ί Δx — i ( l , S w , Gj) and consider the left Δx-submodule Δx[ux ~ 1 ,

(uτ — l)θ) of Δ{1,LW,GX) generated by the elements uτ — l and {uτ — ΐ)θ . The

element θ has the property that θv — θ is in Δγ{uτ — \,{uτ — 1)0).

Proof. We consider first the case of an odd prime p . Observe that

1 — C is in the center of J(l, Lw9 Gx). By expanding {uτ — l)p according to

the binomial theorem and combining terms with the same binomial

coefficient one may obtain the equality

for 1 < i• < (p — 1) / 2 . For convenience of notation let At = (— l)*(p — 1)

(p — i + 1) / i!. By writing u^~2i — 1 in the form Uv^~2ί — 1 = {u^-2^1 +

+ 1) (#Γ — 1) we have that

We next observe that (u^-1-1 + . . + ux

ι) — (p —20 is in Δx{ux — 1),

since there are precisely p — 2i summands in the expression u^^'1 + •

+ uτ* . This now implies that θv - — ? - ^ Σ ^ ^ p - 2θ] θ is in

^((wr — 1)0). Since p / (1 — c)^"1 = — 1 mod (1 — ζ) (see Lemma 2. 7) and

Σ^i(p — 20 = — 1 mod (p) according to Lemma 2. 8 we conclude at last

that θv - θ is in Δx{uτ - 1, (uτ - 1)0).

In the case p = 2, one can verify by an easy computation that 02 — 0 =

— 20 = — (ur — 1) and this completes the proof.

COROLLARY 2.10. The element 0 of the ring Γw has the property that θv — 0
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Proof. The proof is immediate from the lemma since the element uτ —

1 is in (1 - ζ)Γw .

PROPOSITION 2.11. The ring Γw is generated as both a left and a right

Δ{g,Sw,Gw)-module by {1,0,. ,02>-1}.

Proof. We prove first that Γw is generated as a right Δw -module by

powers of θ. The inclusion Δw{θ) c (1, Θ)ΔW may be obtained by showing

that {aPuP)θ is contained in (1,0) J w for every element p of Gw and aP of

Sw . Using the fact that g{τn^9 p) = V is a pth root of unity (see Prop.

2. 5) together with the fact that (1 — ζ*>) = u(l — ζ) for some element v of

U(St) one may obtain the equality

aPuP)θ = y - ί ~ [< ( p ) τ- M ( p ) (α, / Vv) - aP / vj UP .

Part iv) of Lemma 2. 1 implies that τ~n^{aP jψ)^ aP I ψ mod (Π(l — ζ)).

Since ^ Ξ I mod (Π(l — c)) we may write τ-<^(aP / ψ) = αP / v + sΠ(l — ζ)

for some element s of Sw . Writing u"^ — 1 in the form z^(p) — 1 =

(Mr — 1) («Γ

( P )"1 + + 1) we next obtain that

(αp^p)^ - θiufrt-1 + + 1) [aP I v) + (^ ( p ) - 1) sU

from which it may be seen at once that Jw(θ) is contained in (1, Θ)ΔW .

It now follows inductively that Jw(0*) is contained in {θi~1,Θi)Δw for every

positive integer i. Since Θ satisfies an equation of degree p over Δ(1,SW,G1)

(see Lemma 2. 9) we conclude that Γw is generated as a right Δw -module

by {1,0,. . . ,0p-1}.

By a similar computation one can show that Γw is generated as a left

Jw-module by {1,0, . . . , ^ " 1 } .

PROPOSITION 2.12. The ring Γw is an #-order in the central simple k-

algebra Δ(g,Lw,Gw).

Proof To prove that Γw is an order in Σ w - Δ(g,Lw,Gw) we must show

that Γw is a finitely generated i?-module such that kΓw = Σ w . Since Δw =

Δ(g,Sw,Gw) is an order in Σ w and Γw contains Δw, it follows that kΓw =

Σ w . And, Γw is a finitely generated i?-module since Γw is a finitely

generated J^-module and Δw is a finitely generated i?-module.
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The object now is to prove that the radical of Γw is generated by the

prime element Π of S ω . The following general observation concerning

orders shall be useful, (see Lemma 1. 7 of [13]).

L E M M A 2.13. Let R denote a discrete rank one valuation ring with quotient

field k, and let Λx and Λ2 be orders over R in the same central simple k-algebra.

If {rad Λ2) Π Λx is a two-sided ideal of Λx, then (rad Λ2) Π Λx is contained in rad

Λx. In particular if Λx is contained in Λ2, then {rad Λ2) Π Λx is contained in rad

Proof Let π denote the prime element of R. The fact that πΛ2 = Λ2π

together with the fact that Λ2 is a finitely generated left i?-module implies

that π is contained in rad Λ2 (see Lemma 1. 4 of [12]). And for similar

reasons π is contained in rad Λx.

The residue class ring Λ2 / πΛ2 is an Artin ring, so that its radical is

nilpotent. Let x be a positive integer for which (rad Λ2lπΛ2)
x = (0) and

observe that (rad Λ2)
x is contained in πΛ2. Since Ax and Λ2 are orders in

the same central simple ά-algebra there exists a positive integer y such that

πyΛ2 is contained in Λx (see p. 2 of [4]). Combining these observations we

now obtain that [(rad Λ2) Π Λx]<y+V is contained in πΛx. It now follows

from the assumption on (rad Λ2) Π Λx that its image under the natural map

of Λx onto Λx I πΛx is a nilpotent two-sided ideal. Using the fact that Λx / πΛx

is an Artin ring we may now conclude that (rad Λ2) Π Λx is contained in

rad Λx.

If Λx is contained in Λ2, then (rad Λ2) Π Λx is a two-sided ideal of Λx

and is therefore contained in rad Λx according to the above.

L E M M A 2.14. Let Π denote the prime element of Sw . Then

ii) Π is contained in rad Γw

iii) rad Δw = (Π, uτ — 1)ΔW = J W ( Π , uτ — 1)

iv) ΓWU Π Δw = rad Δw .

Proof Since ^ 1 1 = IίΔw because Δw is a crossed product over Sw, it

suffices to show that Θι Π is in HΓW for 1 < / ̂  p — 1 in order to obtain the

inclusion ΓWU c UΓW . Now ΘH = ΐlθ + y 5 _ Γ-ί(-ΠL — i l Uτ so that 0Π
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is in ΠΓω because -—-~ τ^λ ' — 1 is in St. It follows inductively that
1 — ζ L 11 J

0*11 is in ΠΓW for l^i^p — 1 so that Γwΐl is contained in UΓW . The

opposite inclusion may be obtained by a similar computation, and therefore

ΓWU = UΓW.

The fact that UΓW = ΓWU implies that Π is in rad Γw according to

Lemma 1. 4 of [12].

In order to prove iii) we first observe that the radical of the subring

Δx = Δ[l9 Sw9 Gj) of Δw is generated as a right ideal by Π and uτ — 1 where

τ denotes as usual a generator of Gx. For, the S-algebra isomorphism

J(l, S, GJ ss S[X] / (Xp - 1) induced by defining uτ — > X implies that the

radical of the commutative ring Δ{19S9GX) is generated by uτ — 1. The

natural isomorphism Δx \ ΠJj ^ J(l, S, Gt) together with the fact that Π is in

rad Jj implies that rad Δx = (Π,^r — l)J j . Now Props. 3. 1 and 3. 4 of [12]

together imply that rad Δw = (rad ΔX)ΔW . Combining the above observa-

tions we conclude that rad Δw = (U,uτ — 1)ΔW .

Now we may prove iv). The equality Uτ — 1 = β{l — ζ) implies that

Uτ — 1 is in JΓWII Π J W since 1 — ζ is in 5W . Since rad Δw = (U9uτ — 1)ΔW

according to part iii), we may conclude that rad Δw is contained in

ΓWU Π Δw . On the other hand, the intersection ΓWU Π Δw is contained in

rad Δw by Lemma 2.13. This completes the proof of statement iv).

Since ΓWU is a two-sided ideal of Γw we may form the residue class

ring Γw IΓWU , which shall henceforth be denoted by Γw . According to

Prop. 2.5 we may consider an element of Z2{GW / G19 U(S)) in the preimage

of g under the inflation map Z2{GW / G19U(S))—>Z2(GW9U{S)) which for

convenience of notation shall also be denoted by g. The following

isomorphism shall be useful in establishing the semi-simplicity of Γw .

L E M M A 2.15. The residue class ring Γw is R-algebra isomorphic to Δ(g9 S9

GwIGj)[θ] in a natural way, where θ denotes the residue class of θ modulo ΓWU .

Proof. Using the fact that g is in the image of the inflation map

Z2(GWIG19U{S))—>Z2{GW,U{S)) we may observe that the crossed product

Δ(g9S9Gw I Gx) is isomorphic to Δw /(Π, uτ — 1)ΔW in a natural way. Parts

iii) and iv) of Lemma 2.14 imply that Γwΐl Π Δw ~ (Π, uτ — 1)ΔW , so that
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there is a natural injection of Δw / (ϊί,uτ — 1)ΔW into Γw . By identifying

Δ{g9 S, Gw I GJ with its image under the maps

Δ(g9 S, Gw I Gt) — • Δw I (Π, ur - 1)ΔW — > Γw

we may conclude that Γw is i?-algebra isomorphic to Δ{g, S, Gw / Gx) [θ] since

Γw is generated as a left Jw-module by {1, 0, . . . , 0P~1}.

LEMMA 2.16 A. The intersection {UΓW) Π Δ{g,Sw,GQ)[θ] is contained in

UΔ(g9Sw9GQ)[θ].

Proof. Consider an element δ of (ΠΓW) Π Δ{g, Sw9 GQ) [θ]. Since ^ is in

UΓW we may write δ in the form δ = Π Σ ^ ^ with the ^ in J(^, Sw, Gw)

according to Prop. 2.11.

We now use some properties of crossed products to show that each δi

is in Δ{g,Lw,G0). Since Δ(g, Sw9 Go) [θ] is contained in Δ(g,Lw,G0) it follows

that 25<0* is i n Δ{g,Lw,G0). Consider a disjoint (left) coset decomposition

Gw = U(UJGQ of Gw with respect to the subgroup Go, with ωx = 1. According

to Lemma 2.5 of [12], Δ(g,Lw,Gw) is a free right Δ{g, Lw, G0)-module with

free basis {uωj}. Since each <5{ is in Δ{g,Sw,Gw) we may therefore write δi

uniquely in the form δi = ^uωjδψ where the δψ are elements of Δ(g,Lw,GQ).

The equality 2^0* = Y.uω^δψd1) now implies that i = 1 because 2^0* is

in Δ{g,Lw,GQ). Therefore ^ = δ{° for each f, and so each δt is in

Δ(g,Lw9GQ).

Using the fact that Δ{g,Lw9Gw) is a free (left) Lw-module with free basis

{uσ} for all a in Gw, it is easy to see that the intersection Δ{g, Sw, Gw) Π

Δ{g,Lw,G0) is contained in Δ(g,Sw9GQ). Therefore each δi is in Δ(g9Sw9GQ)

and hence <5 is in UΔ(g9Sw9GQ)[β].

LEMMA 2.16 B. The subring Δ{19 S9 Go / Gx) [0] o/ Γ w ύ β commutative semi-

simple ring.

Proof. We prove first that the ring J(l, S, Go / GJ [0] is commutative.

Now the crossed product J(l, S, Go / GJ is commutative because GQJGX is a

cyclic group with trivial action on S. Let p denote a generator of GJ Gλ.

Since 0 commutes with the elements of S it suffices to show that uβ com-

mutes with 0 in order to prove that J(l, S, Go/ GJ [0] is a commutative

ring. Let i be the integer defined by p{ζ) = ζ*. Since / = n(p) according
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to Lemma 2. 3, we obtain the congruence uPθ = ——yc {u\ — l)uP mod

HΓW. The equalities 1 - C = (1 - ζ) (1 + ζ + + ζ*"-1) and u\ - 1 = {uv - 1)

[u1-1 + . . . + l) in Γw imply that 1 - C = i(1 - ζ) mod ΠΓW and u\- 1

= f(ίίr — 1) mod UΓW since ζ = l mod ΠΓW and ^r Ξ= 1 mod ΠΓ^, . These

congruences imply that uPθ ~ θuP in Γw and we conclude therefore that

J(l, S, Go / Gx) [θ] is a commutative subring of Γw .

In order to prove semi-simplicity, we first prove that J(1,"S, GQ/GJ) [0]

is a free (left) J(l, S, Go / GJ-module with free basis {1, θ,. . . , <?p-χ} . The

proof is by contradiction. So suppose that there exist elements δi of

i(l, SjGo/Gi) such that Σ M* = 0 with 5^4=0 and a ^ p — 1 . Then
a; _ p-1 _

Σ δiθ
iθ^-1-^ = 0 so that we may consider an expression Σ δiθ

i = 0
ί=0 £=0

where ί ^ φ θ . The method of proof shall be to contradict the assumption

that δp-! is non-zero. It is clear that we may choose representatives δt in

Γw of the residue classes Si such that each δi is in Δ{g, Sw, Go). Now the

equality Σ hβ* = 0 implies that Σ W * is in (UΓW) Π J(g, Sw, G0)[θ], and

therefore Σ ̂  is in UJ(g, Sw9 Go) [θ] according to Lemma 2.16 A . Since

Δ(g, Sw, Go) [β] is generated as a left J(g, Sw, G0)-module by {l,θ, . . . ^θ1"1},

it follows that (1 — ζ f ^ Σ ^ ^ is in ΠJ(^,SW,GO). Finally, the fact that

( l - ζ ^ Σ did* is in UJ(g,Sw,Gw) implies that (1 - Q^d^e*-1^d^Ux-l)*"1

is in Uj(g, SW,GQ). It remains to show that δp-t is in ΪIΓW . Consider

a disjoint (left) coset decomposition Go = U ̂ Gi of Go with respect to

the subgroup G2, and recall that Δ[g, Sw, Go) is a free right J(l, Sw, GJ-

module with free basis {«αι J . We may therefore consider a (unique)

expression for dp^ of the form d^! = Σ^UωJi with the ^ in J(l, Sw, GJ .

The equality p̂_x(^r — I)2""1 = ̂ UωJ^Uτ — lY'1 together with the fact that

Vi(«r - 1 Γ 1 is in ΠJ(#, 5W,GO) now implies that ϊ^Uτ — 1Y'1 is in ΠJ(1,

•Sw, Gj) for each z . The radical of J(l, Sw, Gα) is generated as a left ideal

by Π and uτ — 1, and the residue class ring J(l, Sw> GJ / rad J(l, Sw, GJ is

isomorphic to S. We may consider therefore for each Tt an element Si of

S1 and elements αt and ft of i(l, Sω, Gx) such that r t = s* + α tΠ + ft(^r — 1).

Then r,(^r - l)^-1 = Si(uτ - I)*"1 + aiU(uτ - lY'1 + ft(^r - l)p . Since («r -l)p

and ΐi(uτ — 1Y-1 are in ΠJ(1, S^GJ it now follows that s^Uτ — 1Y'1 is

in Πzf(l, S ^ G J . Using the fact that J(l,Sw,Gj) is a free (left) S^-module
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with free basis {uτ^ for 0 ^ / ^ p —1 we may conclude that s% is in US for

each /, and therefore each r< is in rad 4(1, Sw, Gt). The element Uτ — 1

is in Π4(#, Sn9Gt)[0\f so we obtain at last that δp^ is in UΓW . Thus we

have established that 4(1, 5, Go / GO [0 ] is a free left 4(1, S, Go / G0-module with

free basis {1, θ, . . . , θ1''1}.

Consider the polynomial ring 4(1, S, Go / Gj) [F] and form the residue

class ring 4(1, S, Go / GO [F] / (Yp - F) . Define a map ?: 4(1, S, Go / GO [0] — •

4(l,S,G0/G0[F]/(F2 )-F) in the following way. An element of 4(1, S, GJ
P-1

has a unique expression in the form Σ ^0* with the δi in J(l, S, G0/G
£ 1

according to the above. Define <p(Σ β#) = Σ δiF^ + (Yp - F ) . Cor. 2.10

implies that θp = θ, from which it follows that φ is a monomorphism. It

is easy to verify that <p is in fact an i?-algebra isomorphism.

Now we may establish the semi-simplicity of J(l, S, Go / Gx) [θ]. Since

the order of G0IGι is relatively prime to the characteristic of S, the group

ring J(l, S, Go / GO is semi-simple. The polynomial Yp —Y factors into linear
„ p-ι

factors with no repeated roots in S[Y], namely Yp — F = F Π (F — ξι) where

f is a primitive (p — l)sC root of unity in S whose existence is guaranteed by

the fact that S has characteristic φ. For convenience of notation let

ho(Y) = Y and ht(Y) = Y-ζiforl^i^p-l. By the Chinese Remainder

Theorem we have that the ring 4(1, S, Go / GO [F] / {Yp — F) is isomorphic to

0 1 J(1,S,GO/GO[F]/(^(F)). Each polynomial A<(F) is linear so that each

summand is isomorphic to 4(1, S, Go / GO . Therefore 4(1, S, Go / GO [Y] I (Yp-Y)

is isomorphic to a direct sum of semi-simple rings and is therefore itself

semi-simple. The fact that 4(1, S, Gβ / GO [£] is isomorphic to 4(1, S,G0/G0

[F] / (Fp - F) now implies that 4(1, S, Go / GO [0] is semi-simple.

LEMMA 2.16 C. The residue class ring Γw is a finitely generated free left

4(1, S, Go/ GJlθhmodule with free basis {uai} where Gw j Gx = U (G0/G0^i ^ #

disjoint right coset decomposition of Gw / G1 re zYA respect to the subgroup Gol Gt.

Proof. It follows at once from Prop. 2.11 that Γw is generated as a

right 4(§, 5, Gw / GO-module by {1,0, . . ,θp'x}. Therefore an element λ of

Γw can be written in the form λ - Σ θiδi with the δt in 4(^, S, Gw / Gx).

Consider the elements ai defined in the statement of the lemma. The
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crossed product d(g,S9Gw / Gj) is generated as a free (left) Δ{19 S, GJGJ-

module by the {ua J (see Lemma 2.5 of [12]). Therefore each δi can be

written in the form δi = '%rψuaj with the γψ in J(1,3,GO/ Gj). Since Λ =
y _

Σ ^ i Σ ^ / ) « ^ = Σ!(Σ^Vc/))ίί^ we may conclude that the {M,,} generate Γw as
* y _ j ί

a left J(l, S,G0/GJl^l-module.
It remains to show that the {uaj- are linearly independent over

J(l, 5, Go / Gj) [0]. So suppose that Σ ^M f f i = 0 for elements At of J(l, S,
ί = l

Go/GJt^]. If the Λ are not all zero, define /({Λ}) to be the largest

integer i such that Ai=^0; if A = 0 for each z, define /({^i}) = 0. The

proof is by induction on t{{Ai}). If t({Ai}) = 1, then ^ = ̂ ^ ( M * ! ) " 1 = 0

contradicting the assumption that t({Ai}) = 1. For the inductive step con-

sider a set of elements {Λ} of J(l, S, Go / Gj) [/? ] such that 2 ^ = 0 and

^({ ί̂}) = t. The induction hypothesis states that if {2^} is a set of

elements of J(1,S,GJGJlθ] such that Σ 5 * ^ ^ = 0 and t({Bi})<t, then

i?i = 0 for each /. Observe that Gw / Go is the Galois group of S over R

and consider an element a of S such that S = R(a). The assumption that

Σ AίUot = 0 implies that 0 = α(Σ A^tfJ "~ (Σ AiUa^a^ia) = Σ(« ~ (TίίylHα))^^^ .

Since σiσ^(a) = a if and only if z = £ , we have that /({(or — ̂ ^I^α))^}) < t.

Using the induction hypothesis we may now conclude that At = 0 for

l^i^Lt — I. Therefore Atuat = 0 since 2 ^ 4 * ^ = 0 and we obtain that

At = AtUaXuat)'1 = 0 contradicting the assumption that A t ψ 0 . We have

established therefore that an equality Σ AiUat = 0 with the At in J(l, S,

Go/GJt^] implies that At = 0 for each f.

The semi-simplicity of Γw now follows from that of its subring i(l, S,

LEMMA 2.17. Tfe πw^ Γ w is a semi-simple ring.

Proof. For convenience of notation we shall denote the subring J(l, S,

GQ I Gx) [θ] of Γw by ΓQ throughout the proof of this lemma. We shall make

use of the fact that (rad Γw) Π ΓQ is contained in rad ΓQ (see Lemma 2.4 of

[12]).

The first step is to prove that rad Γw — (rad ΓQ)ΓW . Consider a

disjoint right coset decomposition Gw / Gt — U (GJGJσi of G^/Gi with respect

to the subgroup Go / GlΛ According to Lemma 2.16 C, an element λ of Γw
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can be written uniquely in the form λ = Σ λiUat where the λι are in Γ o .
f = l

For ΛψO, define t(λ) to be the largest integer i for which u φ O , and

define t(0) — 0. The proof is by induction on t{λ). If λ is an element of

rad Γw for which t{λ) = 1, then λ is of the form λ = λ1ua1 with λ1 in Γo so

that Xx = λiu^)'1 is in (rad Γw) Π Γo and hence in rad Γo according to the

remark at the beginning of the proof. Therefore λ is in (rad ΓQ)ΓW . For

the inductive step we assume that if r = Σ Ίf%Uat is an element of rad Γw for

which t{T)< t then each element 7Ί of Γo is in rad Γ o . Now let ^ = 2 ^ * ,

be an element of rad Γw such that ί( i) = t. Recall that Gw I Go is the

Galois group of S over ^ , and consider an element a of S for which S =

R(a). In order to apply the induction hypothesis we form the element

r = aλ — λa"t1(a) and observe that ϊ = Σ(α — ̂ ^ ( c O ) ^ * , is in rad Γw .

Since ^tfj^a) = α if and only if i = t, we may conclude that Γ = Σ (« ~~

tfΐtflHα))^^ is an element of rad Γ w for which t{T)< t. Since α — ̂ ^ ( α )

= 0 for 1 < i ̂  / — 1, the induction hypothesis now implies that λι is in

rad ΓQ for 1 < f < ί — 1. Therefore Λt̂ f is in rad Γw, so that ^t = λ{utγ
x

is in (rad Γw) Π Γo and therefore in rad Γ o . We have now established

that rad Γw is contained in (rad ΓO)ΓW .

The ring Γo is semi-simple according to Lemma 2.16 B. Therefore rad

ΓQ = (0) and we obtain that rad Γw = (rad ΓQ)ΓW = (0). Since Γw is an

Artin ring with zero radical we conclude that Γw is semi-simple.

PROPOSITION 2.18. The ring Γw is an hereditary order with radical Γw Π .

Proof. The fact that ΓwIl is contained in rad Γw (Lemma 2.14)

together with the fact that Γw /ΓWU is semi-simple (Lemma 2.17) implies

that rad Γw = Γwΐί . It is easy to verify using the definition of crossed

product that ΓWU is a free left /^-module. Therefore Γw is an hereditary

order according to the Corollary to Theorem 2. 2 of [4].

In order to prove that Γw is a maximal order it remains to show that

ΓWU is the unique maximal two-sided ideal of Γw , i.e. that Γw is a simple

ring. Since Γw is a semi-simple ring (Lemma 2.17), its number of simple

components is equal to the number of primitive orthogonal idempotents

required to generate its center. We shall prove that the idempotents in the

center of Γw are contained in R and thus conclude that Γw is simple.
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LEMMA 2.19. The center of Γw is contained in the subring S[0].

Proof. Once again we denote Δ(l, S, Go / Gj) [θ] by Γ o . We show first

that the center C(ΓW) of Γw is contained in the subring Γo of Γw .

Consider a disjoint right coset decomposition Gw / Gί = U (GQ/GJ)^ of GwjGι

with respect to the subgroup GQj G19 with oγ — 1. Let δ denote a non-

zero element of C(ΓW). According to Lemma 2.16 C δ may be written
t # _

uniquely in the form d = Σ δiUat with the d€ in Γo and <5 tφ0. Let a
i = l

denote an element of S for which S = ̂ (α) . Since <5 is in C(ΓW) we must

have aδ = δa so that

α^! + (α<52)w<x2 + + (aδt)u<st

= α^ + ((T2(«)̂ 2)̂ 2̂ + + (σt(a)δt)uσt .

Therefore a54 = ̂ (α)^ for l ^ f ^ ί because Γ w is a free left Γ0-module with

free basis {uΰ J (see Lemma 2.16 C). Write each element δι of Γo in the

form δi = Σ λc/^y with the ̂ c/} in J(l, S, Go / Gj). The equalities aδt = ^(α)^

imply that Σ ^ f ^ = Σ ^ W ^ ; ' for each i. Using the fact that Γo is a
i i

free left J(l, 5, Go / GJ-module with free basis {1, # , . . . , ^p"~1} (see the proof

of Lemma 2.16 B) we conclude that aλψ = όi(ά)λψ for every f and y.

From the definition of crossed product it now follows that a = ΰi(a) for

each i. Since ^(α) = α if and only if i = 1, we obtain finally that t = 1

and so β is in Γ o .

It remains to prove that ΓQ Π C(ΓW) is contained in S[θ]. Consider

an element δ of ΓQnC{Γw) and write δ in the form δ = J^λiθ1 with the λt in

J(l, S, G Q / G J . Since ^ is in CCΓW) we must have that uτδ — δuτ. Since

^r commutes with θ we now obtain the equality Y^Uτλiθ1 = Σ^^f^1. The

fact that Γo is a free left JU^Go/GJ-module with free basis {i,θ, . . . jίP"1}

(Lemma 2.16 B) implies that Uτλi = >iΐ̂ r for each /. Write each element

λi of J(l, 5, Go / Gj) in the form λt = Σ «P°«P with the ̂  in Go / Gi and the
p

α^° in S. Then the equality Uτλi = ̂ Mr implies that Σ«p°^rp = Σ«P°^Γ<P)Λ
P P

where n(ρ) is the integer defined modulo {p) by /or^"1 = τn^. According

to Lemma 2.3 w(p) = 1 if and only if p = 1. Therefore τp = τ<a^o for

elements /o and a of Go/ Gj if and only if p = 1 and a — \, from which it

follows that each i* is in S, and hence that δ is in S [θ].
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LEMMA 2. 20. The idempotents in the center of Γw are contained in R.

Proof We first observe that the idempotents of S[θ] are present in

R[θ]. In the proof of Lemma 2.16 B it was shown that the ring J(l, S,

GQIGJIΘ] is a free left J(l, S, GJGJ-module with free basis {1,0, . . . ,/P"1}.

From this it follows at once that S[θ] is a free S-module with free basis

{1,0, . . . ,θp~x} and that R[θ] is a free ^-module with free basis {1,0,. . . ,

θp~1}. These observations imply that S[θ] is isomorphic to S[Y]I(YP - F)

and that R [θ] is isomorphic to R [Y] / (Yp — Y). Recall from Lemma 2.16

B that Yp — Y = Π ht{Y) is a factorization of Yp — F into linear factors in

ί? [F] where ho(Y) = F and /^(F) = F - f* for l^i^p-1, and f denotes a

primitive {p — l) s t root of unity in R. By the Chinese Remainder Theorem

we obtain the isomorphisms R [Y] / (Yp-Y) ^®R [Y]l(ht{Y)) and S [Y] I {Yp - F )

«ΘS[K]/(WF)) . The natural map of ®i?[F]/(/*t(F)) into ®S[F]/(At(F))

maps the set of primitive orthogonal idempotents of ®R[Y] / (A£(F)) into such

a system for ©S[F] / (^(F)). We conclude therefore that the idempotents

of S[0] are already present in R[θ].

In order to prove the lemma it suffices to show that the intersection

C{ΓW) Π R [θ] is contained in R since C{ΓW) is contained in S [θ] according

to Lemma 2.19. Let λ denote a non-zero element of C (Γw) Π R [θ] and
t

express λ in the form λ—^Yiθ1 where O^t^p — 1 and rt^r0. To

prove that C{ΓW) Π -β [0] is contained in R we shall assume that t > 0 and

contradict the fact that r t ψ 0 .

Now according to Prop. 2.6 there exists an element o of Gw such that

g(τ<σ\ <r) Φ 1 . Therefore g(τn^\ a) must be of the form g(τn^, <ή — ζa for the

primitive pc/ι root of unity ζ and some integer a satisfying l^a^Lp — 1 (see

Prop. 2.5). We shall now establish the equality Uσθ = (θ-\-—fyV* where

σ denotes the image of σ under the natural map of Gw onto Gw / Gλ. From

the definition of θ together with the fact that g(σ9τ) = 1 (see Prop. 2.5) we

obtain the equality Uaθ = -Tj^rr^v;^ [ ( w ? ^ - 1) + (1 — ζα)J ŵ  . According to

Lemma 2.3, ζ* = ζn ( < y ). And the congruence ζ = l mod ΠSW implies that

ζn(<o-i -f-. . . -f-1 ^ n(<r) mod ΠSW . From these observations we obtain the
1 Γ 1 1 — ζa 1

congruence Uaθ = "^^ry I χzΓ7"W ~ 1) + "y^Γr j ^^ m ° d ΓWΠ . Observe

that «; c o - 1 = (Mr - 1) (^?°~x + • • • + ! ) so that u71^ - 1 = w(tf) («τ - 1)
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mod Γwΐl since M Γ Ξ 1 mod ΓWU . This fact together with the congruence

γzzγ~^ί^ m ° d ΓWM enables us to write Uσd = \θ +

Since λ is in C{ΓW) we must have that Uaλ — λUσ. From the above

we may then obtain the equality Σ riθ1 = Σ ?\(^ + —τ~-J . Using the

fact that R [θ] is a free ^-module with free basis {1, θ, . . . , θp~1} it follows

from equating coefficients of θ1'1 that rt^ = rt-i + — ΰ \ r t % Therefore rt =

0, and this contradiction proves the lemma.

COROLLARY 2.21. 7%£ ring Γw is a simple ring.

Proof. The number of simple components of the semi-simple ring Γw

is equal to the number of primitive orthogonal idempotents required to

generate its center. Since the idempotent elements of C(ΓW) are in R

according to the lemma, we conclude that Γw is simple.

PROPOSITION 2.22. The R-order Γw in the central simple h-algebra J(g,Lw,

Gw) has the following properties

i) Γw is a maximal order with radical ΓWU

ii) r(Γw IR) = r(Sw I R).

Proof Prop. 2.18 together with Cor. 2.21 implies that Γw is an

hereditary order with unique maximal two-sided ideal. Therefore Γw is a

maximal order according to Thm. 2. 3 of [4].

Since Γw Π is the radical of Γw (see Lemma 2.17) and Π is the prime

element of Sw, it follows that the ramification index of Γw over R is equal

to the ramification index of Sw over R.

Now we prove the main result of this section.

PROPOSITION 2.23. Let k denote the quotient field of a complete discrete rank

one valuation ring R of unequal characteristic, and let 2 denote a central simple

k-algebra for which 2J is in V{k). If Σ has Brauer number equal to the characte-

ristic p of R, then a maximal order of Σ is not equivalent to a crossed product

over a tamely ramified extension of R.

Proof Let Γ denote a maximal order in a central simple algebra Σ

such that Σ satisfies the hypothesis of the theorem. If Σ has Brauer number

p there exists a maximal order Γw equivalent to Γ for which r(Γw / R) is
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divisible by p according to Prop. 2.22. Therefore r[ΓIR) is divisible by p,

since ramification index is preserved under equivalence (Prop. 1. 6).

However Props. 1.6 and 1.7 together imply that a maximal order

equivalent to a crossed product over a tamely ramified extension of R has

ramification index relatively prime to the characteristic of R.

3. The equicharacteristic case. The purpose of this section is to

prove the assertion analagous to that of Prop. 2.23 in the case when R is

an equicharacteristic ring. If R is an equicharacteristic ring of characteristic

zero, then the Brauer number of 2 is relatively prime to the characteristic

of R for every central simple λ -algebra 2 ? so f° r t n e purpose of this section

we restrict our attention to the case of non-zero characteristic.

The following notation shall be in use throughout this section. The

symbol R shall denote an equicharacteristic complete discrete rank one

valuation ring of non-zero characteristic, and 2 shall denote a central

simple algebra over the quotient field k of R for which 2 is in V{k) and

such that the Brauer number of 2 is equal to the characteristic φ of R.

Since 2 is in V{k), we may assume that 2 is of the form 2 = Δ{f, L, G) for

some unramified Galois extension L of k.

Our object is to prove that under the assumption on the Brauer

number of 2 ? a maximal order in 2 cannot be equivalent to a crossed

product over a tamely ramified extension of R.

The method of proof is similar to that used in Section 2. We shall

construct a central simple A -algebra Σϊw = Λ{g,Lw,Gw) equivalent to 2 —

Δ{f, L, G) with Lw a wildly ramified extension of k and with the 2-cocycle g

in Z2(GW,U(SW)), where Sw denotes the integral closure of R in Lw . As

in Section 2 we then construct a maximal order Γw in 2™ by adjoining an

element Θ of 2™ to the crossed product Jig, Sw, Gw) and prove that the

ramification index r{Γw / R) is equal to the characteristic of R.

In order to construct the desired central simple &-algebra 2™ we first

construct the extension Lw of k. Let S denote the integral closure of R in

L and consider a prime element π of S. It follows from Eisensteίn's

criterion that the polynomial F{X) = Xp —π^X—π of S[X] is irreducible in

L[X], and we define Lw to be the field obtained by adjoining a root Π of

F{X) to L.
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PROPOSITION 3.1. The chain of fields Lw D L D Λ defined above has the

following properties

i) if Π denotes one root of F(X) = Xp — πv~λX—π then the other roots of

F(X) are given by Π + ξxπ for 1 <: i ^ p — 1 where ζ denotes a primitive (p — l) s C

root of unity in R

ii) Lw is a Galois extension of k

iii) the extension Lw of L is wildly ramified of degree p, and Π is a prime

element of Lw .

Proof Using the fact that k has characteristic p, toghether with the

fact that F(Π) = 0, one may obtain that F(Π + ζ'π) = (ξip - £ > p . But

ξp = ξ since ξ is a (p — l) s ί root of unity, and therefore F(U + fV) = 0 for

1 ^ f ^ p — 1.

It is clear from statement i) that Lw is a Galois extension of k.

The equality I P = 7r(7rp~2Π + 1) implies that Lw is a wildly ramified inertial

extension of L of degree p with prime element Π .

Henceforth Gw shall denote the Galois group of Lw over k, and Sw the

integral closure of R in Lw . The next proposition describes the ramifica-

tion groups of the extension Lw of k.

PROPOSITION 3. 2. Z ^ Gί ώ/zflte ίλtf ith ramification group of Lw over k. Then

i) Go = Gt

ii) Gj is a cyclic group of order p

iii) Gj, Z51 contained in the center of Gw

iv) G2 - G, Λwrf Gi+1 = (1) /or f = p - 1.

Proof Statement i) is true because the extension Lw of k has no tame

inertial part. Statement ii) follows at once from Prop. 3.1.

In order to prove that Gx is contained in the center of Gw , consider

the generator τ of Gx defined by τ(Π) = Π + ζπ and an element a of Gw .

Since τ leaves the elements of S fixed, it follows that τa = aτ if and only

if τtf(Π) = <7τ(Π). The conjugates of Π relative to k are precisely the

conjugates of Π relative to L since the minimal polynomial F{X) of Π is

in k[X]. Therefore <r(Π) = Π or <y(Π) = Π + ξiπ for some integer / such

that l ^ i ^ p — 1 according to Prop. 3.1. When σ(U) = Π it is clear that
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τa(ϊl) = <rr(U). So consider the case when <τ(Π) = Π + fVr. Using the

fact that f and π are in k it is easy to verify that τσ(IL) and στ(Iί) are both

equal to Π -f ?(1 + ξ'-^π. Therefore τσ = στ for all a in G w , and hence

Gx is in the center of Gw .

Finally we observe that p — 1 is a discontinuity in the sequence of

ramification groups of Lw over k. For if τ is the element of Gx defined

by r(Π) = Π + ξπ, then r(Π) — Π = ξπ so that τ is in Gt if and only if

1 < i ^ p — 1.

In order to define the central simple ^-algebra Σ ^ J ^ I ^ G J it

remains to define the 2-cocycle g of Z2(GW, U(LW)). Now the assumption

that the Brauer number of 2 is p, where 2 = J(/, Z,, G), implies that the

pth power of the cohomology class [/] is in the image of the natural map

H2{G, U(S)) —> H2{G, U(L)). There exists therefore a map φ: G — > U{L)

such that the 2-cocycle h of Z2{G,U(L)) defined by h(σ9τ) = fp(σ,τ)φ{aτ) /

φ{σ)φa{τ) takes values in U(S). Since φ{σ) is in J7(L) we may write φ[a) =

aaπPW where aa is in ί/(S) and β(σ) is an integer, and π denotes the prime

element of S. Define now the map ψw:Gw—>U(LW) by φw(<ή = Π ^ )

where σ denotes the image of a under the natural map of Gw onto

Gw I Gj = G, and Π denotes the prime element of Sw . Define the element

g of Z*(GW,U(LW)) by

where fw denotes the image of / under the inflation map Z2{G,U(L))—>

Z2{GW,U(LW)). The central simple ^-algebra d(g,Lw,Gw) shall be denoted

by Σw The next three propositions present properties of the 2-cocycle g.

PROPOSITION 3. 3. The element g defined above is in the image of the natural

map Z2(GW,U(SW))—> Z2(GW, U{LW)).

Proof Using the method of Prop. 2.4 one can verify that gp takes

values in U{SW)9 from which it follows at once that g is in the image of

the natural map Z2(GW, U(SW))—> Z2(GW,U{LW)).

PROPOSITION 3. 4. The 2-cocycle g defined above has the following properties

i) 9(09 p) = 1 for every a in Gw and p in Gx

ii) g(<;,jt)) = l mod (IP" 1 ) for every a in Gt and p in Gw
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iii) g is in the image of the inflation map Z2(G,U(S))—>Z2(GW,U(S)) where

g denotes the image of g under the natural map Z2{GW,U{SW)) —>Z2{GW,U{S)).

Proof As in the proof of Prop. 2.5 one can easily show that β{l) = 0

where 1 denotes the identity element of G. Now let σ denote an element

of Gw and p an element of Gλ. By the definition of fw we have fw{σ, p)

= f{σ, p) = 1 where a denotes the image of a under the natural map of Gw

onto G , so that g(σ, p) = φw(σp) / φw{σ)φί{p) = Π*« / Π ^ " M Π ^ ) ) . Since

β{l) = 0, it follows that g{σ, p) = 1.

In order to prove statement ii), consider now an element a of Gx and

an element p of Gw . The definition of g together with the fact that

β(ϊ) = 0 implies that g(<r, p) = [Π / <r(Π)]0W. According to Prop. 3.1 we have

a(IL) = Π or σ(ΐl) = Π + f*7r where ξ is a primitive (p — l)st root of unity and

i is an integer satisfying l^Li^p — 1. If σ{Iί) — Π it is clear that

g(σ9 p) = 1; so consider the case when <r(Π) = Π + f*7r for some /. Observe

that π— Hv — π1*'1!! since F(Π) = O. Substituting this expression for π one

then obtains that <j(Π) / Π = (Π + ξ'π) / Π = 1 + ^ ( I P " 1 - πp~ι), so that </(Π)/Π

Ξ I mod (Π^"1). We may now conclude that g{σ,p)==l mod (IP""1).

For the proof of part iii) we first observe that g[σ, p) = g{ρ, a) = I for

every <r in Gw and /o in Gi according to parts i) and ii) of this proposition.

Using this observation it is easy to verify that the map q: GxG —>U{S)

defined by q(σ, p) = g{σ, p) is an element of ZZ{G,U(S)) in the preimage of g.

PROPOSITION 3.5. For each non-trivial element τ of Gx there exists an element

o of Gw for which g{τ9a)^l mod (Πp~1) and i / ( r , # l mod ( I F ) .

Proof Let β: G—>Z be the function used in the definition of the

2-cocycle g, and let σ denote the image of the element σ of Gw under

the natural mapping of Gw onto G . We shall show first that there exists

an element o of Gw such that β{σ) is relatively prime to p . We shall then

use the equality g(τ9σ) = (Π^O)/ T (Π^)) to show that g(τ,σ) φ lmod (IP) .

We now show that there exists an element σ of Gw for which

β(σ) φ 0 mod (p). As in Prop. 2.6 the method of proof is to assume that

g(ά)Ξθmod(j)) for every a in Gw and then contradict the assumption on

the Brauer number of |j> where 2 denotes the central simple A -algebra

Δ{f9L9G). If β{σ) Ξ= 0 mod (p) for every a in GW9 then each integer β{σ)
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may be written in the form β(σ) = pT{σ) for some integer T(σ). Define

Ψ:G >U(L) by Ψ(σ) = TΓ^) . One can verify that the 2-cocycle q of

Z2(G,U(L)) defined by q{σ, p) = f{σ, p)Ψ{ap) jΨ(<i)Ψΰ(p) is cohomologous to /

and takes values in U(S), so that [/] is in the image of the natural map

H2(G, U(S)) —> H2{G, U(L)). This contradicts the assumption that the

Brauer number of 2 is p . Therefore there must exist an element σ o( Gw

for which β(σ) φ 0 mod (p) .

Finally we show that this a satisfies the assertion of the proposition.

Part ii) of Prop. 3.4 implies that g{τ,σ)^l mod ( I P ' 1 ) , so it remains to

show that β(σ) φ 0 mod (p) implies that g(τ9σ)φl mod (IP) . We have

already observed that g(τ, a) — [Π /τ(Π)pw (see the proof of part ii) of

Prop. 3.4). Let u = τ(U) IIL . Since τ was assumed to be non-trivial we

must have that τ(Π) = Π + ξτπ for some integer i. The equality u — 1

+ ζi{Up~1 — πv~ι) implies that w φ l mod (Πp). It is easy to see that

^0(O φ l mod (IP) by writing «*« — 1 in the form u^ — 1 = {u — 1)

(u^^-1 + + 1). For the fact that β[σ) is relatively prime to p

implies that M0«-i + . . . + i is in U{SW)9 so that α«θ = i mod (Πp) if

and only if u ΞΞ 1 mod (Π p ) . We may now conclude that g(τ,σ)φl mod

(IP) .

Since the 2-cocycle g is in Z2(GW,U{SW)) we may consider the crossed

product Δw = Δ(g,Sw,Gw). Observe, moreover, that Δw is an border in

Σ w . In order to construct the desired order Γw containing Δw , we first

introduce some notation; throughout the rest of this section τ shall denote

a fixed generator of Gλ and ξ shall denote the primitive (p — l)st root of

unity defined by τ(Π) = Π + ξπ. Consider the element Θ of J]w defined by

0 = AL(Ur — i) # Now Γw is defined to be the ring obtained by adjoining

the element θ to Δw , i.e. Γw — Δw[θ]. Our main object is to prove that

Γw is a maximal order whose unique maximal two-sided ideal is generated

by the prime element Π of Sw .

The next two lemmas shall be useful in proving that Γw is in fact an

order over R in Σ w .

L E M M A 3. 6. For 1 ^ i ^ p — 1 , let aι be the element of Δ(l, Sw, Gx) defined
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by a,i— — ( 1—juτ where u is the element of U(SW) defined by r(Π) = ull .

Then (Θ - ap^) {β - ap-2) (0 - ax)θ = 0 .

Proof. Observe that each element ai of J(1,LW, GJ defined above is in

fact an element of the crossed product J(l, Sw, GJ (apply part iv) of Prop.

3.2).

The first step is to prove inductively that {θ — at) {θ — ax) θ =f—\+

(uτ — l)ί+1 . When i = 1 we obtain by an easy computation the equalities

(θ - Ul)θ = β2- aφ = (~-)\{uuτ -1)-(U- l)uτ] {uτ - 1) = (—Jiuτ -1)2. F o r

the inductive step we assume that (θ — at) [β — ajθ — y— -J (uτ — l)ί+1 .

Then

(θ - aί+1) (θ - at) (θ - ax)θ = (θ - ai+1) {^j\ur - l)ί

^ ~ ) % + 2 [{u^Uv - 1) - (Ui + ί - l)Ur] {Ur - l)ί + 1

Π

and this completes the inductive step.

From the above we may now conclude that {θ — ap_x) (θ — a^θ =
( Π \p

y—J [uτ — ϊ)p . But {uτ — l)p = 0 since [uτ)
v — 1 and k has characteristic

p . Therefore (0 — Λ^J) - - - {θ — ax)θ = 0 .

LEMMA 3.7. The ring Γ^ is generated as both a left and right Δ{g,Sw,

G J-module by {1, θ, . . . , dv~1} .

Proof As in Prop. 2.11 we first prove that Γw is generated as a right

Jw-module by powers of θ. We shall obtain the inclusion Δw{θ) c {l,d)Δw by

showing that {apUp)θ is contained in [1,Θ)ΔW for every element p of Gw and

α<o of Sw . Using the definition of θ one may obtain by a straightforward

computation the equality

{<XpUp)θ — [Uττ~l(<XpV / g(τ9 p)) — V(Xp]Up

where v is the element of U{SW) defined by p{ϊl) = vU . From part ii) of

Prop. 3.4 we may obtain the congruence r '^ l I g(τ, p)) Ξ= 1 mod {Up~ί).

The equality of ramification groups Gx — Gp^ (see Prop. 3.2) implies that
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τ~ι{aPv) Ξ= aPv mod (ϊlp). These two congruences together imply that

τ~ι{aPv I g{τ, p)) ΞΞ G Ẑ; mod (IP" 1 ), SO that τ~ι(aPv / flf(r, p)) = aPυ + s l ϊ^ 1 for

some element s oΐ Sw . Substituting into the above expression for (apup)θ

we may then obtain the equality (aPuP)θ = |_—(uτ — l)vaPuP\ + I — ^ s I P " 1 ^ ] .

The first summand is in {Θ)ΔW and the second is in Δw, so that {aPuP)θ is

in (1,Θ)ΔW.

It can now be proved inductively that Jw(#*) is contained in {θi~1,Θί)Δw

for every positive integer i, Since Θ satisfies an equation of degree φ over

Δ(l, Sw, Gx) (see Lemma 3.6) we conclude finally that Γw is generated as a

right Jw-module by {1, θ, . . . , θv~1}. A similar argument shows that Γw

is generated as a left Jw-module by {1,0, . . . ,Θv~ιy.

PROPOSITION 3.8. The ring Γw is an order over R in the central simple k-

algebra 2 W .

Proof. The proof of this assertion follows from Lemma 3.7 by an

argument similar to that of Prop. 2.12.

We can prove that Γw is an hereditary order by proving that its

radical is Γ^-projective.

LEMMA 3. 9. Let Π denote the prime element of Sw . Then

ii) Π is an element of rad Δw

iii) rad Δw = (Π, uτ — 1)ΔW

iv) Γwτi Π Δw = rad Δw .

Proof Since Γw is generated as a left Jw-module by the elements

{1,0, . . . ,dp~1} (Lemma 3.7) and IίΔw = ΔWU , it suffices to prove that ΘU

is in ΠΓ'w in order to establish the inclusion Γw Π c HΓW . The equality

ΘU = lίθ + — (r(Π) — ΐί)uτ may be obtained by an easy computation. It is

easy to verify that the element —(τ(Π) — Π) is in Sw using the fact that

there is a discontinuity in the sequence of ramification groups G{ at i —

p — 1 (Prop. 3.2). Therefore #Π is in UΓW and ΓWU is contained in

UΓW. A similar computation yields the opposite inclusion. Therefore

ΓWU — UΓW . By Lemma 1.4 of [12] we may now conclude that Π is in

rad Γw . This completes the proof of statements i) and ίi).
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The proof of part iii) is entirely similar to the proof of part iii) of

Lemma 2.14.

It remains to prove assertion iv). Lemma 2.13 implies that ΓWΠ ίl 4

is contained in rad Δw since Π is in rad Γw according to part ίi). To

obtain the opposite inclusion we make use of the fact that rad Δw —

(Π,&r — 1)ΔW. The definition of Θ implies that Uτ — 1 is in ΠP"1ΓW =

Γ ω Π p " 1 , from which it follows that rad Δw is contained in ΓWU .

By Lemma 3.9 we may now form the residue class ring Γw /ΓWU which

shall henceforth be denoted by Γw. An argument similar to that of

Lemma 2.16 shows that Γw is i?-algebra isomorphic to Δ(g, S, G) [θ] in a

natural way where θ denotes the residue class of β modulo ΓWU .

In a manner similar to that of Section 2, the semi-simplicity of Γw

shall follow from that of its subring S[θ].

LEMMA 3.10. For 1 ̂  i :< p — 1 let at denote the element of J(l, Sw, Gt)

defined in Lemma 3. 6, and let a€ denote the image of at in Γw . Then at — ξi

where ξ denotes the primitive (p — l)st root of unity defined by τ(Π) = Π + ξπ.

Proof From the definition of ^ we obtain the equality at — — {u — 1)

' U i-l .

uτ. Since —(u — 1) = — (τ(Π) — Π) = ξ we may write
TC 7ζ

at —ξί 1 )Uτ. The congruence uτ Ξ I mod Γ^U holds because

θ is in Γw . And u = l mod ΠS w since Gp^ = Gγ (see Prop. 3.2), so that

ui~ι _}_ . . , _ L . ^ = / m o d USW . Combining these observations we may now

conclude that a% — ξi.

LEMMA 3.11. The ring Γw is a semi-simple ring.

Proof The first step is to observe that the subring S[θ] of Γw is a

commutative semi-simple ring. Consider an element a of S for which

S = R{ά). In order to establish the commutativity of S[θ] it suffices to

prove that άθ = θa. Now from the definition of θ we obtain the equality

da = — (τ(a)uτ — a) where a is an element of Sw in the preimage of a . It

is easy to see that the congruence τ(a) = a mod (IP) implies that θa — aθ

mod ΓWU . In order to prove that S[θ] is semi-simple we point out that

a computation similar to that of Lemma 2.16 may be used to show that
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S[θ] is a free S-module with free basis {1, θ, . . . ,θp~xy. From this it

follows that S[θ] is isomorphic to the factor ring S[Y]/(H(Y)) where H(Y) =

(F — d^x) (F — «i)F. Since ^ = if according to Lemma 3.10, we see

that di = dj if and only if i ~ j , so that H{Y) is a polynomial without

repeated roots. We may now conclude from the Chinese Remainder

Theorem that S [Y] j {H{Y)) is isomorphic to a direct sum of p copies of S.

This completes the proof that S[θ] is semi-simple.

An argument similar to that of Lemma 2.16 C shows that Γw is a free

left S[£]-module with free basis {ua^} where σt ranges over the elements of

G . Using this fact one can now establish by the method of Lemma 2.17

that Γw is a semi-simple ring.

PROPOSITION 3.12. The ring Γw is an hereditary R-order with radical Γw Π .

Proof. Since Π is in rad Γw and Γw /ΓwTl is semi-simple it follows that

rad Γw = Γw Π Thus Γw is an hereditary order by the Corollary to Thm.

2. 2 of [4].

LEMMA 3.13. The ideal ΓWU is the unique maximal two-sided ideal of Γw .

Proof In order to prove that ΓWU is the unique maximal two-sided

ideal of Γw it suffices to prove that the semi-simple ring Γw is in fact a

simple ring, and we do this by studying the idempo tents in the center C(ΓW)

of Γw .

An argument similar to that used in Lemma 2.19 shows that C(ΓW) is

contained in S[θ]. It is easy to see that the idempotents of S[θ] are

already present in R [θ]. For consider the polynomial H(Y) - (Y —

Λp.j) (F — ax)Y of S [F] and recall that the equation H(Y) = 0 is satisfied

by θ. Lemma 3.10 implies that the ^ are in U(R), so that H{Y) splits

into p (distinct) linear factors in R [Y]. Using the Chinese Remainder

Theorem once again, we conclude that R[θ] has precisely p simple com-

ponents. Since R[θ] a S [θ] is an inclusion of commutative rings, we may

now conclude that the idempotents of S [θ] are already present in R[θ].

We now use Prop. 3. 5 to prove that the intersection C{ΓW) Π R [θ] is

contained in R. The proof is by contradiction. Suppose that λ ~ Σ rtf1

is a non-zero element of C(ΓW) Π R [θ], where the r% are in R and t is the

largest integer for which r t φ 0 . Prop. 3.5 implies that there exists an
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element a of Gw such that g(τ,σ)^l mod (IP"1) and g{τ, a) φ 1 mod ( IP) .

Therefore we may write g{τ, a) — 1 + wlίp~x for some element w of U{SW).

Using the definition of # together with the fact that Gx is contained in the

center of Gw (Prop. 3.2) one may obtain by an easy computation the

equality Uσθ = (θ + w)u* . Since λ is in C{ΓW) we must have Uσλ — λuσ, so

that Σ r # = 2 ^ ( 0 + w)*. This equality together with the fact that

{1, θ, . . . , θv~ιy is a free basis for R [θ] over 5 implies that rt-ι = rt-ι +

tivrt. Therefore rt = 0 and this contradiction establishes the desired

inclusion.

Combining the above observations, we may conclude that the idempotent

elements in the center of Γw are contained in R. Therefore the semi-

simple ring Γw is a simple ring, and ΓWU is the unique maximal two-sided

ideal of Γw .

The arguments used in Props. 2. 22 and 2. 23 may now be used to prove

the next two propositions.

PROPOSITION 3.14. The R-order Γw in the central simple k-algebra Σ w has

the following properties

i) Γw is a maximal order with radical ΓWU

ii) r(Γw IR) = r(Sw I R).

PROPOSITION 3.15. Let k denote the quotient field of a complete discrete rank

one valuation ring R which is an equicharacteristic ring of characteristic p φ O , and

let 2 denote a central simple k-algebra for which Σ is in V(k). If Σ has

Brauer number p, then a maximal order in 2 is not equivalent to a crossed product

over a tamely ramified extension of R.

Combining Propositions 2. 23 and 3.15 we obtain the following theorem.

THEOREM 3.16. Let k denote the quotient field of a complete discrete rank

one valuation ring R such that the characteristic p of R is non-zero, and let 2 denote

a central simple k-algebra for which 2 is in V(k). If 2 has Brauer number φ,

then a maximal order in 2 is not equivalent to a crossed product over a tamely

ramified extension of R .

4. Maximal orders and the Brauer group. Let k denote the

quotient field of a complete discrete rank one valuation ring 7?. In this
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section we prove the main theorem of the paper, namely that a maximal

order in a central simple fc-algebra Σ is equivalent to a crossed product

over a tamely ramified extension of R if and only if Σ is in T{k). Both

the necessity and sufficiency parts of the proof depend upon the main

theorem on crossed products and maximal orders presented by the author

in [11].

The following lemma shall be used to prove the sufficiency of the

condition that Σ be in T(k).

LEMMA 4.1. Let k denote the quotient field of a complete discrete rank one

valuation ring R . Let L be an unramified extension of k, and Σ = ^(/> L, G) a

crossed product for which Σ is in T{k). Then there exists an extension Lt of L

such that

i) Lt is a tamely ramified Galois extension of k

ii) [ft] is in the image of the natural map H2(Gt, U{St)) — > H2(Gt, U(Lt))

where St is the integral closure of R in Lt, Gt denotes the Galois group of Lt over

k9 and ft is the image of f under the inflation map Z2{G,U(L))—> Z2(Gt9U(Lt)).

Proof Let e denote the Brauer number of Σ Since e is relatively

prime to p, it follows that the extension L(ξ) of L is unramified where ξ

denotes a primitive eth root of unity. Next let Π denote a root of the

polynomial Xe — π where π is the prime element of R . Define Lt — L{ξ, Π).

It is easy to verify that the field Lt is a tamely ramified Galois extension

of k.

Let S denote the integral closure of R in L, and St the integral closure

of R in Lt. It remains to construct a 2-cocycle g of Z2{Gt, U(Lt)) such

that g is cohomologous to ft and such that g is in the image of the natural

map Z2(Gt, U(St))—> Z2(Gt, U(Lt)). Since the image of [/] in H2(G,Z+) has

order e, it follows that there exists a map φ: G — > U(L) such that the

2-cocycle h of Z2(G, U{L)) defined by h(σ,τ) = fe(σ,τ)φ(στ)lφ{σ)φa{τ) takes values

in U(S). Write the element φ(σ) of U{L) in the form φ{a) = a<,π^ where

eta is in U{S) and β{σ) is an integer. Define the map φt; Gt—>U{Lt) by

φt(ΰ) = Π^> where σ denotes the image of a under the natural map of Gt

onto G. Define the element g of Z2(Gt,U(Lt)) by g{<f,τ) = ft(σ,τ)φt{στ) I

φMΦΪi?) Proceeding as in the proof of Prop. 2.4 one may easily verify
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that ge{σ,τ) = h{σ9τ)aσaa

τ / aδχ from which it follows that the 2-cocycle g takes

values in U(St).

PROPOSITION 4.2. If Σ is a central simple k-algebra for which Σ is in T (fc),

then a maximal order in Σ is equivalent to a crossed product over a tamely ramified

extension of R.

Proof Consider a representative J(/, L, G) of Σ where L is an unramified

extension of k. Since Σ is in T(fe) we may consider a field Lt satisfying

the conclusion of Lemma 4.1 . Theorem 2.3 of [11] now implies that a

maximal order in J{f, L, G) is equivalent to a crossed product over a tamely

ramified extension of R .

In order to prove the main theorem in the other direction we first prove

two propositions.

PROPOSITION 4. 3. If a central simple k-algebra Σ is equivalent to a crossed

product over a tamely ramified extension of k, then Σ is in V(k).

Proof According to the hypothesis we may consider a crossed product

J(/, L, G) equivalent to Σ for which the extension L of k is tamely ramified.

Let Gj denote the inertia group of L over k and let / 7 denote the image

of / under the restriction map Z2(G,U(L))—>Z2{GI9U{L)). We show first of

all that / may be replaced by a 2-cocycle g whose restriction to G/ x Gt

is normalized in the sense of cyclic groups. Consider a 2-cocycle gz in

Z2(GI9U(L)) which is cohomologous to fx and which is normalized in the

sense of cyclic groups. Let φ1\ GΣ—>U(L). be a map for which 0/(<r,r) =

fi{a,τ)φI{&)φa

I{τ) I φjiΰτ) for a and τ in G7 . Extend 0 7 to a map φ: G—>

U(L) by defining φ{σ) = φM for a in GΣ and φ(σ) = 1 for a in G — Gx .

Then the 2-cocycle g of Z\G, U(L)) defined by g{<r,τ) = f(σ,τ)φ{σ)φ«(τ) I φ{στ)

is cohomologous to / and its restriction to G1 x Gτ is normalized in the

sense of cyclic groups. Since [/] = [g] it follows that Δ{f, L, G) is ^-algebra

isomorphic to Δ{g, L, G).

Let L7 denote the fixed field of G7 and let a denote the element of

U{Lj) which defines the 2-cocycle gx . Since L is a tamely ramified inertial

extension of LI9 the natural map # 2 (G 7 , U(S))—>H2{GI9 U{L)) is an

epimorphism, where 5 denotes the integral closure of R in L (see the proof

of Cor. 2. 4 of [11]). We may therefore assume that a is in U[U) where U

denotes the inertia ring of L over k.
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We proceed to construct an unramified extension of L which will give

rise to an unramified splitting field of 2 Let e denote the order of Gz

and consider the element a of U[0). Denote the order of a in U{U) I

[U(U)]e by e / m . There exists an element c in U{U) such that a = cm, and

the polynomial Xe/m — c is irreducible in U[X] (see the proof of Prop. 2. 2

of [10]). Applying HensePs lemma we may conclude that there exists an

element c in U(U) for which cm = a. Observe that the polynomial P(X) =

Xm — c is irreducible in L[X], and let L(a) be the field obtained by

adjoining a root a of P{X) to L. Since LΣ contains a primitive £t/fc root

of unity, it is clear that L(a) is a Galois extension of k. It is easy to see

that L(a) is an unramified extension of L. For let S denote the integral

closure of R in L and consider the ring S[a] where the brackets denote ring

adjunction. According to Cor. 2 p. 66 of [7], the different D of S[a] over

S is the principal ideal {Pr{a)). Since P'{X) = {e / m)X^m^~ι it follows that

D = S[a] since (p, e / m) = 1 and α is a unit in S[α]. Hence S[a] is an

unramified extension of S and is therefore integrally closed in Ha).

We establish some notation which shall be used in the remainder of

the proof. Let G* denote the Galois group of L{a) over k; let GiΛ denote

the inertia group of L(a) over k, and let LiΛ and U* denote the inertia field

and the inertia ring (respectively^ of L(a) over k. Finally, denote by g* the

image of g under the inflation map Z2(G, U(L)) — > Z*{G9, U{L{a))) and observe

that the crossed product d(gΛ, L{a), Go) is equivalent to d{f, L, G).

The extension L(a) of L has been constructed so that g* shall be

cohomologous to the trivial 2-cocycle on Gia x GiΛ. For since the image

of Gia under the natural map of G* onto G is G;, it follows from the

definition of the inflation map that gI(^ is defined by the element a of U(U)

where gΪΛ denotes the image of g under the restriction map Z2{G*, C/(L(α))) — >

Z2(Gia,U{L(a))). It remains to show that β==l mod N{U{L{a))) in U(LiΛ) /

N{U{L{a))). Since ae = a and a is in U{U<x) we have that N{a) = a, and

therefore glΛ is cohomologous to 1.

Now we may complete the proof of the proposition. Since Hι(GI9

U(L{a))) = (1) according to Prop. 2 p. 158 of [7] it follows from Prop. 5 p. 126

of [7] that the sequence

(lj —> H*(G« I GiΛ, U(Lia)) - ^ #2(Gα, U(L{a))) — H2(Gia9 U(L(a)))

is exact. Therefore the fact that res [g*] = [1] implies that there exists a 2-
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cocycle h in Z2(G« / Gia9 U(Lia)) such that inf [h] = [gΛ]. Now the crossed

product Δ(h9 Lia9 G<* / Gia) is equivalent to Δ(ga9 L(a)9 Gα) and therefore to 2 .

Since Lia is an unramified extension of k, we have proved that 2 is in V(k).

PROPOSITION 4.4. Z^ί A; denote the quotient field of a complete discrete rank one

valuation ring R, L a finite Galois extension of k with Galois group G, and f an

element of Z2{G, U(L)). If a maximal order Γ in Δ{f9 L, G) is equivalent to a

crossed product over a tamely ramified extension of R, then a maximal order Γx in

Δ{fx

9 L, G) is equivalent to a crossed product over a tamely ramified extension of R for

every positive integer x .

Proof Suppose that Γ is equivalent to the crossed product Δ(g, St9 Gt)

where St is a tamely ramified extension of R, and Gt is the Galois group

of the quotient field extension Lt of k. The first step is to prove induc-

tively that the central simple λ -algebra Δ(fx

9 L, G) is equivalent to Δ(gx, Lt9 Gt).

For x = 1 the assertion is trivial. So assume now that Δ{fx~x, L, G) is

equivalent to Δ{gx~x,Lt,Gt). Now Δ{fχ-1,L,G)(g)kΔ(f9L,G) is equivalent to

Δ(fx,L,G) and similarly Δ(gχ-\Lt,Gt)®1cΔ(g,Lt,Gt) is equivalent to Δ(gx,Lt9Gt)

(see Thm. 8.5 A p. 86 of [1]). We may conclude therefore from the

induction hypothesis that Δ(fx, L, G) is equivalent to Δ(gx

9 Lt9 Gt).

A maximal order Γx in Δ(fx, L9 G) is equivalent to a maximal order Ωx

in Δ(gx, Lt, GJ) according to Lemma 2.1 of [11]. However, the fact that St

is a tamely ramified extension of R, together with the fact that g is in

Z2{Gt9 U(St)) implies that Ωx is equivalent to a crossed product over a tamely

ramified extension of R by Thm. 2. 3 of [11].

Now we may complete the proof of the main theorem.

THEOREM 4. 5. Let k denote the quotient field of a complete discrete rank one

valuation ring R, and let Γ be a maximal order in a central simple k-algebra 2

Then Γ is equivalent to a crossed product over a tamely ramified extension of R if

and only if the Brauer class 2 is in the subgroup T(k) of B(k).

Proof If 2 is in T(k), then a maximal order in 2 is equivalent to a

crossed product over a tamely ramified extension of R according to Prop. 4.2.

On the other hand, assume now that Γ is equivalent to a crossed

product over a tamely ramified extension of R. Then 2 is in V(k) accord-

ing to Prop. 4.3, so that 2 m ^y be represented by a crossed product
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4(f9L,G) where L is an unramified extension of k. We prove by contradic-

tion that the Brauer number n of Σ must be relatively prime to p. The

assertion is trivial when R has characteristic zero. We assume therefore that

n is divisible by char 5 = β φ O , and write n in the form n = mpt where m

is relatively prime to p and t > 1. Consider the central simple fc-algebra

J]nιP = d{fn/p,L,G) and observe that the Brauer number of Σ»/p is p . If a

maximal order in J(/, L, G) were equivalent to a crossed product over a

tamely ramified extension of R, then a maximal order Ω in d(fn/p, L, G)

would be equivalent to a crossed product over a tamely ramified extension

of R according to Prop. 4.4. But Ω cannot be equivalent to such a

crossed product because the Brauer number of Σln/p is p (see Thm. 3.16).

This contradiction completes the proof of the theorem.

COROLLARY 4.6. Let k denote the quotient field of a complete discrete rank one

valuation ring R whose residue class field R is perfect, and let Γ denote a maximal

order in a central simple k-algebra Σ . Then the following statements are equivalent

i) Γ is equivalent to a crossed product over a tamely ramified extension of R

ii) Γ is equivalent to a crossed product

iii) the Brauer number of Σ is relatively prime to the characteristic of R.

Proof The equivalence of i) and ii) follows from Theorem 2 of [6] since

a maximal order is hereditary and R is perfect. The equivalence of i) and

iii) follows from the theorem.

COROLLARY 4. 7. Let R denote a complete discrete rank one valuation ring. If

R is an equicharacteristic ring of characteristic zero, then every maximal order over R

is equivalent to a crossed product over a tamely ramified extension of R.

Proof This assertion follows immediately from Thm. 4.5 since T(k) =

B(k) when R is an equicharacteristic ring of characteristic zero.

COROLLARY 4.8. There exist maximal orders which are not equivalent to

crossed products.

Proof Let R denote the ring of p-adic integers Zp, and k the quotient

field of R. In Remark 1. 5 we observed that T(k) is properly contained in

V(k). Since R is perfect, it follows from Cor. 4. 6 that not every maximal

order is equivalent to a crossed product.
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